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Abstract

In Reinforcement Learning (RL) the current state of the en-
vironment may not always be available. One approach to fix
this could be to include the actions after the last-known state
as a part of the state information, however, that leads to an in-
creased state-space making the problem complex and slower
in convergence. We propose an approach, where the delay in
the knowledge of the state can be used, and the decisions are
made to maximize the expected state-action value function.
The proposed algorithm is an alternate approach where the
state space is not enlarged, as compared to the case when
there is no delay in the state update. Evaluations on the basic
RL environments further illustrate the improved performance
of the proposed algorithm.

Introduction and Related Work
Applications of Reinforcement Learning (RL) are continu-
ously increasing in domains that can be formulated using
state, action, and rewards. For example cloud scheduling
(Arabnejad et al. 2017), robot manipulation (Clavera et al.
2019), and microgrid management (Kuznetsova et al. 2013).
However, in many such applications the state update in-
formation is not available instantaneously. As an example,
micro-grid control may have stochastic delays because of
the communication link and these delays may have adverse
impact on the system (Liu, Wang, and Liu 2015). The issue
of such delay in the availability of state information lim-
its the use of RL for practical applications (Mahmood et al.
2018). This paper proposes an algorithm for environments
where the state updates are not immediately available.

As studied by (Katsikopoulos and Engelbrecht 2003),
delays may be of three types, 1) delays in observations,
2) delays in executing actions, and 3) delays in obtaining
cost/reward delays. Katsikopoulos and Engelbrecht (2003)
show that action delays are equivalent to observation delays.
If observations are delayed then the agent plays action with
knowledge of the last observed state and the actions hap-
pened in the meantime. Similarly, if actions are delayed, the
agent schedules actions for the future with the same informa-
tion. In case of delays in rewards updates, algorithms train
using mini-batches where a mini-batch consists of state ob-
servations, actions taken, and available rewards received for
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some duration. In this paper, we assume only observation or
action delays. We further assume that rewards are provided
to the agent along with state updates.

Altman and Nain (1992) show that for Markov Deci-
sion Process (MDP) where each observation is delayed by
d steps, constructing an equivalent MDP with an augmented
state space where previous d actions are appended to the cur-
rently known state restores the problem structure back to an
MDP. However, this approach does not scale to stochastic
delays. In order to resolve this, (Katsikopoulos and Engel-
brecht 2003) proposed a new solution by assuming that the
maximum delay is bounded. They assume that if the delays
are more than a threshold n, then the algorithm freezes, and
would not take any action. However, many real-time systems
may not allow freezing of execution.

Further, the expansion of the state space might not be ef-
ficient for implementation because of the increased storage
complexity. In order to alleviate this, the authors of (Walsh
et al. 2009) proposed an algorithm to play action at that is
optimal for the most likely state. It was assumed that the
probability of not being in the most likely state is bounded
by δ, where δ is small enough. For MDPs where state dis-
tributions are not concentrated, this assumption might not
hold. Schuitema et al. (2010) presented memoryless algo-
rithms dQ and dSARSA which work by updating Q-value
corresponding to the delayed state directly. However, this
approach cannot work with stochastic delays. Lastly, the re-
gret analysis of the MDP shows that the regret for the aug-
mented MDP scales as Ad/2, where d is the delay in the
availability of the state information and A is the number of
actions (Jin et al. 2018). For large d, the gap may be large
enough for the approach to have significantly decreased per-
formance.

We propose a solution that aims to alleviate these limita-
tions. The proposed algorithm, called Expectated-Q Max-
imization (EQM), takes an action that maximizes the ex-
pected gain of true MDP across all possible states condi-
tioned over the last known state st−d, and actions taken
till time t. EQM for delayed reinforcement learning is, (1)
Space efficient: The proposed algorithm does not use an
augmented MDP to determine the action. It, however, uses
the fact the current true state comes from the probability dis-
tribution generated by augmented MDP. (2) Robust under
deviation from most likely state: The algorithm selects the
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action that maximizes the expected value Q function. Thus,
even though the distribution is not concentrated around a sin-
gle state, the distribution is efficiently utilized. (3) Handles
stochastic delays: The algorithm works well with stochastic
delays, as well as missed information.

We evaluate EQM on Frozen Lake (8 × 8) grid, and
Cart Pole environments of OpenAI Gym platform (Brock-
man et al. 2016). The results for delayed settings are com-
pared with Extended MDP formulation of (Altman and Nain
1992), MBS algorithm given by (Walsh et al. 2009), and dQ
algorithm proposed by (Schuitema et al. 2010) respectively.
The metric of comparison is the total reward, collected in
each episode.

Formulation
We consider a Markov Decision Process M =
(S,A, γ, P,R), with set of states denoted by S , and
set of actions denoted by A. At time t, the environment
is in state st ∈ S . The definitions are mostly consistent
with those in (Sutton and Barto 2018; Puterman 2014).
At any time t, the agent chooses action at ∈ A based
on its knowledge about the current state. On playing the
action at, environment rewards the agent with Rt, which is
random variable conditioned on environment state st, and
action chosen by agent at time t. The maximum reward
the agent can receive at any time step is Rmax. The goal
of the agent is to maximize the discounted cumulative
rewards it receives. The discount factor γ ∈ [0, 1) denotes
the importance of future rewards.

The probability distribution of next state st+1 condi-
tioned on current state st and action at is denoted by
p(st, at, st+1). Shorthand notation by dropping the sub-
scripts is denoted as,

p(s, a, s′) = P (st+1 = s′|st = s, at = a) (1)

Agent selects an action according to a stationary policy π
as at = π(st). The value function V π(s) of a state s is de-
fined as the expected value of sum of discounted rewards
which agent can receive over time starting from state s and
choosing actions according to the policy π.

V π(s) = Eπ

[
∞∑
t=t0

γt−t0Rt

∣∣∣st0 = s

]
(2)

= Eπ

[
∞∑
t=t0

γt−t0r(st, at)|st0 = s

]
(3)

where r(s, a) = E [Rt|st = s, at = a] is the expected re-
ward when action a is taken in a state s is defined as r(s, a)

This makes the maximum possible value of V π(s) as
Rmax

1−γ . Similarly action-value function Qπ(s, a) is defined
as the expected cumulative rewards which agent receives in
state s on taking action a and then following policy π,

Qπ(s, a) = r(s, a) + γE [V π(st+1)|st = s, at = a] (4)

For both value function V π(s) and action-value function
Qπ(s, a) the expectation is taken over the states which are
distributed according to the transition dynamics of the MDP
M and actions which are distributed according to the policy
π. We use only π in the subscript for expectation as we can

only control the policy. Optimal policy π∗ is defined as the
policy which maximizes the value function for all states.

V ∗(s) = V π
∗
(s) = sup

π
V π(s) ∀ s ∈ S (5)

= max
a∈A

Q∗(s, a) ∀ s ∈ S (6)

We also assume that all realizations of delay d to be a
non-negative integer. At time t, the last known state for
the agent is st−d. The actions played in d time steps are
at−d, at−(d−1), · · · , at−1. We assume that at the beginning
of any episode, all the delayed observations of previous
episodes are available. This also means that the observations
from any of the previous episodes are not corrupting the ob-
servations received in current episode.

Proposed Policy and Bounds
For a system with d delays, we construct an extended MDP
M̃ which has state s̃t as (st−d, at−d, at−(d−1), · · · , at−1).
The two MDPs M̃, andM share the same action space A,
so we will not change the notation for actions. For every-
thing else we will put a tilde over the variables for the aug-
mented MDP. The policy π̃ now selects an action based on
s̃ or the tuple (st−d, at−d, at−(d−1), · · · , at−1). The corre-
sponding Q-function for a policy π̃ over M̃ becomes,

Q̃π̃(s̃, a) = E [Rt|s̃t = s̃, at = a] +

γ
∑

s̃t+1∈S̃

Ṽ π̃(s̃t+1)P [s̃t+1|s̃t = s̃, at = a] (7)

Using this construction we present the key lemma based on
which we construct our policy.
Lemma 1. Expected reward obtained by agent in aug-
mented state s̃t by taking an action a, is related to the true
state st of environment as

r̃(s̃t, a) =
∑
s∈S

r(s, a)p(s|s̃t) (8)

Proof. (Outline) The reward Rt generated by the environ-
ment is oblivious to the state maintained by the agent. Using
the tower rule of expectation, we get the required result. A
detailed proof is provided in our technical report (Agarwal
and Aggarwal 2020).

Lemma 1 states that the expected reward received on tak-
ing action a in state s̃ is the expected reward received by
taking action a in the unobserved stated conditioned on s̃.
Based on Lemma 1, a myopic policy, which maximizes im-
mediate expected return for the agent, selects greedy action
at(s̃) as

at = argmax
a∈A

(Es [R(s, a)|s̃t]) (9)

Inspired by the myopic policy, we now propose a policy for
working with delayed state updates.

We propose a policy that maximizes expected Q value
(over the states) of the optimal policy forM, or

π̃(at|s̃t) =

{
1, if at = argmaxa∈A E [Q∗(s, a)|s̃t] ,
0, otherwise

(10)
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The following theorem provides bounds on minimum value
an augmented state s̃ ∈ S̃ would fetch for the agent. That
is, value function using the policy defined in Equation (10)
ensures the minimum value given in Theorem 1.
Theorem 1. If the agent follows policy as given in (10), for
an augmented MDP M̃, then the value of each state s̃ ∈ S̃
satisfies the following lower bound,

Ṽ π̃(s̃) ≥ Es|s̃
[
V π
∗
(s)
]
− Rmax

(1− γ)2

(
1− 1

|A|

)
(11)

where π∗(at|st) is oracle aided policy which gives the op-
timal action for true MDPM.

Proof. We first mention and prove the lemmas required for
the proof, and then continue to the final proof. Lemma 2
relates the value function forM and M̃ under same policy
π̃. Lemma 3 relates expected value using the oracle aided
policy and the state-action value using oracle aided policy.

Lemma 2. Value function of a policy π̃(a|s̃) for augmented
MDP M̃ is related to value function for same policy under
true MDPM is related as

Ṽ π̃(s̃) = Es
[
V π̃(s)|s̃

]
(12)

where V π̃(s) is value function for policy π̃ with MDPM.

Proof. (Outline) We get the required result by using linear-
ity of expectation, Lemma 1 and the fact that the environ-
ment state transition probability does not change from MDP
M to M̃.

Lemma 3. For the optimal policy π∗, and distribution over
initial state s, µ,

max
a

Es∼µ [Q∗(s, a)] ≥
1

|A|Es∼µ [V
∗(s)] (13)

Proof. Let initial state follow some distribution µ, or
P [st = s] ∼ µ. Then we have,

Es∼µ [V ∗(s)] = Es∼µ
[
max
a

Q∗(s, a)
]

≤ Es∼µ

[∑
a∈A

Q∗(s, a)

]
≤ |A|max

a∈A
Es∼µ [Q∗(s, a)] (14)

We can now use Lemma 2, Lemma 6.1 from (Kakade and
Langford 2002) and Lemma 3 to find the minimum value
of Ṽ π̃(s̃) − Es

[
V π
∗
(s)|s̃

]
. A detailed proof is provided in

(Agarwal and Aggarwal 2020).

Theorem 1 states that the proposed policy can suffer a
maximum degradation of

(
1− 1

|A|

)
Rmax

(1−γ)2 only from the
expected optimal value of unobserved state conditioned on
the extended state.

Now, the task that remains is to find Q∗ for true MDP.
We assume that the delayed state observations can be iden-
tified using timestamp or index header. This is a common
engineering principle in communication networks to deal
with asynchronous packets (Walrand and Parekh 2010), and
hence it is a valid assumption. This allows to find optimal
Q-function for true MDPM. We next provide a detailed al-
gorithm for the policy described in this section.

Algorithm
We now utilize Equation (10) to construct Expectated-Q
Maximization (EQM) algorithm (described in Algorithm 1)
which is space efficient and which can handle stochastic de-
lays. We keep track of the estimates of true transition prob-
abilities to calculate the Q-value function for the optimal
policy.

Algorithm Description and Complexity
We assume that the state value feedback is mapped with a
time stamp to obtain a state-action pair and the next state
into which the environment transitions. We maintain vari-
ables corresponding to number of times a state-action pair
was visitedN(·, ·) and the counter for next state from a state-
action pair P (·, ·, ·) to calculate the estimates of probability
transitions (p̂(·, ·, ·)) as

p̂(s′, a, s) =
P (s′, a, s)

max{1, N(s, a)} . (15)

We also calculate the Q-values of states and actions as:

Q(s, a) = r̂(s, a) +
∑
s′∈S

γ

(
max
a′

Q(s′, a′)

)
p̂(s, a, s′) (16)

The estimates of transition probabilities and Q-values are
improved as the algorithm explores. Get EQM Action is pre-
sented in Algorithm 1. If the current state is available, the ex-
pected Q-function becomes the true Q function. Algorithm
1 computes the expected Q-value for Equation (10) from the
probability estimates. At each time step t, Algorithm 1 com-
putes the expected value of the Q-function whenever an ac-
tion needs to be taken. This requires O

(
d|S|2 + log (|A|)

)
computations. For our algorithm, we calculate the probabil-
ity vector p̄ which is the conditional probability distribution
of the states given the last known state st−d, and the se-
quence of actions at−d, · · · , at−1. For time t − d, the true
state is known and conditional probability becomes

p̄t−d(s) =

{
1, s = st−d,
0, otherwise

(17)

Then, for each next time step, the probability vector is up-
dated using the following recursion equation.

p̄t−k =
(
p̂(:, at−(d−k), :)

)T
p̄t−k−1 ∀ s ∈ S, ∀ 1 ≤ k < d

(18)

where p̂(:, at−k−1, :) is the state transition matrix of MDP
M induced by action at−k−1. Since we do this update d
times, and each matrix multiplication costsO

(
|S|2

)
, the to-

tal complexity to compute the state probability at each time
step t becomes O

(
d|S|2

)
. Fetching the maximum element

cost extra O (log (|A|)). The overall complexity at any time
step t thus becomesO

(
d|S|2 + log (|A|)

)
. The complete al-

gorithm is provided in (Agarwal and Aggarwal 2020).

Evaluation
We evaluate our algorithm EQM on the Cart Pole problem
of OpenAI Gym (Brockman et al. 2016). The Cart Pole en-
vironment has continuous state space with discrete action
space.
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Algorithm 1 Get EQM Action
Input: S, A, p̂, Q, (st−d, at−d, · · · , at−1)
Output: Estimated greedy action at
p̄ = [0, · · · , 0], vector of length |S|
p̄[st−d] = 1
for 0 ≤ k < d do

p̄ =
(
p̂(:, at−(d−k), :)

)T
p̄

end for
Q̄ = p̄TQ
Return argmaxa Q̄

We compare our algorithm with Extended MDP formula-
tion by (Altman and Nain 1992), Model Based Simulation
(MBS) algorithm of (Walsh et al. 2009), and dQ algorithm
of (Schuitema et al. 2010) for constant delays. We also com-
pare the proposed EQM algorithm with MBS algorithm for
stochastic delays. The metric of comparison is total cumu-
lative reward accumulated at the end of each episode aver-
aged over last 50 episodes. Exploration factor is time de-

pendent and is chosen as εt =
log (|S|

∑
s,aN(s,a)+1)∑

aN(s,a)+1 ∀s, a.
This choice of exploration factor is same across all simu-
lations. For stochastic delays, creating an augmented MDP
is not feasible as delays can be arbitrarily large. We run 20
independent iterations to obtain confidence intervals. Each
iteration is trained over 1000 episodes.

For constant delays, we chose delays in the range of d ∈
{2, 4}. For stochastic delays, each observation was indepen-
dently delayed by delays generated using a geometric distri-
bution with parameter p. The expected delay for this distri-
bution is 1

1−p . We note that, this may create asynchronous
observations as delay d1 of observation at t1 may be higher
than delay d2 of observation at t2, where t1 + d1 > t2 + d2.
The issue of asynchronous delays can be dealt by introduc-
ing time stamps in observations.

Results
Simulations results based for both constant delays and
stochastic delays are presented in Figure 1. We plot median
of rewards in each iteration along with the top and bottom
quantiles.

As observed in Figure 1, total reward per episode is higher
for EQM algorithm compared to all other algorithms (MBS,
dQ, EMDP) in the presence of constant delays. As delay in-
creases, gap between the rewards also increase between the
two algorithms. For MBS algorithm, this can be reasoned as
- with large values of delays the state with largest likelihood
might have lower probability of occurring.

For dQ algorithm, the reason for increasing difference in
accumulated rewards can be credited to the memoryless al-
gorithm. Also, Extended MDP algorithm is slow in conver-
gence because of larger state space which grows exponen-
tially. This reduction in convergence speed is visible in Fig-
ure 1 where delay of 4 time steps cause a significant drop in
performance of Extended MDP algorithm.

For stochastic delays, the difference between the rewards
accumulated by EQM, and MBS algorithm increases when
the probability of delay increase. The EQM algorithm beats
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Figure 1: Reward accumulated by EQM, MBS, EMDP, and
dQ-learning algorithm with constant delays and stochastic
delays. EQM achieves higher average reward per episodes
compared to other algorithms.

the MBS algorithm significantly even when the stochastic
delays are geometric distributed with expected delay of 1
unit in Figure 1.

Conclusion
We considered the problem of delays in observation updates
for a reinforcement learning agent where the current state of
the environment is not immediately available to the agent.
We proved that the expected immediate rewards generated
for MDP with delays is same as expected immediate rewards
generated for corresponding extended MDP without delays.
We proposed a new policy which can handle stochastic de-
lays by optimizing on optimal Q-function of the true MDP.
We then provided a lower bound on the value function for
all states following the proposed policy. Based on this pol-
icy, we proposed a new algorithm, Expectated-Q Maximiza-
tion (EQM), which is robust under constant, and stochastic
delays.Evaluations demonstrate the improvement over exist-
ing algorithms under constant, and stochastic delays. Study-
ing the convergence rates of the Q-value functions in pres-
ence of delays and extending EQM to deep neural networks
remains potential future work.
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