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Abstract

Recently, the proposal of individual bounds that use consis-
tent heuristics in front-to-end bidirectional search has im-
proved the state of the art. However, modern theory in bidi-
rectional search does not include algorithms that explicitly
exploit consistency. Here we extend past theoretical work,
namely must-expand pairs and derived concepts, to the case
in which consistency is used, and clarify their relationship
with the aforementioned individual bounds.
Departing from the new theory, we show that consistent front-
to-end heuristics can also be seen as an admissible estima-
tion of the lowest cost of any path between any two nodes.
Therefore, by grouping nodes by g and their heuristic val-
ues in buckets, such an estimate can be computed for sets of
nodes and not individual pairs without loss of information.
This bucket-to-bucket computation, although as expensive as
front-to-front in the worst case, is the state of the art in the
Pancake Problem, and allows implementing near-optimal al-
gorithms that exploit consistency. Also, experiments offer an
insightful measurement of how far front-to-end algorithms
are from their theoretical limit.

Introduction
After several decades without major developments, bidirec-
tional search has received a renewed interest. On the one
hand, algorithms that exploit the interactions of g on both
sides have obtained good empirical results (Holte et al. 2017;
Barley et al. 2018; Shperberg et al. 2019); on the other, a
thorough theoretical analysis has identified both the mini-
mum number of necessarily-expanded nodes and the pairs of
nodes that all front-to-end bidirectional algorithms have to
expand (Eckerle et al. 2017; Shaham et al. 2017, 2018). This
has allowed to develop groundbreaking concepts, like near-
optimal algorithms (Chen et al. 2017), algorithms that never
expand more than twice the necessarily-expanded nodes of
any other front-to-end algorithm.

This theoretical analysis relied on instances with consis-
tent heuristics, but the algorithms themselves did not exploit
this fact, a setting known as the IAD/ICON case. More re-
cently, however, the definition of individual bounds, some
of which exploit heuristic inaccuracies that rely on the con-
sistency of heuristics, has allowed to push the state of the
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art even beyond the limits of previous near-optimal algo-
rithms (Alcázar, Riddle, and Barley 2020). Algorithms that
exploit consistency explicitly are known to belong to the
ICON/ICON case. Therefore, currently there is a gap in the
theory about bidirectional search in the sense that key def-
initions are not yet covered for the ICON/ICON case. In
order to address this, we define must-expand pairs for the
ICON/ICON case and analyze the impact of this new defini-
tion for other relevant concepts, like the must-expand graph.

Additionally, consistency can also be seen as a triangle
inequality that provides a lower bound on the cost between
two arbitrary nodes. Consequently, this cost can then be used
as a front-to-front heuristic, despite using the same heuris-
tics as previous front-to-end algorithms. Although comput-
ing this cost for all pairs of nodes is not practical, such esti-
mation depends on node values often common to large sets
of nodes. Hence, much like some implementations group
nodes in buckets by their node values to improve perfor-
mance (Burns et al. 2012), one may compute this estimation
between sets of nodes using these buckets as opposed to us-
ing individual nodes. We show how this cost estimation and
bucket-to-bucket computation are closely related to concepts
like individual bounds and the dynamic must-expand graph
(Shperberg et al. 2019). Additionally, we show how these
concepts allow implementing near-optimal algorithms with
respect to algorithms that exploit consistency, solving the
question whether it is possible to implement near-optimal
algorithms in the ICON/ICON case.

In summary, in this paper we define must-expand pairs
when consistency is used and extend this definition to
other relevant concepts, link must-expand pairs to individ-
ual bounds, show the similarities of the bucket-to-bucket
computation with the dynamic must-expand graph, and per-
form experiments that both assess the viability of such an
approach and give an insight on the minimum number of
nodes that current front-to-end algorithms must expand.

Background
A search instance is a tuple I = (G =
(S,E), start, goal, hf , hb). G is an implicit directed
graph; S is the set of vertices (states in explicit-state
search); E is the set of edges, each with a non-negative
arbitrary cost; start ∈ S is the initial state; goal ∈ S is
the goal; hf , hb are the forward and backward heuristics
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respectively. ε is the value of the edge with minimum cost,
which can be assumed to be 0 without loss of generality if it
is unknown.

The cost of the least-cost path between two states in S is
c : S × S → R≥0. Search algorithms keep track of states
using nodes; a node makes reference to a single state, but a
state can be referenced by different nodes. Nodes have node
values (e.g. g) labeled with the direction of the search, like
hf and hb. When the direction is the same in an equation but
can be either one, the label is x, like fx. Other terms related
to direction can be labeled too, e.g. Openx is the open list
of direction x. The opposite direction of x is x̄. Given node
n referencing state s ∈ S, gf (n) is the cost of the forward
path from start to n, gb(n) is the cost of the backward path
from goal to n, hf (n) = hf (s, goal), hb(n) = hb(s, start),
fx(n) = gx(n) + hx(n), dx(n) = gx(n) − hx̄(n) and
bx(n) = fx(n) + dx(n). For gf (n) and gb(n) to be optimal,
gf (n) = c(start, s) and gb(n) = c(s, goal) respectively. hf
and hb are admissible iff, for any state s ∈ S, hf (s) ≤
c(s, goal) and hb(s) ≤ c(start, s) respectively. hx is con-
sistent iff it is admissible and hx(n) ≤ c(n, n′)+hx(n′) for
any pair of nodes n, n′.
C∗ = c(start, goal) is the cost of an optimal solution.

U is the cost of the best solution found so far, and thus
monotonically decreasing. For an algorithm to be optimal,
C∗ = U at the end if there is at least one solution path.
C is a lower bound on the cost of any new solution, and
thus monotonically increasing. When C ≥ U , necessarily
C∗ = U and thus an optimal solution has been found.

A pair of nodes (n, n′) is expanded if at least either n or n′
is expanded. lb(n, n′) is a lower bound of any solution path
that contains the states that n and n′ make reference to. A
pair that will be expanded by any bidirectional algorithm is
a must-expand pair, but an optimal bidirectional algorithm
does not have to identify must-expand pairs explicitly to
guarantee optimality. The set of all must-expand pairs de-
fine a bipartite graph know as the must-expand graph (GMX).
The cardinality of its minimum vertex cover is the minimum
number of necessarily-expanded nodes (nodes expanded be-
fore C = C∗) that any algorithm must expand. An algo-
rithm that guarantees never expanding more than twice the
minimum number of necessarily-expanded nodes is said to
be near-optimal. Related to GMX, the dynamic must-expand
graph DGMX is a bipartite graph defined by all pairs (n, n′)
such that n ∈ Openf , n′ ∈ Openb and lb(n, n′) = C. At
any time, in order to increase C, all pairs (n, n′) ∈ DGMX
must be expanded.

Formally, the IAD/ICON case was defined by Eckerle et
al. (2017) as “What can be assumed by the algorithm on the
problem instances / The instances the algorithm is executed
on”. The ICON/ICON case is the one in which the algo-
rithm is aware of the consistency of hf and hb, and therefore
cannot be classified as a DXBB algorithm.

Theory of the ICON/ICON Case
In this section we identify the conditions that define a must-
expand pair in the ICON/ICON case. Additionally, we ana-
lyze how these conditions affect other relevant concepts and

how they are linked to the individual bounds. The specific
case of undirected graphs is also covered.

Must-Expand Pairs with Consistency
The original theoretical work about must-expand pairs by
Eckerle et al. (2017) assumed that heuristics were consis-
tent but that the algorithm had no knowledge about it. More
recent work based on the fact that C is monotonically non-
decreasing with consistent heuristics (Shperberg et al. 2019;
Alcázar, Riddle, and Barley 2020) purposely exploits con-
sistency, e.g. front-to-end bounds that require consistency,
like the KK bounds (Alcázar, Riddle, and Barley 2020).

Shaham et al. (2018) formalized the distinction between
both cases: the IAD/ICON case is the case in which algo-
rithms exploit only admissibility despite having consistent
heuristics; and the ICON/ICON case, in which algorithms
exploit this fact. In their analysis of ICON/ICON , they real-
ized that consistency imposes a lower bound on the cost of
the path between any two nodes n, n′ ∈ S. This lower bound
comes from the formalization of consistency as a triangle in-
equality between any three states a, b, c ∈ S defined in their
Lemma 8. Thus, they define a new front-to-front heuris-
tic: hC(n, n′) = max(hx(n) − hx(n′), hx̄(n′) − hx̄(n))1.
Based on the definition of must-expand pair for front-to-
front heuristics, they gave a new definition of must-expand
pair for front-to-end ICON/ICON algorithms.

Definition 1. (Definition of must-expand pair for front-to-
end algorithms using consistency by Shaham et al. (2018)).
Two nodes n, n′ are a must expand pair if all of the following
conditions are met:

1. fx(n) < C∗

2. fx̄(n′) < C∗

3. gx(n) + gx̄(n′) + hC(n, n′) < C∗

This definition is redundant, because the third condition,
gx(n)+gx̄(n′)+hC(n, n′), is an upper bound on both fx(n)
and fx̄(n′). Then, if the third condition is met, the first and
second conditions are necessarily met.

Lemma 1. (The value of gx(n) + gx̄(n′) + hC(n, n′) dom-
inates the f values). Let hf , hb be consistent heuristics and
n, n′ be a forward and a backward node respectively. Then,
gx(n) + gx̄(n′) + hC(n, n′) ≥ max(fx(n), fx̄(n′))

Proof. We prove the forward case. hC(n, n′) =
max(hx(n) − hx(n′), hx̄(n′) − hx̄(n)), so hC(n, n′) ≥
hx(n) − hx(n′); therefore, gx(n) + gx̄(n′) +
hC(n, n′) ≥ gx(n) + gx̄(n′) + hx(n) − hx(n′).
fx(n) = gx(n) + hx(n), so for fx(n) to be higher,
gx(n) + hx(n) > gx(n) + gx̄(n′) + hx(n) − hx(n′) and
therefore 0 > gx̄(n′) − hx(n′) and hx(n′) > gx̄(n′). hx
is consistent and thus admissible, so hx(n′) > gx̄(n′)
is impossible and thus fx(n) will never be higher than
gx(n) + gx̄(n′) + hx(n) − hx(n′) and nor higher than
gx(n) + gx̄(n′) + hC(n, n′) either.

1This definition is not exactly Shaham et al.’s, as it is a more
general definition for both directed and undirected graphs. The case
in which the graph is undirected will be analyzed later.
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Indeed, Shaham et al. (2018) recognize Definition 1 as
equivalent to the KKAdd method by Kaindl and Kainz
(1997). In fact, it is also equivalent to the KKMax method, as
they are part of the same bound definition (Alcázar, Riddle,
and Barley 2020). These bounds/methods strengthen f using
heuristic inaccuracies, so it is clear that f will be dominated
by the use of hC anyway.

Another aspect not covered by Shaham et al. (2018) is
the use of ε. If n and n′ are not nodes referencing the same
state, then they must be at least one step away and so ε is
obviously a lower bound on the cost of any path between n
and n′. Here we redefine hC to account for this fact.

Definition 2. (Definition of hC using ε).2

hC(n, n′) = max(hx(n)− hx(n′), hx̄(n′)− hx̄(n), ε) (1)

Given two nodes n, n′, then lb(n, n′) = gx(n)+gx̄(n′)+
hC(n, n′) in the ICON/ICON case. Therefore, as claimed
by Shaham et al. (2018), (n, n′) will be a must-expand pair
in the ICON/ICON case if lb(n, n′) < C∗. However, a gap
in the theory is that Shaham et al. (2018) relied on a proof
for the IAD/ICON case to show that such pairs of nodes
are indeed must-expand pairs. This is not extensible to the
ICON/ICON case in an straightforward way, though. There-
fore, here we provide a proper proof for the ICON/ICON

case, first for front-to-front heuristics.

Theorem 1. (Must-expand pair in the front-to-front
ICON/ICON case). Let hf , hb be consistent front-to-front
heuristics, n, n′ be a forward and a backward node respec-
tively, and gf (n) and gb(n′) be optimal. Then, any admissi-
ble deterministic algorithm must expand the pair (n, n′) if
lb(n, n′) < C∗.

Proof. We prove the contrapositive with a proof analogous
to the one for Theorem 1 of Eckerle et al. (2017). Assume
that n, n′ point to states s, s′ ∈ S that belong to the same
optimal solution path P in instance I , lb(n, n′) < C∗, and
that a deterministic algorithm B returns a path of cost C∗
different to P without expanding (n, n′). Then a new in-
stance I ′ ∈ ICON can be constructed having an optimal
solution strictly cheaper than C∗ on which B returns P ,
thereby showing that B is not admissible.
I ′ is identical to I but has an additional edge e from s to

s′ such that c(e) = C∗−lb(n,n′)
2 + h(n, n′). c(e) is strictly

positive because C∗ > lb(n, n′) and h(n, n′) ≥ 0. The new
edge e creates a solution path P ′ of cost C∗+lb(n,n′)

2 , which
is strictly less than C∗ because lb(n, n′) < C∗. Thus, e is an
essential part of any optimal solution to I ′.

We show that I ′ ∈ ICON , i.e. that hf is consistent on
I ′ (the proof for hb is analogous). Because hf is consis-
tent along all paths that do not go through e, it suffices to
prove that hf is consistent too when going through e. Let
x be an arbitrary backward node, then hf is not consis-
tent iff h(n, x) > c(e) + h(n′, x). hf is consistent on I ,
so c(n, n′) + h(n′, x) ≥ h(n, x) and c(n, n′) ≥ h(n, n′),
and thus h(n, n′) + h(n′, x) ≥ h(n, x). Therefore, hf is

2From here on we assume that ε is always used, omitting its
explicit mention in the notation for succinctness.

not consistent iff h(n, n′) + h(n′, x) > c(e) + h(n′, x),
which simplified is h(n, n′) > c(e), further simplified to
h(n, n′) > C∗−lb(n,n′)

2 + h(n, n′) and 0 > C∗−lb(n,n′)
2 .

C∗ > lb(n, n′), so 0 > C∗−lb(n,n′)
2 is not true and therefore

hf is consistent on I ′.
BecauseB is deterministic it will behave exactly the same

on I ′ as it did on I . In particular it will not expand n nor n′,
so it will not discover the edge e and will incorrectly return
P as the optimal solution for I ′. Hence, B is not admissible.

Theorem 1 requires front-to-front heuristics. However, as
shown in Definition 2, hC is a front-to-front heuristic built
using front-to-end heuristics. Therefore, Definition 2 holds
for the front-to-end ICON/ICON case too.

Theorem 2. (Must-expand pair in the front-to-end
ICON/ICON case). Let hf , hb be consistent front-to-end
heuristics, n, n′ be a forward and a backward node respec-
tively, and gf (n) and gb(n′) be optimal. Then, any admissi-
ble deterministic algorithm must expand the pair (n, n′) if
lb(n, n′) < C∗.

Proof. hf , hb can be used to create a front-to-front heuristic
hC . Hence, this theorem follows from Theorem 1.

Comparison between hC and Individual Bounds
Recently, new individual bounds that yield a lower bound
between two set of nodes in opposite directions were de-
fined for front-to-end algorithms (Alcázar, Riddle, and Bar-
ley 2020), pushing the state of the art in bidirectional search.
Barring the b bound for reasons explained below, these are
the bounds:

• g bound: gMinf + gMinb + ε

• forward KK bound: fMinf + dMinb
• backward KK bound: fMinb + dMinf

These sets of nodes can also be composed by a single
node. Hence, the previous bounds define the following lower
bounds for a pair of nodes n, n′ (we use x and x̄ instead of f

and b so the directions of n and n′ are interchangeable):

• g bound: gx(n) + gx̄(n′) + ε

• forward KK bound: fx(n) + dx̄(n′)

• backward KK bound: fx̄(n′) + dx(n)

Two observations that link these bounds to hC can be
done: first, they exploit consistency; second, they were de-
fined individually because previous attempts of exploiting
bounds maximized over several equations. hC exploits con-
sistency and maximizes over several equations, so we split
Definition 2 in several cases. Also, we add gx(n) + gx̄(n′)
to hC(n, n′) in order to obtain the lower bound lb(n, n′):

• gx(n) + gx̄(n′) + ε

• gx(n) + gx̄(n′) + hx(n)− hx(n′)

• gx(n) + gx̄(n′) + hx̄(n′)− hx̄(n)
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As we can see, the first case of gx(n) + gx̄(n′) + hC is
equivalent to the g bound. Moreover, that is the case too for
cases 2 and 3 of gx(n) + gx̄(n′) + hC and the forward and
backward KK bounds respectively:

• fx(n)+dx̄(n′) = (gx(n)+hx(n))+(gx̄(n′)−hx(n′)) =
gx(n) + gx̄(n′) + hx(n)− hx(n′)

• fx̄(n′)+dx(n) = (gx̄(n′)+hx̄(n′))+(gx(n)−hx̄(n)) =
gx(n) + gx̄(n′) + hx̄(n′)− hx̄(n)

Following from this equivalence, we can also define must-
expand pairs for front-to-end consistent algorithms using the
individual bounds from Alcázar et al. (2020):

Lemma 2. (Must-expand pair using individual bounds).
Two nodes n, n′ are a must-expand pair if all of the follow-
ing conditions are met:

1. gx(n) + gx̄(n′) + ε < C∗

2. fx(n) + dx̄(n′) < C∗

3. fx̄(n′) + dx(n) < C∗

This further confirms the relationship between hC and
Kaindl and Kainz’s work. The b bound, however, cannot be
linked to any condition in Lemma 2. That is because, al-
though in the front-to-end case the b bound is not dominated
by the KK bounds, for pairs of nodes its value bx(n)+bx̄(n′)

2

can be formulated as fx(n)+dx̄(n′)+fx̄(n′)+dx(n)
2 . As already

pointed out by Alcázar et al. (2020), this averages over both
KK bounds and thus will never be higher than either the for-
ward or the backward KK bound.

Must-expand Graph in the ICON/ICON case
The new definition of must-expand pair in the ICON/ICON

case shares all the characteristics of the original definition.
This way, the whole set of must-expand pairs of an instance
defines a must-expand graph GMX as defined by Chen et al.
(2017) for the ICON/ICON case. Consequently, a minimum
vertex cover of such a must-expand graph is the minimum
number of necessarily-expanded nodes that a front-to-end
ICON/ICON algorithm can expand. Additionally, any algo-
rithm that correctly identifies must-expand pairs at layer C
and expands both nodes will be near-optimal with respect
to any other ICON/ICON algorithm following Theorems 2
and 3 of Chen et al. (2017).

Nevertheless, there is an important difference. When us-
ing consistency, GMX is neither contiguous nor restrained
(Shaham et al. 2017), meaning that there are no thresholds
tF , tB ∈ R≥0 such that tF + tB + ε = C∗ for which
a vertex u in direction x is in the minimum vertex cover
iff gx(u) < tx. We illustrate this in Figure 1, in which
{n1

f , . . . , n
k
f} and {n1

b , . . . , n
k
b} are arbitrarily large sets of

nodes with the same node values. Apart from the must-
expand pairs containing start (S) and goal (G) we have the
following must-expand pairs (pairs that comply with Lemma
2):

• mf with all {n1
b , . . . , n

k
b}

• mb with all {n1
f , . . . , n

k
f}

• Pf with Pb

The minimum vertex cover (MVC) of GMX is then
{S,G,mf ,mb, Pf ∨ Pb}. Because mf belongs to the MVC
but {n1

f , . . . , n
k
f} do not, GMX is not contiguous, as not all

nodes with a g value lower than g(mf ) are in the MVC.
Because mf and mb are both in the MVC and g(mf ) +
g(mb)+ ε > C∗, GMX is not restrained, as no pair of thresh-
olds (tF , tB) can satisfy the property. Because of this, no
known algorithm in the vein of Shaham et al. (2017) is able
to compute the MVC in linear time.

Consistency in Undirected Graphs
A special case considered by Shaham et al. (2018) occurs
when G is undirected. In that case, the constraint imposed
by consistency is stronger: hx is consistent iff it is ad-
missible and |hx(n) − hx(n′)| ≤ c(n, n′) for any pair of
nodes n, n′. Therefore, hC can be redefined as hC(n, n′) =
max(|hx(n)−hx(n′)|, |hx̄(n′)−hx̄(n)|, ε). However, front-
to-end bounds for the specific undirected case can also be
defined. Let us define the following node values:
Definition 3. (rf value of a node). The rf (reverse f) value of
a node n is defined as rfx(n) = gx(n)− hx(n).
Definition 4. (rd value of a node). The rd (reverse d) value
of a node n is defined as rdx(n) = gx(n) + hx̄(n).

These nodes values are called reverse f and d values be-
cause they are based on the notion of reversing paths in undi-
rected graphs and because they are the same as f and d re-
spectively but with an inverted symbol.

Let us define rfMinx and rdMinx as the minimum rf and
rd values among expandable nodes in direction x. Then, we
can define new bounds for undirected graphs: the rc bounds.
Lemma 3. (rc bounds). The forward rc (reverse consistent)
bound is defined as rfMinf+rdMinb. The backward rc bound
is defined as rfMinb + rdMinf .

Based on these new node values, Lemma 2 can be adapted
to the undirected case by adding new conditions:
Lemma 4. (Must-expand pair using individual bounds in
indirected graphs). Two nodes n, n′ are a must-expand pair
if all of the following conditions are met:

1. gx(n) + gx̄(n′) + ε < C∗

2. fx(n) + dx̄(n′) < C∗

3. fx̄(n′) + dx(n) < C∗

4. rfx(n) + rdx̄(n′) < C∗

5. rfx̄(n′) + rdx(n) < C∗

We omit the proofs for lack of space, although admissi-
bility can be easily proved by linking rf and rd to hC when
G is undirected, for instance.

A Bucket-to-Bucket Algorithm
Front-to-front algorithms estimate the distance between
pairs of nodes to determine the best node to expand. The
main drawback of this approach is that a Cartesian product
of both open lists is required, which is often too computa-
tionally expensive. Computing the lower bound with hC re-
quires the g value and the heuristic estimates of the nodes.
However, when nodes share certain characteristics, they can
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Pb

g=4
f=9
d=0

G

f=6

Pf

g=4
f=9
d=0

S

f=6

n1
b

nkb

g=2
f=8
d=2

n1
f

nkf

g=2
f=8
d=2

mb

g=6
f=7
d=1

mf

g=6
f=7
d=1

C∗=10,ε=1

Figure 1: Example of non-contiguous and unrestrained GMX. Nodes with a gray background belong to a MVC of GMX.

be grouped together for different reasons, like using buck-
ets to speed up the expansion of nodes (Burns et al. 2012).
Using g-hx-hx̄ buckets groups all nodes in Openx with the
same g, hx and hx̄ together. Therefore, if the lower bound is
computed between two buckets, it can be used for all nodes
in those buckets, hence turning it into an estimate between
sets of nodes. We call this a bucket-to-bucket computation.

Figure 2: Illustration of a bucket-to-bucket computation.

Figure 2 shows an example of a bucket-to-bucket com-
putation. Dashed rectangles represent buckets that contain
nodes from the open list with the same values, while the dot-
ted lines represent the cost estimation between pairs of buck-
ets. In the worst case, buckets will contain a single node,
turning this computation into a regular front-to-front heuris-
tic. However, an arbitrarily large number of nodes can be
contained within a single bucket, reducing significantly the
time required for the computation.

The result of the bucket-to-bucket computation is a set of
edges that represent pairs of buckets (u, v). Each edge (u, v)
has a corresponding lower bound lb(u, v). Hence, a front-
to-front algorithm can be implemented by expanding nodes
from buckets in at least one edge such that lb(u, v) = C.

It is also worth mentioning that the set of edges and
buckets with minimum lower bound can be seen as an
ICON/ICON version of the dynamic must-expand graph

(DGMX) used by DVCBS (Shperberg et al. 2019). Thus, we
can draw a parallel between an efficient bucket-to-bucket
computation of estimates between sets of nodes thanks to
hC and previous work on must-expand pairs.

BTB is our bucket-to-bucket implementation. Until a so-
lution is proven optimal or either open list is empty, a bucket-
to-bucket computation is performed. This computation up-
dates C if necessary and returns a set of edges such that u, v
are buckets and lb(u, v) = C. Buckets can be chosen for
expansion in different ways. We have implemented the fol-
lowing versions of BTB:

• BTB (NBS): NBS stands for Near-optimal Bidirectional
Search. It picks the bucket with the fewest number of
nodes and, among the edges connected to that bucket,
it picks the edge that connects it to the smallest bucket
in the opposite direction. Then, pairs of nodes from both
buckets are expanded until the smallest bucket is empty.
Because BTB (NBS) expands both nodes of must-expand
pairs such that their lower bound is minimum among all
non-expanded pairs, i.e. lb(u, v) = C, it is near-optimal.
This follows from Theorems 2 and 3 of Chen et al. (2017).

• BTB (small): It expands the smallest bucket. This tries to
minimize the number of necessarily-expanded nodes by
expanding small buckets.

• BTB (conn): conn stands for “connected”. It expands the
bucket such that the sum of the nodes of the buckets in
the other direction connected to it is maximal. This way,
the number of nodes whose expansion is prevented in the
opposite direction is maximized, hopefully leading to a
smaller number of necessarily-expanded nodes.

• BTB (DVC): DVC stands for Dynamic Vertex Cover. In-
spired by the dynamic must-expand graph DGMX used by
DVCBS (Shperberg et al. 2019), but procedurally very
different. BTB (DVC) obtains a DGMX from the bucket-
to-bucket computation, and expands all buckets in a vertex
cover. Because all pairs such that lb(u, v) = C must be
eventually expanded forC to increase, expanding a whole
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vertex cover will prevent bucket-to-bucket computations
(potentially saving a high number of costly computations)
at the expense of choosing buckets when less informa-
tion is available. Computing the minimum weighted ver-
tex cover of a bipartite graph can be done in polynomial
time; however, DGMX does not necessarily contain all re-
maining must-expand pairs such that lb(u, v) = C, so
computing the exact minimum vertex cover may not pay
off. Instead, we greedily expand the smallest buckets with
edges still in DGMX, removing edges until no edges re-
main in DGMX whenever a bucket linked to an edge is ex-
panded. When no edges remain in DGMX, a vertex cover
has been found and the bucket-to-bucket computation is
repeated, updating C if necessary.
Algorithm 1 describes this process. An outer loop repeats
the bucket-to-bucket computation (lines 3-4), updating C
as long as no solution has been proven to be optimal
(U > C). The bucket-to-bucket computation returns C,
a set of buckets in both directions and a set of edges con-
necting buckets (line 4). Among buckets still connected to
an edge, the smallest one is expanded in its direction (line
6). If no solution of costC is found (line 8), all edges con-
nected to the bucket are removed (line 11). If no edges re-
main, a new bucket-to-bucket computation is performed.

Algorithm 1 BTB (DVC)

1: U ⇐∞; C ⇐ 0
2: Openf ⇐ {start}; Openb ⇐ {goal}
3: while Openf 6= ∅ ∧ Openb 6= ∅ ∧ U > C do
4: C, buckets, edges⇐ ComputeBTB(Openf ,Openb)
5: while edges 6= ∅ do
6: bucket⇐ SelectSmallestConnectedBucket(buckets)
7: Expand(bucket)
8: if C ≥ U then
9: return U

10: end if
11: RemoveEdgesConnectedToBucket(bucket, edges)
12: end while
13: end while
14: return U

Experiments
In this section we compare experimentally state-of-the-art
front-to-end algorithms that exploit heuristic inaccuracies
with the new bucket-to-bucket family of algorithms. The
benchmarks and seeds are exactly the same as in Alcázar et
al. (2020); therefore, the results of any algorithm in Alcázar
et al. (2020) and not in here are still relevant. The included
algorithms apart from BTB are:

• BAE*. A heap-based reimplementation of BAE* (Sad-
hukhan 2013; Alcázar, Riddle, and Barley 2020). It uses
bx(n) as its priority function in both directions. The termi-
nation criterion checks whether the value of the b bound
is equal or higher than U . BAE* (a) expands nodes alter-
nating in directions whereas BAE* (p) follows Pohl’s car-
dinality criterion, that is, it expands nodes in the direction

of the smallest open list. Additionally, in this paper hx
(but not hx̄) is strengthened using ε i.e. if hx(n) < ε then
hx(n) = ε instead. This helps to obtain higher bounds
when both hx < ε and hx̄ < ε without compromising
neither admissibility nor consistency.

• DBBS. DBBS as in Alcázar et al. (2020). It uses all
known front-to-end bounds, doing a fixpoint computation
to determine which nodes have a lower bound higher than
C. There are three differences with the previous work:
first, all benchmarks are undirected and hence we use the
rc bounds as well. For this, we use DBBS g-hx-hx̄ buck-
ets instead of g-f -d ones, as this allows us to compute all
node values used by the bounds.
Second, it was already pointed out by Alcázar et al.
(2020) how expanding by b yielded better results on av-
erage. Because of that, we show results both for DBBS
expanding by g (DBBSg) and expanding by b (DBBSb).
Third, in the original implementation DBBS (p) counted
the number of expandable nodes with minimum g to de-
cide in which direction to expand. Since we also expand
by b in the experiments, now both DBBSg (p) and DBBSb

(p) just count all expandable nodes, and expand in the di-
rection of the smallest set of expandable nodes.

Experiments show average total expanded nodes (ex-
panded when C ≤ C∗), average necessarily-expanded
nodes (expanded when C < C∗), and nodes expanded per
second (n/s) for the hardest instance of the set. We pick as
the hardest instance the instance for which BAE* (p) needs
more time. We do so because BAE*’s heap-based implemen-
tation is less sensitive to the distribution of values of g, hx
and hx̄. Also, not alternating directions, that is, using Pohl’s
cardinality criterion, can lead to more cache hits, making
BAE* (p) faster than BAE* (a). Results in bold represent
the best result for a benchmark. BTB (NBS) appears in a
highlighted row, as it is near-optimal and separates in the
table the front-to-end algorithms from BTB.

Table 1 shows results for 100 random instances in the 14-
Pancake Puzzle with the GAP heuristic (Helmert 2010).
GAP-k means that pancakes (0, k − 1) of the target state
are ignored to get an asymmetric weaker heuristic. We omit
nodes generated per second for GAP-0 and GAP-1 because
the number of expanded nodes is too low to have a clear
understanding of the efficiency of the algorithms.

In this domain, BTB (conn) is clearly the most informed
algorithm, as it expands the fewest necessarily-expanded
nodes for all heuristics but GAP-0. The rest of the BTB con-
figurations are not as competitive, being better than front-
to-end algorithms only for GAP-5 and GAP-6. For DBBS,
the degradation of the heuristic highlights how the impor-
tance of the bounds is relative to the accuracy of the heuris-
tic: while DBBSb is clearly the best front-to-end algorithm
up to GAP-4, DBBSg catches up for GAP-5 and becomes
the best front-to-end algorithm for GAP-6, as the g bound
is the main bound raising C when heuristics are weak. Un-
derstandably, BAE* displays a similar behavior to DBBSb

albeit expanding more nodes on average, as both algorithms
use the b bound and expand by b but DBBSb uses other
bounds as well. As opposed to DBBS, BTB is not affected
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Algorithm GAP-0 GAP-1 GAP-2 GAP-3 GAP-4 GAP-5 GAP-6
≤ C∗ < C∗ ≤ C∗ < C∗ ≤ C∗ < C∗ n/s ≤ C∗ < C∗ n/s ≤ C∗ < C∗ n/s ≤ C∗ < C∗ n/s ≤ C∗ < C∗ n/s

BAE* (a) 90 65 654 552 15110 11252 156k 132k 113k 86k 469k 465k 77k 1116k 1087k 71k 1786k 1750k 70k
BAE* (p) 88 64 729 620 17581 13420 168k 154k 135k 85k 480k 476k 76k 1117k 1087k 72k 1779k 1743k 70k
DBBSg (a) 521 58 13924 1780 136458 39776 47k 404k 240k 53k 544k 486k 56k 664k 617k 56k 786k 711k 56k
DBBSg (p) 312 45 4653 921 43227 22642 123k 271k 173k 58k 483k 426k 57k 655k 588k 57k 795k 703k 57k
DBBSb (a) 113 57 688 458 10417 8801 136k 77k 70k 67k 277k 272k 58k 653k 640k 56k 1040k 1013k 52k
DBBSb (p) 151 42 609 325 9143 7075 150k 72k 64k 68k 258k 248k 60k 592k 574k 57k 939k 901k 56k
BTB (NBS) 112 64 617 530 11432 10608 130k 83k 81k 64k 271k 269k 57k 539k 520k 54k 754k 748k 51k
BTB (small) 93 52 538 439 10026 9311 136k 72k 70k 68k 231k 229k 58k 460k 441k 55k 670k 654k 57k
BTB (conn) 191 50 869 317 12089 6725 145k 83k 59k 71k 271k 208k 57k 507k 399k 56k 700k 576k 56k
BTB (DVC) 285 44 2096 498 21097 11433 151k 113k 88k 71k 330k 257k 57k 634k 462k 56k 842k 667k 57k

Table 1: Pancake Problem

by the degradation of the heuristic because it accurately se-
lects nodes with minimum lower bound.

In terms of time, in this domain surprisingly BTB is not
slower than DBBS, and even BAE* is not substantially faster
than either DBBS or BTB. Also, BTB (DVC) is not faster
than the rest of the BTB configurations. This is because,
in the Pancake Puzzle, solutions are short and the range of
values of g, hx and hx̄ is small compared to the number
of nodes, which means that the number of buckets is rela-
tively small compared to the total number of nodes in the
open lists. All algorithms become slower as they have to ex-
pand more nodes due to loss of accuracy of the heuristic,
which also explains why, when an algorithm expands signif-
icantly more nodes than another (e.g. DBBSg (a) compared
to DBBSb (a) in GAP-2), it is also slower.

In summary, BTB (conn) is the state of the art in this do-
main except for its bad last-layer (when C = C∗) behavior,
which makes other algorithms more competitive in terms of
total expanded nodes. Nevertheless, algorithms with mono-
tonically non-decreasing C can fix this by implementing a
specific last-layer tie-breaker routine (Alcázar, Barley, and
Riddle 2019; Alcázar, Riddle, and Barley 2020).

Algorithm ToH-12 (10+2) ToH-12 (8+4) ToH-12 (6+6)
≤ C∗ < C∗ n/s ≤ C∗ < C∗ n/s ≤ C∗ < C∗ n/s

BAE* (a) 47k 46k 419k 187k 186k 348k 383k 382k 362k
BAE* (p) 46k 45k 436k 185k 182k 364k 375k 374k 389k
DBBSg (a) 70k 66k 187k 307k 286k 177k 622k 583k 191k
DBBSg (p) 57k 53k 199k 232k 221k 192k 493k 477k 217k
DBBSb (a) 48k 46k 193k 189k 186k 183k 383k 379k 194k
DBBSb (p) 45k 43k 190k 181k 178k 200k 371k 366k 218k
BTB (NBS) 47k 47k 14k 189k 189k 33k 388k 388k 67k
BTB (small) 50k 50k 17k 195k 195k 34k 396k 396k 69k
BTB (conn) 42k 41k 19k 180k 174k 44k 375k 364k 79k
BTB (DVC) 51k 50k 173k 203k 196k 180k 408k 400k 206k

Table 2: Towers of Hanoi

Table 2 shows results for 50 instances of the 12-disk 4-
peg Towers of Hanoi with (10+2), (8+4) and (6+6) additive
PDBs (Felner, Korf, and Hanan 2004). Here BTB (conn) is
also the most informed algorithm, but BAE* (p) and DBBSb

(p) are both very close. Again, the other BTB are not as in-

formed, expanding more nodes than front-to-end algorithms
despite belonging to a more informed family of algorithms.

In terms of time, the situation is different from the Pan-
cake Puzzle. In this case, BTB (NBS/small/conn) are up to
one order of magnitude slower than BAE* and DBBS. On
the other hand, BTB (DVC) is as fast as DBBS, showing
that computing a vertex cover can indeed save a substantial
number of bucket-to-bucket computations.

As for how the analyzed algorithms behave with different
heuristics, surprisingly Towers of Hanoi shows the opposite
of the Pancake Puzzle. Here, BAE* is slower with the (8+4)
PDB, but then becomes slightly faster with the (6+6) PDB.
The rest of the algorithms never become substantially slower
and indeed the slowest algorithms, BTB (NBS/small/conn),
become increasingly faster with weaker heuristics. This sug-
gests that the average number of nodes per bucket goes up
when weaker heuristics are employed, but a deeper analysis
is needed to find out if that is the case and why it contradicts
the findings in the Pancake Puzzle.

Algorithm 15 Puzzle
≤ C∗ < C∗ n/s

BAE* (a) 2707k 2700k 381k
BAE* (p) 2837k 2829k 399k
DBBSg (a) 22460k 10146k 192k
DBBSg (p) 3941k 3082k 200k
DBBSb (a) 2262k 1701k 184k
DBBSb (p) 2011k 1314k 187k
BTB (NBS) 2015k 1901k 31k
BTB (small) 2350k 2214k 31k
BTB (conn) 2231k 1310k 35k
BTB (DVC) 2694k 2243k 190k

Table 3: Sliding Tile Puzzle

Table 3 shows results for 100 instances of the 15 Sliding
Tile Puzzle (Korf 1985) with Manhattan Distance. Results
are very similar to those of Towers of Hanoi, confirming
aforementioned trends. BTB (conn) is the best algorithm in
terms of necessarily-expanded nodes, but DBBSb (p) is al-
most as good. BTB algorithms are again up to an order of
magnitude slower than BAE* and DBBS, but BTB (DVC)
is again as fast as DBBS.
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Algorithm Mazes DAO
≤ C∗ < C∗ n/s ≤ C∗ < C∗ n/s

A* 99396 99369 1880k 5406 5321 1537k
BAE* (a) 80835 80809 1229k 6718 6668 1044k
BAE* (p) 74069 74033 1250k 5995 5861 1192k
DBBSg (a) 77929 77841 26k 6157 5824 4k
DBBSg (p) 75771 75728 12k 5601 5321 3k
DBBSb (a) 77946 77889 20k 6105 5828 3k
DBBSb (p) 77098 77065 10k 5689 5395 2k
BTB (NBS) 77243 77209 3k 5984 5772 217
BTB (small) 86517 86497 830 6005 5879 173
BTB (conn) - - 149 - - 9
BTB (DVC) 86612 86561 24k 5997 5656 6k

Table 4: Grids

Finally, Table 4 shows results for Sturtevant’s grid-based
pathfinding benchmarks (Sturtevant 2012) using the octile
heuristic. We used mazes and maps from the video game
Dragon Age: Origins (DAO). Diagonal moves are allowed
with a cost of 1.5. Because A* is competitive in these do-
mains, we also include its results for reference.

These domains are characterized by having a very large
number of buckets with very few nodes, often a single node.
Hence, any algorithm that relies on information computed
using those buckets will be much slower than heap-based
implementations. BTB becomes extremely slow, sometimes
expanding only hundreds of nodes per second. In particu-
lar, BTB (conn) is so slow that it could not solve the set of
instances after several days of computation. BTB (DVC) is
again the exception, with a performance similar to DBBS.

Overall, results show that, while BTB is viable in some
domains, front-to-end algorithms are on average as good
while also being faster and more flexible. Nevertheless, the
efficiency of BTB (DVC) shows that, by computing a vertex
cover of DGMX, the main shortcoming of BTB can be allevi-
ated. Additionally, BTB (NBS) shows that front-to-end algo-
rithms are not far from their theoretical limit, as their results
are similar or better than BTB (NBS) itself and hence they
cannot expand fewer than half of the necessarily-expanded
nodes that they currently expand. Nevertheless, these exper-
iments do not offer a final picture of the state of the art in
bucket-to-bucket algorithms. For instance, the vertex cover
algorithm is a greedy method that yields good results, but it
can be improved. In particular, other ways of selecting nodes
in BTB may be able to obtain results comparable to BTB
(conn) and performance similar to BTB (DVC) in the future.

The Impact of the rc bounds The rc bounds have been
first proposed in this work, so an analysis of their impact is
in order. DBBSg (a) is the same as DBBS (a) by Alcázar
et al. (2020) except for the rc bounds, so we can analyze
their impact by comparing them. As expected, the num-
ber of necessarily-expanded nodes is similar, as the occa-
sions in which the heuristic value increases along a relevant
path are rare in most domains. The biggest difference oc-
curs in Mazes, where the rc bounds bring down the number
of necessarily-expanded nodes from 78458 to 77841. Mazes
are built to misguide the heuristic, and thus the behavior of

the heuristic can be erratic, explaining this gain in perfor-
mance. Still, the rc bounds prevent the expansion of only
around 1% of the necessarily-expanded nodes, confirming
that its utility is limited to a very specific type of graphs.

A Note on the Inefficiency of DBBS After the experi-
ments, the reader may be surprised to realize that the effi-
ciency of BTB (DVC) is similar to that of DBBS despite
its expensive bucket-to-bucket computation. However, this
is due not only by the speed-up of the vertex cover compu-
tation of BTB (DVC), but also to the naive caching scheme
of the implementation of DBBS. DBBS performs a fixpoint
computation of minimum node values whenever a bucket is
removed; however, this may not be always necessary.

Picture the case in which a bucket such that gx(n) =
gMinx has been emptied and removed. A fixpoint compu-
tation of minimum node values is needed only if there are
no other expandable buckets such that gx(n′) = gMinx, be-
cause otherwise the value of g bound will not increase. This
is extensible to any other node value. Therefore, one may
cache all expandable buckets such that at least one of their
node values is minimum and perform the fixpoint computa-
tion of minimum values only after all the buckets that de-
termine a minimum node value have been removed. Such
a caching scheme is conceptually close to DGMX — without
requiring a pairwise computation of bounds between buckets
—, and thus a similar vertex cover computation may be pos-
sible. The formalization and implementation of this caching
scheme is left as future work.

Conclusions and Future Work
Here we redefined must-expand pairs for the class of algo-
rithms that exploit consistency, proposed the use of bucket-
to-bucket algorithms to obtain near-optimality with respect
to the new front-to-end bounds, and linked the bucket-to-
bucket computation to the concept of DGMX. We performed
experiments with a broad range of approaches, aiming to test
the performance and informedness of the different families
of algorithms. Results show that BTB is the state of the art in
the Pancake Problem, and that a vertex cover computation of
DGMX obtained from the bucket-to-bucket computation can
achieve a performance close to state-of-the-art bidirectional
search algorithms. Also, the near-optimal bucket-to-bucket
version shows that front-to-end algorithms are close to their
theoretical limit in the tested benchmarks.

In summary, bidirectional search can be seen as a contin-
uum of techniques from front-to-front to bucket-to-bucket to
front-to end, and, within front-to-end, from using all individ-
ual bounds to a subset thereof. This continuum offers a trade
off between informedness and performance, presenting the
user with a broad set of options.

As future work we want to formalize the caching schemes
that front-to-end algorithms use in their computation of
bounds, trying to link the buckets that determine the min-
imum relative values with concepts like DGMX. Addition-
ally, we want to improve the performance of front-to-end
and bucket-to-bucket algorithms and try alternative config-
urations of BTB, in particular alternative vertex cover algo-
rithms for the bucket-to-bucket computation.
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