
Conflict-Free Multi-Agent Meeting

Dor Atzmon, Shahar Idan Freiman, Oscar Epshtein, Oran Shichman, Ariel Felner
Ben-Gurion University of the Negev

{dorat, freimans, oscarep, shichman}@post.bgu.ac.il, felner@bgu.ac.il

Abstract
Multi-Agent Meeting (MAM) is the problem of finding a
meeting location for multiple agents and paths to that loca-
tion. Practically, a solution to MAM may contain conflicting
paths. A related problem that plans conflict-free paths to a
given set of goal locations is the Multi-Agent Path Finding
problem (MAPF). In this paper, we solve the Conflict-Free
Multi-Agent Meeting problem (CF-MAM). In CF-MAM, we
find a meeting location for multiple agents (as in MAM) as
well as conflict-free paths (as in MAPF) to that location. We
introduce two novel algorithms, which combine MAM and
MAPF solvers, for optimally solving CF-MAM. We prove
the optimality of both algorithms and compare them experi-
mentally, showing the pros and cons of each algorithm.

Introduction and Background
Multi-Agent Meeting (MAM) (Yan, Zhao, and Ng 2015;
Atzmon et al. 2020a) is the problem of finding a meeting
location for multiple agents, and a path for each agent to
that location (paths may conflict). MAM is practically appli-
cable for finding a gathering location for multiple agents or
choosing a point that is close to important locations. In other
research areas, the problem is also known as Optimal Meet-
ing Point (Yan, Zhao, and Ng 2015), Smallest Enclosing
Discs (Welzl 1991), or 1-Center problem (Megiddo 1983).
In continuous Euclidean spaces, the problem is known as the
Weber problem (Cooper 1968) and can be solved by differ-
ent algorithms (Ostresh Jr 1977; Chen 1984; Rosing 1992).

On discrete graphs, the problem can be solved by (1) ap-
plying single-source shortest paths (SSSP) solver for each
agent; (2) calculating the cost for reaching each location
for each agent; and (3) iterating over all potential meeting
locations and choosing a preferred location for a meeting.
Enhancements for solving this problem have been proposed
(Lanthier, Nussbaum, and Wang 2005; Yan, Zhao, and Ng
2015; Li et al. 2019a). Recently, a Multi-Directional Heuris-
tic Search algorithm, called MM*, was introduced (Atzmon
et al. 2020a). MM* is a state-of-the-art MAM optimal solver
that searches from multiple directions (one for each agent)
and is guided by a heuristic function.

In its common variant, MAM does not consider the pos-
sible physical body of the agents. Thus, a solution to MAM

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

may contain conflicting paths for the agents, in which multi-
ple agents occupy the same location at the same timestep or
swapping locations between two consecutive timesteps. In
this paper, we introduce the problem of Conflict-Free MAM
(CF-MAM). In CF-MAM, we seek a meeting location for
multiple agents and conflict-free paths to that location.

A related problem that finds conflict-free paths is the
Multi-Agent Path Finding problem (MAPF) (Stern et al.
2019). MAPF is the problem of finding a path for each
agent to a specified goal location, while avoiding conflicts
with other agents. Although solving MAPF optimally is NP-
hard (Yu and LaValle 2013b; Surynek 2010), some algo-
rithms are cable of solving it optimally for many agents,
e.g., M* (Wagner and Choset 2015), BIBOX (Surynek
2012), ICTS (Sharon et al. 2013), and Conflict-Based Search
(CBS) (Sharon et al. 2015). The latter, CBS, is a prominent
algorithm that (1) plans a path for each agent, without con-
sidering other agents; and (2) repeatedly resolves conflicts
by constraining each of the conflicting agents and replan-
ning new paths. Many enhancements were introduced for
CBS (Boyarski et al. 2015; Felner et al. 2018; Lam et al.
2019). In general, MAPF was investigated extensively and
has many variants and extensions, including large agents (Li
et al. 2019b), trains (Atzmon, Diei, and Rave 2019), con-
voys (Thomas, Deodhare, and Murty 2015), deadlines (Ma
et al. 2018), and robustness (Atzmon et al. 2020b,c). Later in
the paper, we introduce a new algorithm for CF-MAM that
uses the framework of CBS.

A unique variant of MAPF is the Permutation Invariant
MAPF problem (PI-MAPF) (Kloder and Hutchinson 2006).
PI-MAPF is the problem of finding conflict-free paths to
lead the agents to a set of goal locations that were not
pre-assigned to the agents. This problem is also known as
Anonymous MAPF (Ma and Koenig 2016) and Unlabeled
MAPF (Solovey and Halperin 2016). PI-MAPF can be opti-
mally solved in polynomial time by reducing the problem to
Network-Flow (Yu and LaValle 2013a).

A special case of PI-MAPF is the Shared-Goal MAPF
problem (SG-MAPF; also known as Evacuation) (Yu and
LaValle 2013a), in which all goal locations are identical, i.e.,
finding conflict-free paths to a single goal location. There
are number of possible assumptions for how agents behave
at their goal locations (Stern et al. 2019). As all agents
share a single goal, SG-MAPF assumes that when an agent

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

16

Problem (1) MAM (2) MAPF (3) PI-MAPF (4) SG-MAPF (5) CF-MAM

Input
· Graph
· Set of start locations

· Graph
· Set of start locations
· Set of goal locations

· Graph
· Set of start locations
· Set of goal locations

· Graph
· Set of start locations
· Goal location

· Graph
· Set of start locations

Output

Meeting location and paths
(possibly conflicting) to
the meeting location

Conflict-free paths from
each start location to a
specified goal location

Conflict-free paths from
each start location to an
unspecified goal location

Conflict-free paths from
each start location to the
given goal location

Meeting location and
conflict-free paths to
the meeting location

Table 1: Related problems overview.

reaches the goal it immediately disappears. SG-MAPF can
also be optimally solved by the same reduction used for PI-
MAPF. We introduce a specifically designed reduction for
SG-MAPF, in order to solve CF-MAM.

Table 1 summarizes all related problems. Optimal solu-
tions to all these problems minimize some objective func-
tion. We focus on minimizing the Sum-Of-Costs (SOC) ob-
jective function, which is the sum of the costs of edges tra-
versed by all agents until the agents have met.

We present two algorithms for solving CF-MAM opti-
mally and prove their optimality and completeness. The first
algorithm, CFM-CBS, uses the framework of CBS. CFM-
CBS has two levels. Its low level solves the given prob-
lem as MAM (using MM*) under a given set of constraints.
The high level of CFM-CBS repeatedly calls the low level,
identifies conflicts, and resolves conflicts by imposing con-
straints on the conflicting agents. The second algorithm,
called Iterative Meeting Search (IMS), iteratively solve the
problem as SG-MAPF with different meeting locations un-
til the optimal meeting location can be determined. We per-
form an experimental study that shows that each algorithm
has circumstances where it performs best.

Definitions
Path-finding problems for multiple agentsA = {a1, . . . , ak}
get as input an undirected connected graph G = (V , E) and
a set of start locations S = {s1, . . . , sk} ⊂ V . In this re-
search, we assume that all edges have a unit cost, which is
common in other conflict-free MAPF problems (Stern et al.
2019). As output, path-finding problems for multiple agents
return a set of paths Π = {π1, . . . , πk} for the agents. πi is
a path from a start location si to a destination location vd.
Such destination location can be known (i.e., given as input,
as in the case of the various MAPF problems) or unknown
(should be found). Let N(v) represent the neighbors of v,

i.e., ∀v′ ∈ N(v), (v, v′) ∈ E . Each path πi ∈ Π for agent
ai ∈ A consists of a sequence of locations, such that each
two consecutive locations v1, v2 ∈ πi must either satisfy
v2 ∈ N(v1) (move action) or v1 = v2 ∈ V (wait action).

The cost of path πi is denoted by C(πi) and equals the
number of edges traversed in πi (C(πi) = |πi| − 1). We use
πi(t) to denote the t-th location in πi. Thus, πi(0) = si and
πi(|πi|) = vd. We use d(v1, v2) to denote the cost of a short-
est path between the two locations v1 and v2. Trivially, if
path πi is a shortest path, C(πi) = d(si, vd). Often, a set of
paths that minimizes some objective function is preferred. In
this work, we focus on minimizing the Sum-Of-Costs (SOC)
objective function, which equals the sum of the costs of all
paths in Π (C(Π) =

∑
πi∈Π C(πi)). We use C∗ to denote

the cost of the optimal (minimum cost) solution.
Some path-finding problems restrict the returned set of

paths Π to be conflict-free. We focus on two main types
of conflicts (Stern et al. 2019): vertex conflict and swap-
ping conflict. A vertex conflict 〈ai, aj , v, t〉 occurs between
two paths πi and πj if the same vertex v ∈ V is occu-
pied by both agents ai and aj at the same timestep t, i.e.,
πi(t) = πj(t) = v. A swapping conflict 〈ai, aj , e, t〉 oc-
curs between two paths πi and πj if the same edge e ∈ E
is traversed in opposite directions by both agents ai and aj
between the same two consecutive timesteps t and t+1, i.e.,
(πi(t), πi(t+ 1)) = (πj(t+ 1), πj(t)) = e.

Multi-Agent Meeting and the MM* Algorithm
The Multi-Agent Meeting problem (MAM) (Yan, Zhao, and
Ng 2015; Atzmon et al. 2020a) gets as input the tuple 〈G, S〉.
A solution to MAM is a meeting location m ∈ V and a set
of paths Π = {π1, . . . , πk} from each si ∈ S to the meeting
location m. MAM can be optimally solved using a multi-
directional heuristic search algorithm, called MM* (Atz-

17

mon et al. 2020a).1 In MM*, a node is a pair (ai, v) repre-
senting an agent and its location. MM* organizes nodes in
a single open-list (denoted OPEN) and a single closed-list
(denoted CLOSED). OPEN is initialized with k root nodes:
(ai, si) representing each of the k agents and its start lo-
cation. Each node is associated with a g-value. Naturally,
g(ai, si) = 0. Expanding a node (ai, v) has two parts: (1)
generating a node (ai, v

′) for each v′ ∈ N(v) (the neigh-
bors of v), setting g(ai, v

′) = g(ai, v) + 1, and inserting it
into OPEN; and (2) moving (ai, v) to CLOSED.

Let f∗(ai, v) be the cost of the optimal MAM solution
such that ai passes through v on its way to the meeting loca-
tion. f(ai, v) is a lower bound on f∗(ai, v), i.e., f(ai, v) ≤
f∗(ai, v). In MM*, OPEN prioritizes nodes according to
lower f -values. v is a possible goal if it has been generated
from all directions, i.e., ∀ai ∈ A, (ai, v) ∈ OPEN∪CLOSED.
If v is a possible goal, C(v) =

∑
ai∈A g(ai, v). Let U be

the minimum C(v) among all possible goals. U is an upper
bound on C∗. MM* halts if fmin ≥ U , where fmin is the
minimum f -value in OPEN. This guarantees that U cannot
be further improved and MM* returns an optimal solution.

Consider node (ai, v) in OPEN. f∗(ai, v) can be disas-
sembled into 3 items: (1) ai reaches location v; (2) ai con-
tinues from v to m; and (3) each of the other agents aj trav-
els from sj to m. f∗(ai, v) = g(ai, v) + h∗(ai, v), where
h∗(ai, v) is the sum of the cost of ai to get from v to m
(item 2), plus the cost of the other agents to get from their
start locations to m (item 3). Formally,

h∗(ai, v) = min
m∈V
{d(v,m) +

∑
aj∈A\{ai}

d(sj ,m)}.

The optimal meeting location w.r.t. to node (ai, v) is denoted
bym∗(ai, v) (with a cost of f∗(ai, v)). h(ai, v) is an admis-
sible estimate (lower bound) of h∗(ai, v), i.e., h(ai, v) ≤
h∗(ai, v). For SOC, naturally, f(ai, v) = g(ai, v)+h(ai, v).
Let Si(v) be the set of all start locations in S, except for si,
which is replaced with v (the current location of ai). For-
mally, Si(v) = S \ {si} ∪ {v}. Then,

h∗(ai, v) =
∑

v′∈Si(v)

d(v′,m∗(ai, v)).

Atzmon et al. (2020a) proposed a number of admissible
heuristic functions h(ai, v) for MAM. Here, we use one
such function, called the Clique heuristic, which balances
well between simplicity and efficiency. The clique heuris-
tics assumes that for every pair of locations (v1, v2), there
exists a classic admissible heuristic h, such that h(v1, v2) ≤
d(v1, v2) (e.g., Manhattan distance). The clique heuristic
uses admissible estimates for every pair of locations in Si(v)
to create the following admissible heuristic for MAM.

h(ai, v) =
∑

{v1,v2}∈2Si(v)

v1 6=v2

h(v1, v2)

k − 1
≤ h∗(ai, v).

Intuitively, the k − 1 in the denominator is a result of sum-
ming heuristics for each agent with the other k − 1 agents.

1MM* is a generalization of the bidirectional search algorithm
MM (Holte et al. 2016) to multiple agents.

Conflict-Free Multi-Agent Meeting
While MAM finds a meeting location and paths for multi-
ple agents to that meeting location, it ignores conflicts be-
tween the agents. Often, path-finding problems for multiple
agents, such as MAPF, are restricted to only return conflict-
free paths. Here, we define the problem of finding a meeting
location and conflict-free paths to the meeting location.

The Conflict-Free Multi-Agent Meeting problem (CF-
MAM) gets as input the tuple 〈G, S〉, where G is an undi-
rected connected graph and S is a set of start locations.
A solution to CF-MAM is a meeting location m and a set
of conflict-free paths Π to the meeting location m. While
agents must avoid conflicts on their path to m, naturally, we
define that agents can arrive at m at the same timestep. This
is practical, for example, in the case that agents disappear
at goal (Stern et al. 2019) (e.g., robots entering a charging
station or autonomous vehicles entering a garage).

In some cases, a solution to MAM is invalid for CF-
MAM. In the examples for MAM and CF-MAM in Table 1
(columns 1 and 5) both get similar input. In the output ex-
ample depicted for MAM, both agents a1 and a4 conflict at
timestep 1. As CF-MAM does not allow either vertex con-
flicts nor swapping conflicts, this solution is invalid for CF-
MAM. Thus, in the output example for CF-MAM, the path
of agent a4 is modified to a non-conflicting path.

Canceling Swapping Conflicts
Lemma 1. Let Π be a set of paths from a set of start lo-
cations S to a meeting location m with a cost of C(Π),
such that Π only contains swapping conflicts (and no ver-
tex conflicts). There exists a set of conflict-free paths (with-
out vertex conflicts and without swapping conflicts) Π′ =
{π′1, . . . , π′k} from S to m with the same cost of C(Π).

Proof. Consider a swapping conflict 〈ai, aj , e, t〉 between
paths πi and πj in Π. The agents ai and aj cannot conflict
at timestep t with another agent, as a swapping conflict with
more than two agents must result in a vertex conflict. Now,
we can create two new paths π′i and π′j from start locations
si and sj , respectively, to m such that C(π′i) + C(π′j) =
C(πi)+C(πj) and the swapping conflict is canceled, as fol-
lows. First, for each timestep t′ ≤ t we set π′i(t

′) ← πi(t
′)

and π′j(t
′) ← πj(t

′). By definition of a swapping conflict,
(πi(t), πi(t + 1)) = (πj(t + 1), πj(t)) = e. Thus, in-
stead of swapping locations, we can force the agents to wait
(not traverse e) and continue following the path of the other
agent. This can be done by setting for each timestep t′ > t,
π′i(t

′)← πj(t
′) and π′j(t

′)← πi(t
′). Obviously, performing

this mechanism maintainsC(π′i)+C(π′j) = C(πi)+C(πj).
This can be performed repeatedly for each swapping conflict
until Π′ is conflict-free and obtains the cost C(Π).

Figure 1 presents an example of a MAM problem instance
where only agents a1, a2, and a3 are presented in the figure.
For simplicity, we ignore the rest of the agents. Let m be a
meeting location and let Π contain the paths of a1, a2, and
a3 such that π1 = (s1, s2, A,m), π2 = (s2, s1, s2, A,m),
and π3 = (s3, A,m). Π contains the swapping con-
flict 〈a1, a2, (s1, s2), 0〉, and no vertex conlicts. Following

18

𝑠3

𝑠1 𝐴𝑠2 𝑚

Figure 1: Example of cancelling a swapping conflict.

Lemma 1, we can construct π′1 = (s1, s1, s2, A,m) and
π′2 = (s2, s2, A,m) which resolves the swapping conflict
without increasing the cost.

In the next two sections, we introduce two algorithms for
CF-MAM. As a (conflict-free) solution can be constructed
from a set of paths that only contains swapping conflicts
(Lemma 1), both algorithms only consider vertex conflicts.

CBS-Based Solution for CF-MAM
Conflict-Based Search (CBS) (Sharon et al. 2015) is a
prominent, state-of-the-art MAPF solver. It plans a set of
paths that may contain conflicts and iteratively resolve them
by imposing constraints on the agents and replanning new
paths for the constrained agents. Here, we introduce the
CFM-CBS algorithm for solving CF-MAM, which uses the
framework of the CBS algorithm. CFM-CBS has two levels.
The high level of CFM-CBS searches the binary constraint
tree (CT). Each node N ∈ CT contains: (1) a set of con-
straints imposed on the agents (N.constraints); (2) a set of
paths (N.Π) that satisfies all constraints in N.constraints ;
and (3) the cost of N.Π (N.cost). A constraint is a tu-
ple 〈ai, v, t〉 that prohibits agent ai to occupy location v at
timestep t. We use such constraints for resolving conflicts, as
explained below. The root node of CT contains an empty set
of constraints. The high level searches the CT in a best-first
manner, prioritizing nodes with lower cost.

Generating a CT node. Given a node N , the low level of
CFM-CBS solves the given CF-MAM problem instance as a
MAM problem that satisfies all constraints of node N . Such
a solution can be achieved using any MAM solver, such as
MM*.2 However, to support constraints, as well as wait ac-
tions, MM* needs to be slightly modified to CF-MM*. Thus,
instead of the pair (ai, v), a node in CF-MM* is a tuple of
(ai, v, t) representing an agent and its location at timestep
t. In CF-MM* an invalid node (ai, v, t) is a node that vio-
lates the constraint 〈ai, v, t〉. CF-MM* may generate invalid
nodes as such nodes may be meeting locations. However, if
an invalid node N is chosen for expansion, CF-MM* dis-
cards N and does not expand it.

Expanding a CT node. Once CFM-CBS has chosen a
node N for expansion, it checks its paths N.Π for conflicts.
If it is conflict-free, then node N is a goal node and CFM-
CBS returns its solution. Otherwise, CFM-CBS splits node
N on one of the conflicts 〈ai, aj , v, t〉 by generating two
children for nodeN . Each child node has a set of constraints
that is the union of N.constraints and a new constraint.
One of the two children adds the new constraint 〈ai, v, t〉

2Originally, to solve MAPF, the low level of CBS finds a path
for each individual agent, e.g., using A*.

Algorithm 1: High level of CFM-CBS
1 Main(CF-MAM problem instance)
2 Root.constraints← {}
3 Root.Π← low-level(instance,Root.constraints)
4 Root.cost← SOC(Root.Π)
5 Insert Root into OPEN
6 while OPEN is not empty do
7 N ← Pop the node with the lowest cost in OPEN
8 if N.Π is conflict-free then
9 return N.Π // N is goal

10 〈a1, a2, v, t〉 ← get-conflict(N)
11 N1 ← GenChild(N ,〈a1, v, t〉)
12 N2 ← GenChild(N ,〈a2, v, t〉)
13 Insert N1 and N2 into OPEN

14 return No Solution

15 GenChild(Node N , Constraint NewCons)
16 N ′.constraints← N.constraints ∪ {NewCons}
17 N ′.Π← low-level(instance,N ′.constraints)
18 N ′.cost← SOC(N ′.Π)
19 return N ′

and the other child adds the new constraint 〈aj , v, t〉.
Pseudo code. Algorithm 1 presents the pseudo code of

the high level of CFM-CBS. In Lines 2-5, we generate the
root CT node. Then, while OPEN is not empty, we iteratively
explore CT nodes. In Line 7, we extract from OPEN the CT
nodeN with the lowest cost. IfN.Π is conflict-free (Line 8),
it is a solution and returned in Line 9. Otherwise, we get one
of the conflicts in N.Π (Line 10) and resolve it by imposing
constraints and generating two new CT nodes (Lines 11-13).

Example. Figure 2 presents an example of (a) a CF-MAM
problem instance with five agents; and (b) its corresponding
CT, created by CFM-CBS. First, at the root CT node, we
call CF-MM* under an empty set of constraints. A set of
paths Π with a cost of 7 is returned, in which the agents meet
at location v2. Location v2 is closer to a larger number of
agents (agents a3, a4, and a5) than other locations, and thus
has a lower cost. At the root, both agents a1 and a2 conflict
at location v1 at timestep 1, and hence Π is not a solution.
We create two CT nodes with the constraints 〈a1, v1, t〉 and
〈a2, v1, t〉, and call CF-MM* under each of the constraints.
Then, one of the new CT nodes is chosen for expansion and
a solution with a cost of 8 is returned (the agent waits at its
start location). Notice that while the agents meet at location
v2 at the root node and at both child CT nodes, the meeting
location may change under a different set of constraints.

Lemma 2 (Completeness). CFM-CBS is guaranteed to re-
turn a solution.

Proof outline. CFM-CBS performs a best-first search on the
CT, where the cost cannot decrease, i.e., newly generated CT
nodes cannot have lower cost than the current lowest costs
of any CT node in OPEN. The number of sets of paths with
a cost that is smaller than or equal to the cost of the opti-
mal solution is finite. By resolving a conflict at some node
N , one or more such sets of paths are avoided, i.e., sets of
paths that contain the resolved conflict. Thus, after resolving

19

(a) (b)
Figure 2: CF-MAM problem instance and CFM-CBS’s CT.

a finite number of conflicts, the node with the lowest cost in
OPEN contains a solution. �

Lemma 3 (Optimality). When CFM-CBS returns a solution,
the solution has the lowest cost among all solutions.

Proof outline. CFM-CBS never eliminates solutions by
splitting a CT node. It performs a best-first search on the
CT where the costs cannot decrease. Thus, the cost of an ex-
panded node is a lower bound on the cost of all solutions,
and the first expanded node with a solution contains the so-
lution with the lowest cost. �

Iterative Meeting Solution for CF-MAM
As described above, PI-MAPF (Kloder and Hutchinson
2006) is the problem of finding conflict-free paths to a set
of goal locations G that were not pre-assigned to the agents.
For each agent ai, an algorithm for PI-MAPF assigns a goal
location gi ∈ G and finds a proper path for that agent. SG-
MAPF (Yu and LaValle 2013a) is a special case of PI-MAPF
in which for each agent ai we set gi = g (the same goal loca-
tion g). As PI-MAPF can be optimally solved in polynomial
time using a reduction to Network Flow (Yu and LaValle
2013a), SG-MAPF can also be optimally solved in polyno-
mial time using the same reduction.

Naively, CF-MAM can be solved by (1) solving SG-
MAPF |V| times, each time with a different location v ∈ V
as a goal location; and (2) determining the optimal meeting
location, based on the cost of meeting at each location. Thus,
CF-MAM can be optimally solved in polynomial time. Ex-
perimentally, this naive algorithm fails to solve many of our
problems. It only solved small domain problems, and slower
than the enhanced algorithm described below.

In this section, we first describe a specially designed re-
duction from SG-MAPF to Network Flow. Our new reduc-
tion is more suitable for SG-MAPF than the reduction pre-
sented by Yu and LaValle (2013a) for PI-MAPF, although

it borrows some concepts. Then, we introduce the Iterative-
Meeting Search algorithm (IMS), which intelligently iterates
over relevant meeting locations and sets each as a goal loca-
tion in SG-MAPF.

Network Flow Problems
To refresh the memory of the reader, we first provide a brief
description of a network and a Minimum-Cost Flow problem
(MCFP), which we use later in our reduction.

A network N =
〈−→
G , u, c, source, sink

〉
consists of a

directed graph
−→
G = (V , E) with capacities u and costs c on

the edges, i.e., ∀e ∈ E , u(e), c(e) ∈ Z+, and source, sink ∈
V . Let δ+(v) and δ−(v) denote the sets of edges entering and
leaving v, respectively. Given network N , a feasible flow f
(∀e ∈ E , f(e) ∈ Z+) must satisfy the following constraints.
(1) Edge capacity constraint,

∀e ∈ E , f(e) ≤ u(e).

(2) Flow conservation constraint at non sink/source vertices,

∀v ∈ V \ {source, sink},
∑

e∈δ−(v)

f(e) =
∑

e∈δ+(v)

f(e).

(3) Flow conservation constraint at sink and source vertices,∑
e∈δ−(sink)

f(e) =
∑

e∈δ+(source)

f(e).

Definition 1 (Minimum-Cost Flow problem (MCFP)).
Given a networkN , the MCFP problem returns a minimum-
cost feasible flow f , i.e., min(

∑
e∈E c(e) · f(e)).

The cost–scaling algorithm (Goldberg and Tarjan 1990;
Goldberg 1997) is a benchmark, commonly used polynomial
time solver for MCFP. We used it in our experiments below.

Reducing SG-MAPF to Network Flow
Recall that the input to SG-MAPF is 〈G, S, g〉. For this re-
duction, we need to first calculate an upper bound T on the
depth (the latest timestep) l′ of a solution to SG-MAPF. Let
Π be a set of shortest individual paths from each start loca-
tion si ∈ S to g, in a relaxed variant of SG-MAPF, which
allows conflicts between the agents. Let l denote the length
of the longest path in Π. Similarly, let Π′ be an optimal solu-
tion for (standard conflict-free) SG-MAPF and let l′ denote
the length of the longest path in Π′. In Π, in the worst case,
the agent of the longest individual path (with a cost of l) con-
flicts with all other k − 1 agents. Hence, in Π′, the path of
this agent may be extended by one timestep for each of the
other k−1 agents. That is, for each of the k−1 conflicts the
agent waits one timestep. Thus, following Yu and LaValle
(2013a), T = l + k − 1 is a tight upper bound on l′, i.e.,
T ≥ l′ (for more details, see Yu and LaValle (2013a)).

We next describe our reduction. In our network, each node
represents a pair of a location v ∈ V and timestep t, i.e.,
(v, t). Given a SG-MAPF problem instance 〈G, S, g〉, we
build a network by the following three steps.

Step 1. We build the network backwards from the goal.
First, we build the pair (g, T) and set t ← T . Then, while

20

Figure 3: Reducing SG-MAPF to Network Flow. Numbers on the x-axis are timesteps and letters on the y-axis are locations.

t > 0, we perform the following: (i) for each node N =
(v, t) with timestep t, for each location v′ ∈ {v} ∪ N(v)
(either v or a neighbour of v in G) we create a new node
N ′ = (v′, t−1) and a directed edge (N ′, N) with a capacity
and cost of 1. These edges correspond to traversing edges on
G, which costs 1 and can be performed by a single agent at a
given timestep (capacity 1); (ii) set t← t−1 and go back to
(i) until t = 0. Figure 3(a) presents a SG-MAPF problem in-
stance with two agents (k = 2). As the length of the longest
individual path is 2, then l = 2. Thus, T = l + k − 1 = 3 is
an upper bound on the longest path in the optimal solution.
Figure 3(b) presents the corresponding network, built after
executing step 1. The construction of this network begins at
the bottom-right side, at node (g, 3), and progresses left. In
this figure, moving horizontally corresponds to wait actions
and moving diagonally corresponds to move actions.

Step 2. Figure 3(c) shows the network after executing step
2, which is done as follows. To prevent agents from occupy-
ing the same location at the same timestep, we split each
node N = (v, t) at each timestep 0 < t < T to two nodes:
N = (v, t) and N ′ = (v, t′) (t with an apostrophe). All
in-edges of node N , are transferred to enter node N ′ (solid
edges). In addition, we add an edge (N ′, N) (dashed edges)
with a capacity of 1 and a cost of 0. Dashed edges force that
only one agent may enter the N nodes due to their capacity.

Step 3. Finally, as depicted in Figure 3(d), we add a source
vertex and a sink vertex. For each start location si ∈ S we
add an edge (source, si) with a capacity of 1 and a cost of 0.
For all nodes N ′ = (g, t′), as well as for node N ′ = (g, T),
we add an edge (N ′, sink) with a capacity of k and a cost
of 0. All these edges are the dashed edges in the figure. The
bold blue arrows show the solution returned by executing
an MCFP solver. This solution corresponds to a solution of
π1 = (s1, s1, v1, g) and π2 = (s2, v1, g), which costs 5.

Independence detection. To determine T , as described
above, we need to calculate all shortest individual paths
Π, e.g., using a breadth-first search from g. As the run-
time of an MCFP solver is mainly influenced by T (Yu and
LaValle 2013a), before reducing SG-MAPF we execute an
independence-detection mechanism (Standley 2010). Such
mechanism detects paths in Π that can be kept for the re-
turned solution and not be passed to the reduction. For this
purpose, we first identify conflicts between the agents in Π.
We only reduce agents that either conflict or may conflict

after the reduction, based on the correspond upper bound
T . For example, assume agents {a1, . . . , a4} with shortest
individual paths Π of lengths 4, 4, 5, and 7, respectively, in
which the paths of a1 and a2 conflict. We know that, in the
optimal solution, one of agents a1 or a2 may have a path of
length 5 after the reduction. Thus, we add a3 to the group
of agents that will be reduced. However, a4 will not conflict
with the other three agents, as the longest path of the three
agents can only reach a length of 6 (Yu and LaValle 2013a)
and they will be at least one step ahead on their way to g.

There are a number of differences between our reduction
and the reduction from PI-MAPF, introduced by Yu and
LaValle (2013a). (1) In our reduction the graph G is con-
structed by performing a single breadth-first search from g,
instead of k breadth-first searches (from the k start locations)
in their reduction. (2) We apply independence detection to
construct a smaller network flow. (3) Following Lemma 1,
there is no need for avoiding swapping conflicts, which re-
quires a special step by Yu and LaValle (2013a). There-
fore, optimally follows. Moreover, Yu and LaValle (2013a)
proved that PI-MAPF, as well as SG-MAPF, always have a
valid solution. Thus, CF-MAM too can always be solved.

Iterative Meeting Search
We now present the Iterative Meeting Search algorithm
(IMS). It has two levels. The high level of IMS iteratively
examines possible meeting locations until the optimal meet-
ing location can be determined. This is done by a best-first
search on possible meeting locations. We describe this pro-
cess below. The low level sets each possible meeting loca-
tion as a goal location of SG-MAPF and applies a network-
flow solver to solve it using our reduction.

Algorithm 2 describes the pseudo code of the high level of
IMS. First, it initializes OPEN, CLOSED, and an upper bound
on the cost of the optimal solution U (U ≥ C∗) with infinity
(Line 2). The high level performs a best-first search, starting
from only one of the start locations si ((ai, si) is inserted to
OPEN; Line 3). We explain how si can be selected below.
While OPEN is not empty, an expansion cycle is performed
in Lines 4-16. Each expansion cycle starts by extracting the
node (ai, v) with the lowest f -value (the same f -value as in
MM*) from OPEN (Line 5). As MAM is a relaxed problem
of CF-MAM, for the same input 〈G, S〉, the cost C ′ of the
optimal solution for MAM is a lower bound on the cost C∗

21

Algorithm 2: High level of IMS
1 Main(CF-MAM problem instance)
2 Init OPEN, CLOSED; U ←∞
3 Insert (ai, si) into OPEN // only a single start location
4 while OPEN is not empty do
5 Extract (ai, v) from OPEN // with lowest f(ai, v)
6 U ← min(U, low-level(instance, v))
7 if f(ai, v) ≥ U then
8 return U

9 foreach v′ ∈ N(v) do
10 if CLOSED contains (ai, v

′) then
11 continue

12 else if OPEN contains (ai, v
′) then

13 if g(ai, v
′) ≤ g(ai, v) + 1 then

14 continue

15 Insert (ai, v
′) into OPEN

16 Insert (ai, v) into CLOSED

17 return U

of the optimal solution for CF-MAM, i.e., C ′ ≤ C∗. Thus,
since f is a lower bound on C ′, it is also a lower bound on
C∗. For each node (ai, v) selected for expansion, the high
level calls the low level to calculate the cost of meeting at
location v (by the above reduction). Then, U is updated with
the lowest cost found (Line 6).3 As U is an upper bound on
the cost of the optimal solution C∗, if fmin ≥ U then IMS
halts and the optimal solution is found (C∗ = U), where
fmin is the lowest f in OPEN (Lines 7-8). Otherwise, in
case the optimal solution is still not found, for each neighbor
v′ of v, the high level inserts (ai, v

′) to OPEN and moves
(ai, v) to CLOSED (Lines 10-16). Note that the node (ai, v

′)
is not inserted to OPEN in case it is either in CLOSED or in
OPEN with a lower or equal cost (Lines 10-14).

Starting the search. In our experiments, we started the
search from the start location with the highest closeness
centrality among all start locations in S, where the close-
ness centrality of a start location si can be estimated by∑
sj∈S\{si}

1
h(si,sj) , where h is an admissible heuristic in

the underlying graph G between any two points. We found
that IMS with this start location perform better than random.
This is reasonable as such a location is usually closer to the
optimal meeting location. Future work can investigate dif-
ferent start locations for IMS.

Lemma 4 (Completeness). IMS is guaranteed to return a
solution.

Proof outline. IMS starts the search by calling the low level
for the selected start location si. The low level returns a valid
solution for meeting at si. IMS either returns this solution or
a solution of lower cost. In the worst case, IMS explores
every reachable location (OPEN will be empty), the search
will halt and a solution will be returned. �

3In the pseudo code we only keep U , but IMS also returns the
paths of the optimal solution and the optimal meeting location.

#Agents Solver 10× 10 50× 50
Cost Time Succ. Cost Time

3 CFM-CBS 11 0.0 50 59 0.0
IMS 0.0 50 0.3

5 CFM-CBS 23 0.0 50 106 0.5
IMS 0.0 50 8.3

7 CFM-CBS 34 0.1 50 155 3.9
IMS 0.1 49 40.9

9 CFM-CBS 45 0.3 49 204 26.3
IMS 0.4 46 126.4

11 CFM-CBS 56 9.5 39 245 50.5
IMS 0.8 23 200.2

13 CFM-CBS 67 30.2 29 - -IMS 1.2 3

15 CFM-CBS 79 57.3 21 - -IMS 1.7 1

Table 2: Results for 10x10 and 50x50 grids with 20% Obs.

Lemma 5 (Optimality). IMS is guaranteed to return the op-
timal meeting location m∗ with cost C∗.

Proof outline. Let si ∈ S be the start location of agent
ai from which IMS start searching. Assume, by contradic-
tion, that IMS returned a sub-optimal location m 6= m∗

with cost C > C∗. Since IMS has terminated and re-
turned a solution, fmin ≥ C > C∗. Since IMS termi-
nated without returning an optimal solution, there exists a
node N ′ = (ai, vi) ∈ OPEN such that vi is a location on
the path of agent ai to location m∗ in the optimal solution,
and every node before N ′ on that path has already been ex-
panded. Since N ′ is the first node on that path that was not
expanded, it was generated by a node on that path, and thus
g(N ′) = d(si, vi). By definition, f∗(N ′) is the cost of the
optimal solution that passes through N ′, assuming conflicts
are ignored (MAM). Hence, f∗(N ′) is a lower bound on the
optimal cost C∗, considering conflicts, i.e., f∗(N ′) ≤ C∗.
f is admissible, and therefore, f(N ′) ≤ f∗(N ′) ≤ C∗. As
N ′ ∈ OPEN, fmin ≤ f(N ′) ≤ f∗(N ′) ≤ C∗, which con-
tradicts the fact that fmin ≥ C > C∗. �

Experiments
We experimented on an Intel® Xeon E5-2660 v4
@2.00GHz processor with 16GB of RAM. For CFM-CBS,
we used CF-MM* as a low-level solver. For IMS, we used
for solving the Minimum-Cost Flow problem (MCFP) an ef-
ficient implementation (Goldberg 1997) of the cost–scaling
algorithm of Goldberg and Tarjan (1990), which runs in
polynomial time. For both, we used the clique heuristic as
an admissible heuristic for a meeting location and Manhat-
tan distance as admissible heuristic between two locations.

Random Grids
We compared CFM-CBS and IMS on 10x10 and
50x50 grids with 20% randomly placed obstacles, and
3, 5, 7, 9, 11, 13, and 15 randomly allocated agents. We cre-
ated 50 problem instances for each combination and mea-

22

Map Success Rate Cost Time (s)

Table 3: Results for the warehouse domain (first row) and the den312d map from DAO (second row).

sured the success rate (for timeout of 5min for each in-
stance), average cost, and average time (seconds). Table 2
presents the results for this experiment. Each row shows the
number of agents. The results for the 10x10 grids and for the
50x50 grids are in columns 3-4 and 5-7, respectively.

For the 10x10 grids, both CFM-CBS and IMS solve all
problem instances and hence we do not present the suc-
cess rate in the table. As expected, larger number of agents
increases the average cost and the average time for both
solvers. However, the influence of this increase is greater
for CFM-CBS than for IMS. For example, for 7 agents, both
solvers ran for ∼ 0.1s, and for 15 agents, CFM-CBS ran
∼ 57.3s while IMS ran only ∼ 1.7s. The runtime of CBS-
based solutions is exponential in the number of conflicts it
resolves. Thus, CFM-CBS does not perform well in dense
environments, such as small grids with many agents.

For the 50x50 grids, not all instances were solved by
both solvers within the 5min timeout. As the number of
agents increased, both solvers solved fewer instances. How-
ever, CFM-CBS solved more instances than IMS. For 13
agents, CFM-CBS solved 29 problem instances while IMS
only solved 3. The average cost and average time in the ta-
ble were calculated from instances that were solved by both
solvers. The same trend that was observed for the success
rate can be seen for the time: CFM-CBS was faster than
IMS. For 11 agents, CFM-CBS and IMS ran ∼ 50.5s and
∼ 200.2s, respectively. Here, the environment is sparser and
fewer conflicts occur. Thus, CFM-CBS can perform better
than observed above.

Structured Maps
We also tested CFM-CBS and IMS on (1) a warehouse
map, used by Ma et al. (2017) and Atzmon et al. (2020c);
and on (2) the den312d map from the Dragon Age Origins
(DAO) video game, which is publicly available (Sturtevant
2012). The leftmost column in Table 3 shows figures of both
maps, respectively. We created 50 problem instances with
3, 5, 7, 9, 11, 13, and 15 randomly allocated agents, and mea-

sured the success rate, average cost, and average time in sec-
onds (columns 2-4 in Table 3, respectively). Here also, the
average cost and average time were calculated only from in-
stances that were solved by both solvers.

For the warehouse map, while IMS solved all instances, a
few instances were not solved by CFM-CBS. This is similar
to the trend that was observed in the 10x10 grids above; the
environment becomes denser, more conflicts occur, and the
problem becomes harder for CFM-CBS to solve. This trend
can also be seen in the time figure for 13 and 15 agents: the
runtime of CFM-CBS exceeds the runtime of IMS.

The den312d map is larger than the warehouse and fewer
instances were solved by both solvers. Similarly to the
50x50 grids, CFM-CBS solved more instances than IMS and
ran faster in instances that were solved by both solvers be-
cause the environment was sparse.

Our experiments provide the following general rule.
CFM-CBS should be used in sparse environments while
IMS should be used in dense environments.

Conclusions and Future Work
In this paper, we explored the problem of Conflict-Free
Multi-Agent Meeting (CF-MAM), in which a meeting loca-
tion is required for multiple agents as well as conflict-free
paths to that meeting location. For solving CF-MAM, we
introduced two algorithms: CFM-CBS and IMS. We proved
that both algorithms are complete and optimal and compared
them experimentally. Our experiments showed that IMS per-
forms better in denser domains while CFM-CBS performs
better in sparser domains. Choosing a solver in environments
that are not clearly sparse or dense is left for future work.

Moreover, future work may improve both algorithms. For
CFM-CBS, one may adjust many of the improvements that
were done for CBS (such as prioritizing conflicts (Boyarski
et al. 2015)). For IMS, a number of improvements, e.g., more
sophisticated rules for calling the low level, are in place.
Finally, other MAPF solvers, such as ICTS (Sharon et al.
2013) may be adjusted for CF-MAM.

23

Acknowledgements
This research was supported by ISF grant 844/17 and BSF
grant 2017692 to Ariel Felner.

References
Atzmon, D.; Diei, A.; and Rave, D. 2019. Multi-Train Path
Finding. In SoCS, 125–129.

Atzmon, D.; Li, J.; Felner, A.; Nachmani, E.; Shperberg,
S. S.; Sturtevant, N.; and Koenig, S. 2020a. Multi-
Directional Heuristic Search. In IJCAI, 4062–4068.

Atzmon, D.; Stern, R.; Felner, A.; Sturtevant, N. R.; and
Koenig, S. 2020b. Probabilistic robust multi-agent path find-
ing. In ICAPS, 29–37.

Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2020c. Robust multi-agent path finding and
executing. JAIR 67: 549–579.

Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. E. 2015. ICBS: Improved
Conflict-Based Search Algorithm for Multi-Agent Pathfind-
ing. In IJCAI, 740–746.

Chen, R. 1984. Location problems with costs being sums of
powers of Euclidean distances. COR 11(3): 285–294.

Cooper, L. 1968. An extension of the generalized Weber
problem. JRS 8(2): 181–197.

Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar, T.
K. S.; and Koenig, S. 2018. Adding Heuristics to Conflict-
Based Search for Multi-Agent Path Finding. In ICAPS, 83–
87.

Goldberg, A. V. 1997. An efficient implementation of a scal-
ing minimum-cost flow algorithm. Journal of algorithms
22(1): 1–29.

Goldberg, A. V.; and Tarjan, R. E. 1990. Finding minimum-
cost circulations by successive approximation. Mathematics
of Operations Research 15(3): 430–466.

Holte, R. C.; Felner, A.; Sharon, G.; and Sturtevant, N. R.
2016. Bidirectional Search That Is Guaranteed to Meet in
the Middle. In AAAI, 3411–3417.

Kloder, S.; and Hutchinson, S. 2006. Path planning for
permutation-invariant multirobot formations. IEEE Trans-
actions on Robotics 22(4): 650–665.

Lam, E.; Bodic, P. L.; Harabor, D.; and Stuckey, P. J. 2019.
Branch-and-Cut-and-Price for Multi-Agent Pathfinding. In
IJCAI, 1289–1296.

Lanthier, M. A.; Nussbaum, D.; and Wang, T.-J. 2005. Cal-
culating the meeting point of scattered robots on weighted
terrain surfaces. In CATS, volume 41, 107–118.

Li, J.; Felner, A.; Koenig, S.; and Kumar, T. K. S. 2019a. Us-
ing FastMap to Solve Graph Problems in a Euclidean Space.
In ICAPS, 273–278.

Li, J.; Surynek, P.; Felner, A.; Ma, H.; Kumar, T. K. S.;
and Koenig, S. 2019b. Multi-Agent Path Finding for Large
Agents. In AAAI, 7627–7634.

Ma, H.; and Koenig, S. 2016. Optimal Target Assignment
and Path Finding for Teams of Agents. In AAMAS, 1144–
1152.
Ma, H.; Kumar, T. S.; and Koenig, S. 2017. Multi-Agent
Path Finding with Delay Probabilities. In AAAI, 3605–3612.
Ma, H.; Wagner, G.; Felner, A.; Li, J.; Kumar, T. S.; and
Koenig, S. 2018. Multi-agent path finding with deadlines.
In IJCAI, 417–423.
Megiddo, N. 1983. The weighted Euclidean 1-center prob-
lem. Math. Oper. Res 8(4): 498–504.
Ostresh Jr, L. M. 1977. The multifacility location problem:
Applications and descent theorems. JRS 17(3): 409–419.
Rosing, K. E. 1992. An optimal method for solving the (gen-
eralized) multi-Weber problem. EJOR 58(3): 414–426.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
AIJ 219: 40–66.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. AIJ 195: 470–495.
Solovey, K.; and Halperin, D. 2016. On the hardness of un-
labeled multi-robot motion planning. IJRR 35(14): 1750–
1759.
Standley, T. S. 2010. Finding Optimal Solutions to Cooper-
ative Pathfinding Problems. In AAAI, 28–29.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. In SoCS, 151–159.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. TCIAIG 4(2): 144–148.
Surynek, P. 2010. An Optimization Variant of Multi-Robot
Path Planning Is Intractable. In AAAI, 1261–1263.
Surynek, P. 2012. Towards optimal cooperative path plan-
ning in hard setups through satisfiability solving. In PRICAI,
564–576.
Thomas, S.; Deodhare, D.; and Murty, M. N. 2015. Ex-
tended Conflict-Based Search for the Convoy Movement
Problem. IEEE Intelligent Systems 30: 60–70.
Wagner, G.; and Choset, H. 2015. Subdimensional expan-
sion for multirobot path planning. AIJ 219: 1–24.
Welzl, E. 1991. Smallest enclosing disks (balls and ellip-
soids). In New Results and New Trends in Computer Science,
359–370. Springer.
Yan, D.; Zhao, Z.; and Ng, W. 2015. Efficient processing of
optimal meeting point queries in Euclidean space and road
networks. KAIS 42(2): 319–351.
Yu, J.; and LaValle, S. M. 2013a. Multi-agent path planning
and network flow. In Algorithmic foundations of robotics X,
157–173. Springer.
Yu, J.; and LaValle, S. M. 2013b. Structure and Intractability
of Optimal Multi-Robot Path Planning on Graphs. In AAAI,
1444–1449.

24

