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Abstract

Translations into propositional logic are currently one of the
most efficient techniques for solving Totally-Ordered HTN
planning problems. The current encodings iterate over the
maximum allowed depth of decomposition. Given this depth,
they compute a tree that represents all possible decomposi-
tions up to this depth. Based on this tree, a formula in propo-
sitional logic is created. We show that much of the computed
tree is actually useless as it cannot possibly belong to a so-
lution. We provide a technique for removing (parts of) these
useless structures using state invariants. We further show that
is often not necessary to encode all leafs of this tree as sep-
arate timesteps, as the prior encodings did. Instead, we can
compress the leafs into blocks and encode all leafs of a block
as one timestep. We show that these changes provide an im-
provement over the state-of-the-art in HTN planning.

Introduction
HTN planning problems specify the problem to be solved
twofold: They (i) provide a description of how the execution
of actions changes the (propositional) state of the world and
(ii) describe the ways and means by which a plan must be de-
rived. These derivations are performed using decomposition
methods (or methods for short) that are akin to derivation
rules of formal grammars. A solution to an HTN planning
problem is a sequence of actions that is executable and that
can be derived via application of decomposition methods to
the initial abstract task. In HTN planning the initial abstract
task describes the goal of the planning problem. For general
HTN planning, each method provides a partially-ordered set
of tasks which can replace an abstract task A. A significant
body of research deals with a subclass of HTN planning:
Totally-Ordered HTN planning (TOHTN). Notably, the IPC
2020 had a separate track solely dedicated to TOHTN plan-
ning with more participants and domains than the general
HTN track. In TOHTN planing, methods are restricted to de-
scribing sequences of tasks which can replace abstract tasks.
In contrast to general HTN planning, which is undecidable,
TOHTN is only EXPTIME-complete (Erol, Hendler, and Nau
1996). In this paper, we consider TOHTN planning.
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There are three prevalent approaches to solve HTN plan-
ning problems: Plan-space search, progression-search, and
translations into propositional logic. We focus on the lat-
ter, namely SAT-based TOHTN planning. Recent work pro-
posed two grounded encoding techniques (Schreiber et al.
2019; Behnke, Höller, and Biundo 2018a). We don’t con-
sider the lifted encoding by Schreiber (2021b) as we restrict
ourselves to grounded planning. Both (grounded) techniques
share the same basic ideas: (1) Restrict the depth of the al-
lowed decompositions to some limitK, (2) construct a com-
pact representation of possible decompositions up to depth
K, (3) encode this along with state executability into a SAT
formula, (4) use a SAT solver to determine whether a plan
for the depth bound K exists, and (5) if not, increase K and
try again. The core element of this technique is to compute
a representation of all decompositions up to the given depth
limit K. For TOHTN, the derivation of a plan via decompo-
sitions takes the form of a parse tree for a context-free gram-
mar. As such, the propositional formula has to represent all
possible parse trees that have a depth of at most K. For this,
two isomorphic representations have been proposed: A com-
mon super tree of all possible parse trees (Path Decomposi-
tion Tree, PDT) (Behnke, Höller, and Biundo 2018a) and a
tape-based layer structure (Schreiber et al. 2019).

Both structures share a problem: They do not consider the
state-transition semantics of actions at construction time. In-
stead, state transitions are added afterwards as part of the
SAT formula. They notably also represent decomposition
trees whose plans are not executable. These trees might
be pruned in order to decrease the size of the representa-
tion and therefore the formula. Presumably, such a reduc-
tion will help the SAT solver. We present a pruning method
based on state invariants. One of the major differences be-
tween the two encodings is the handling of method precon-
ditions. PANDA (Behnke, Höller, and Biundo 2018a) com-
piles method preconditions into additional actions – which
must be represented in the encoding and increase the overall
length of the plan. Tree-Rex (Schreiber et al. 2019) handles
method preconditions separately by checking the method
precondition in the state in which we apply the first derived
action – which leads to a smaller SAT formula. We gener-
alise this idea to the concept of block compression.
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action a b c d e f g
pre ∅ {y} ∅ ∅ {y, z} {z} ∅
add {x} ∅ {y} {z} ∅ ∅ ∅
del ∅ ∅ ∅ ∅ ∅ ∅ ∅

Table 1: Actions of the example TOHTN problem.

I 7→ ABC B 7→ c D 7→ eg
I 7→ BD B 7→ d D 7→ f
A 7→ ab C 7→ g

Table 2: Methods of the example TOHTN problem.

TOHTN Planning
Totally-Ordered Hierarchical Task Network Planning (TO-
HTN (Erol, Hendler, and Nau 1996)) shares structural simi-
larities with context-free grammars (Erol, Hendler, and Nau
1996; Höller et al. 2014). We distinguish two types of
tasks: Primitive actions and abstract task. In grammar terms,
primitive actions are terminals and abstract tasks are non-
terminals. We denote the set of primitive actions (or actions
for short) with P , while we denote the set of abstract tasks
(or tasks) with A. We call every element of T = (P ∪ A)∗
a task sequence. A decomposition method (or method) is a
rule of the form A 7→ ω where A ∈ A and ω ∈ T . Given a
task sequence λ = µAν ∈ T with µ, ν ∈ T , we can apply
the method A 7→ ω to A in λ, leading to the task sequence
λ′ = µων. If a task sequence λ′ can be derived via a sin-
gle application of a decomposition method to λ, we write
λ→ λ′. We denote with→∗ the transitive and reflexive clo-
sure of→, i.e. λ →∗ λ′ holds if zero or more methods can
be applied to λ to obtain λ′.

The objective of an TOHTN planning problem is given
in terms of an initial abstract task I (in grammar terms: the
initial non-terminal). A primitive task sequence ω ∈ P∗ is
a derivable primitive task sequence if I →∗ ω holds. As in
classical planning, actions have a state transition semantics.
It is defined over a set of propositional state variables V .
For every action, we are given three sets, pre(a), add(a),
and del(a). An action a is applicable in a state s ⊆ V iff
pre(a) ⊆ s. The state resulting from the application of a in s
is γ(a, s) = (s\del(a))∪add(a). A primitive task sequence
ω = a1a2 . . . an is called executable in s0 iff states s1, . . . sn
exist such that for all i ∈ {1, . . . n} ai is applicable in si−1
and γ(a, si−1) = si. A derivable primitive task sequence ω
is a solution to an HTN planning problem, i.e., a plan, iff ω
is executable in the problems initial state s0.

A TOHTN planning problem P = (P,A,M, V, I, s0)
consists of P (the primitive actions), A (the abstract tasks),
M (the decomposition methods), V (the state variables), I
(the initial abstract task), and s0 (the initial state). A plan ω
for an TOHTN planing problem P must (1) be derivable via
decomposition from the initial task I , i.e., I →∗ ω, and (2)
must be executable in s0. For notational purposes we define
the set M(a) = {a 7→ ω | a 7→ ω ∈ M} – the set of
methods applicable to the abstract task a.

In order to illustrate the techniques in this paper, we will
use a toy TOHTN planning problem. It has the abstract tasks

I, A,B,C, and D. The initial abstract task is I . Further-
more, there are the primitive actions a, b, c, d, e, f, and g
whose preconditions and effects are listed in Tab. 1. The do-
main has eight decomposition methods listed in Tab. 2

This TOHTN problem has six derivable primitive task se-
quences: abcg, abdg, ceg, deg, cf , and df . Of these, the first
two are not executable as the precondition of b will not be
satisfied. The next two are also not executable, as e requires
that the two propositional variables y and z are both true,
which can only be achieved by executing c and d. Lastly, cf
is not executable, as it f requires y to be true, which is the
case in the only plan df .

Given a plan ω with I →∗ ω, we can interpret its deriva-
tion from I as a parse-tree for a context-free grammar. Such
a tree is called a decomposition tree for ω (Geier and Bercher
2011). In our example domain, each of the six derivable
primitive task sequences has a unique parse tree, i.e. a unique
decomposition tree. In Fig. 1a we show the decomposition
trees for the plans abcg and df .

Definition 1. A Decomposition Tree (DT) for a plan ω for a
TOHTN planning problem P is a tree T = (N,E, β) with

• N – a set of nodes,
• E : N 7→ N∗ – the edge function providing for every

node an ordered list of children 〈e1, . . . , ek〉, and
• β : N 7→ T – the node labelling function which assigns

a task to every node. For any inner node β(n) ∈ A. For
any leaf node either β(n) ∈ P or β(n) 7→ ε ∈M .

• For every inner node n, a method β(n) 7→ t1, . . . , tk ∈
M must exists, such that |E(n)| = k and ti = β(ei) for
all ei ∈ E(n) = 〈e1, . . . , ek〉.

• For the sequence of leafs L = 〈n`1, . . . , n`l 〉 with β(n`i) ∈
P it holds that ω = β(n`1) · · ·β(n`l ).

SAT-based TOHTN Planning
The core idea of SAT-based TOHTN planning is to create a
formula F(P ) that is satisfiable if and only if P has a solu-
tion – and that this solution can be extracted from the satisfy-
ing valuation ofF(P ). To avoid creating too large a formula,
the typical approach is to create a sequence Fi(P ) of formu-
lae of increasing size and solve them one-by-one until a solu-
tion is found. In all currently existing encodings (Schreiber
2021b; Schreiber et al. 2019; Behnke, Höller, and Biundo
2018a), the parameter i bounds the maximum depth of de-
composition. As such, the formula considers only plans that
have a decomposition tree with a maximum depth of i. The
formula Fi(P ) is satisfiable if and only if a plan ω exists
that has a decomposition tree with a depth of at most i. One
could also consider formulae that can capture only some de-
composition trees of a given depth, e.g. by allowing higher
depths only for certain parts of the problem, while restrict-
ing other parts to a lower depth. Such uneven encodings have
not yet been investigated and are thus an objective for future
research. Further, they require extra care to ensure complete-
ness, or optimality when used for current optimal SAT-based
HTN planners (Behnke, Höller, and Biundo 2019b).

The formula Fi(P ) has to represent all possible decom-
position trees of depth at most i. To capture the set of all
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(a) Two decomposition trees for the task networks abcg and df .
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(b) A PDT.

Figure 1: Decomposition Trees and Path Decomposition Trees (PDTs).

possible decomposition trees up to the depth i, the existing
encodings use two – essentially isomorphic – data structures.
We present only one of them, as our pruning techniques are
based on it.

Definition 2. A Path Decomposition Tree (PDT) for a TO-
HTN planning problem P is a tree T = (N,E, α) with

• N – a set of nodes,
• E : N 7→ N∗ – the edge function providing for every

node an ordered list of children, and
• α : N 7→ 2T – the node labelling function which assigns

to every node a set of tasks.

We denote the root node of the PDT with rT. We call the
PDT well-formed for depth i iff:

1. α(rT) = {I}
2. For all n ∈ N which are not at depth i or α(n) ⊆ P and

its children E(n) = 〈c1, . . . , cn〉
(a) For every label l ∈ A ∩ α(n) and every method
l 7→ t1 . . . tm, there are children cp1 , . . . , cpm with
p1 < · · · < pm such that ∀j ∈ {1, . . . ,m} : tj ∈
α(cij ).

(b) ∀l ∈ P ∩ α(n)∃ci ∈ E(n) with l ∈ α(ci).
3. The PDT’s label function contains no other tasks than

those required by the previous two requirements.

A well-formed PDT T captures all possible decompo-
sitions tree up to a given depth (Behnke, Höller, and Bi-
undo 2018a). Every decomposition tree T = (NT , ET , β)
is (up to renaming of the nodes) a rooted sub-tree of T, i.e.
NT ⊆ N and ET ⊆ E. Further the labels of the decomposi-
tion tree T are reflected by the PDT T, i.e. β(n) ∈ α(n) for
all n ∈ NT . This can also be understood as a matching of the
nodes NT to nodes N , i.e. a homomorphism h from NT to
N . Consider an arbitrary decomposition tree T. The PDT’s
root node rT is always matched with the T’s root node (i.e.
h(rT ) = rT). Consider any arbitrary node n′ ∈ NT that
is matched to a node n in the PDT. Either the node n′ is
labelled with an action – then we have nothing to show –
or it is labelled with an abstract task l. If so, in T, some
method l 7→ ω is applied to it. Since n′ can be matched to
n, l = β(n′) ∈ α(n). Thus there are children of n that have
the tasks of ω in their label set in the correct order – which
can be matched to the children ET (n′) of n′ in T. Note that
the leafs of the PDT T form an ordered sequence where the

order is imposed by the edge function E. There is one im-
portant detail in the definition of PDTs that adds a lot to its
practicality: If there is a primitive action p in the label set
of a node n, then this represents a leaf of a possible decom-
position tree. This primitive action p is added to the label
set of one of the children – as long as there are any. This
pushes (or “copies”) possible leafs of decomposition trees
down towards the leafs of the PDT. As such, every deriv-
able primitive task sequence is a subsequence1 of the leafs
of the PDT (and a corresponding selection of labels). Else
we would have to consider inner nodes as potential parts
of these task sequences. To illustrate the concept of a PDT,
consider again the toy problem introduced in the previous
section. A PDT of depth 2 for this problem is depicted in
Fig. 1b. Note that it contains the two parse-trees of depth 2
shown in Fig. 1a as subtrees. Note that when constructing the
PDT, there are still choice points. E.g., the root node of the
PDT in Fig. 1b could have a fourth child labelled with {C}
(and this node one child labelled {g}) while we remove C
from the label set of the third child. Both of these PDTs still
capture all decomposition trees of depth 2 – they just differ
in how. We assume that a PDT has already been build using
the greedy method of Behnke, Höller, and Biundo (2018a).

We will not modify the actual SAT encoding of the
PDT and as such will not present it. For details, we re-
fer to Behnke, Höller, and Biundo (2018a) and Schreiber
et al. (2019). The general idea of these encodings is that we
encode the selection of a decomposition tree T as the selec-
tion of a rooted subtree of the PDT T. This selected decom-
position tree T directly induces a primitive task sequence ω
which is the plan we are looking for. To encode the selection
of a decomposition tree T, we have to select, for every node
n of T that should be a part of T, the task it is labelled with in
T, i.e. β(n). We do this via decision variables ln for n ∈ N
and l ∈ α(n). A node n ∈ N of the PDT is selected for the
decomposition tree T if any of the ln is true. We represent
the method applied to the selected task ln with decision vari-
ables mn for n ∈ N and m ∈

⋃
a∈β(n)∩AM(a). The SAT

formula we construct asserts that the selection represented
by the decision variables forms a valid decomposition tree.
For example, we enforce that for selected abstract tasks a

1In this paper, we refer with a subsequence of a sequence to any
selection of elements of the sequence. If the selected elements must
be contiguous, we call this a contiguous subsequence.
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method is chosen (ln → ∨m=l 7→ωm
n), methods are only

applied to the correct task (mn → ln for m = l 7→ ω),
methods enforce their subtasks to be present (mn → tni

i for
m = l 7→ t1, . . . , tk and appropriate children ni), primitive
actions are inherited towards the leafs, at most one method is
selected, and each node is labelled with at most one task. The
task variables ln of the leafs of the PDT are used as the ac-
tion variables in a SAT encoding for classical planning – this
is only possible with propagating primitive actions towards
the leafs. SAT encodings for classical planning divide the
plan into a sequence of discrete time steps in which actions
are applied. If we consider the ordered leafs 〈`1, . . . , `n〉 of
the PDT T, each leaf `i constitutes the time step i in the
classical encoding in which only the actions in α(`i) can be
applied. Currently, both planners use the Kautz-Selman en-
coding (Kautz and Selman 1996).

Pruning the PDT
Until now, a PDT T for a given TOHTN P and a given depth
i must contain all possible decomposition trees. This is a
significant drawback. This way, we also represent decompo-
sition trees that do not lead to (1) primitive task sequences
as well as to (2) non executable task sequences. It would
be advantageous to construct a reduced PDT that does not
contain these decomposition trees. Constructing a PDT that
only contains the decomposition trees leading to executable
primitive task sequences is not feasible as it would require
enumerating all solutions of the planning problem we want
to solve in the first place. As such, we are interested in an ap-
proximation. This approximation takes the form of remov-
ing labels (i.e. actions and tasks) from the label sets α(n)
– which implicitly removes decomposition trees that label n
with these removed labels. Normally, the PDT and its encod-
ing into SAT also consider all methods applicable to the ab-
stract tasks in α(n) for a node n (see Def. 2). In some cases,
we cannot remove a label from α(n), but know that some
method cannot be applied to it, because applying it will lead
to an non-executable task sequence. To capture this case, we
introduce the set of impossible methods I(n). Similar to the
tasks removed from α(n), we add a method m = A 7→ ω
to I(n) if we can prove that applying m to the task A at the
node n of any concretely selected decomposition tree will
lead to a non-executable task sequence. Whether a method
m is impossible – i.e. it can only lead to non-executable tasks
sequences – depends on where in the PDT we want to apply
it. It may be possible to derive an executable task sequence
after applying m for a node n, but not for a node n′. Any
method in I(n) will be ignored while encoding the PDT.

The basis of our pruning technique will be identifying la-
bels that can safely be removed from a leaf of a PDT. We
call this leaf pruning. Removing such a label may also im-
ply that methods are impossible and that other labels can
be removed from other nodes of the PDT. Thus, after prun-
ing labels from leafs, we propagate this information through
the PDT. If propagation prunes more labels from leafs, leaf
pruning may be able to prune even more labels. We repeat
leaf pruning and propagation until no further labels can be
pruned.

Propagating Impossibility
Before discussing leaf pruning, we show how the informa-
tion contained in pruned leaf labels can be propagated. Prop-
agation always starts when a label l is removed from the la-
bel set α(n`) for some leaf node n` (or a set of labels from
some leafs, we treat all labels pruned by the leaf pruning
in one step for efficiency). Since we know that the leaf n`
cannot be labelled with l, it is also impossible to use the
method(s) that caused l to be inserted into α(n`) while con-
structing the PDT T . If we were to use one of these methods
on the parent of n`, we would assign l to n`. We already
know that this assignment is impossible, as we pruned it.

To formalise this, we introduce the set M(n, l). It con-
tains all methods that caused us to add a specific label l to
α(n) for any node n of T. We can track this information
while constructing the PDT (independent of the construc-
tion technique): By remembering the reason for adding the
labels to α(n). More precisely, these are the methods applied
to the parent of n that force adding l to α(n) due to condition
2a) of Def. 2. Consider the PDT in Fig. 1b as an example.
When expanding the node n labelled with {A}, we apply the
method A 7→ ab. We then decide to use the left-most child
n` of n to represent the subtask a and add a to its label set.
ThusM(n`, a) = {A 7→ ab}. We further denote with n̂ the
parent of n in the PDT T. If we removed the label l from
α(n), we can mark all methods inM(n, l) as impossible for
the parent n̂. We thus add these methods to I(n̂).

Next, it is possible that there is a node n with an abstract
task a ∈ α(n) in its label set, for which all applicable meth-
ods have been marked as impossible. Formally, this is the
case if M(a) ⊆ I(n). If a decomposition tree would con-
tain the node n labelled with a, no method could be chosen
to apply be applied to a, since none can lead to an executable
primitive task sequence. This is precisely why the methods
have been marked as impossible. Thus, n cannot be labelled
with a and we can remove a from α(n). Here, we can repeat
the process: We have just removed a label from the label set,
which is the fact that causes the propagation.

In addition to the just described upwards pruning, we can
also propagate the pruning down the tree. We can mark a
method as impossible for a node n (and add it to I(n)) if
one of its subtasks is impossible for one of n’s children. This
also implies that we do not need to add the other subtasks of
this method to the label sets of the other children of n –
except if there is another method that adds them. Formally,
we remove the label l from a node n ifM(n, l) ⊆ I(n̂), i.e.
if all methods that can assign l to n have been pruned.

Both pruning techniques are applied until we can remove
no further labels or methods. The propagation of pruning
information is sound by construction – provided that the ini-
tially pruning of labels was correct.

Leaf Pruning
We have discussed how we can propagate pruning informa-
tion through the PDT, but not how we can obtain the initial
leaf pruning. The simplest type of decomposition trees that
can be removed are those that cannot even lead to a primitive
task sequence. Consider a leaf n` of a PDT T. If there is an
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{a} {b} {c, d} {e, f} {g}

Figure 2: The leafs of the PDT in Fig. 1b.

abstract task a ∈ A in α(n`), this task cannot be selected
as part of a decomposition tree – except if there is a method
a 7→ ε ∈ M and n` has not depth i. In any other case, the
task a occurs in a leaf whose depth is the depth limit i. To
obtain a primitive task sequence we must apply at least one
more method – exceeding the depth limit. As a consequence,
we can remove such a ∈ A from the label sets of leafs.

Pruning only abstract tasks from leafs does not take the
state transition semantics of primitive actions into account –
and thus wastes a lot of information. To consider the pre-
conditions and effects of actions, we have to look at the
meaning of the leafs of a PDT. The leafs form a sequence
L = 〈n`1, n`2, . . . , n`m〉. Any derivable primitive task se-
quence t1t2 . . . tk is represented by a subsequence of these
leafs 〈n`i1 , . . . , n

`
ik
〉 s.t. i1 < · · · < ik and ∀j ∈ {1, . . . , k} :

tj ∈ α(n`ij ). A derivable primitive task sequence can be
viewed as selecting a subsequence of the leafs and selecting
one or zero action in every leaf’s label set. We depict this
structure for our example TOHTN domain in Fig. 2.

If we execute a derivable primitive task sequence, we can
execute one or no action from each α(n`j), which restricts
the possibly executable plans. E.g. we know that any action
in n`1 will be executed in the initial state s0 and any action
that is not applicable in it can be pruned. Furthermore, we
know that any action in n`2 will either be applied in s0 (if
no action from n`1 is executed) or in a state resulting from
applying one of the unpruned actions in α(n`1). Any action
that is not applicable in any such state can be pruned. We
use this type of reasoning for leaf pruning.

Considering the interdependency of the selection of ac-
tions for leafs is unfortunately computationally expensive
(NP-complete). As a relaxation, we will thus not consider
such interdependencies. For example, we know that if we
select a for the first leaf in Fig. 2, we must also select b for
the second – as the method that assigns a to the first leaf
also assign b to the second. Thus b cannot be executed in s0
but only in γ(a, s0). We ignore these interdependencies. We
mitigate this somewhat by propagating pruning information
as described in the previous section.

The formal question that we have to answer in order to
decide whether to prune an action l from the label set of a
leaf α(n`) is the following: Is it possible to select any com-
bination of actions from the label sets of leafs before n` such
that executing them in s0 leads to a state in which l is exe-
cutable, i.e. prec(l) is satisfied. If not, we can safely prune
l. Unfortunately, determining this exact pruning is NP-hard.
In this theorem prec(l) is represented by a goal formula sg .

Theorem 1. Given a sequence of sets of actions
〈A1, . . . An〉 and an initial state s0 and a goal state sg .
The problem LEAFPRUNE is to determine whether a sub-
sequence Ai1 , . . . , Aim and a selection of actions ∀j : aj ∈
Aij such that 〈ai, . . . , aj〉 is executable in s0 and sg is sat-

isfied in the resulting state. LEAFPRUNE is NP-complete.

Proof. Membership can be proven via a guess-and-
check algorithm. Hardness follows from a reduction from
SAT (Cook 1971). Let φ =

∧m
i=1

∨
j li,j be a SAT formula

over variables v1, . . . vn. We define 2n actions a+i and a−i
with no preconditions and delete effects. a+i has the add ef-
fect v+i and v+i . We assign Ai = {a+i , a

−
i }, which select

the truth of the variables. For every clause
∨k
j=1 lx,j , we

create k actions `x,j . If lx,j is the positive literal vi, `x,k
has the precondition a+i , else if lx,j = ¬vi, `x,j has the
precondition a−i . Every `x,j has the add effect cx. We set
Ax+n = {`x,1, . . . , `x,k}. The goal is {c1, . . . , cm}. The
goal is reachable by an executable selection of the actions
of the Ai if and only if φ is satisfiable.

Since we cannot expect to perform the pruning exactly in
a reasonable time, we again have to approximate. Instead of
considering the actually reachable states after the leaf n`,
we consider properties that hold in all reachable states. We
do this with disjunctive state invariants. A disjunctive state
invariant is a disjunction of literals over the state variables∨
i li. In this paper we restrict ourselves to two cases: (1) the

size of the clauses is one, i.e. they are sole literals and (2) the
size of the clauses is two, i.e. they are of the form (l1 ∨ l2).
For the ith leaf, we will construct a set of invariants Ii that
hold in every possible state that can be reached before it.

Definition 3. Given a sequence of sets of actions
〈A1, . . . An〉 and an initial state s0 and an invariant φ. φ
is valid after An iff for any subsequence Ai1 , . . . , Aim and
any selection of actions ∀j : aj ∈ Aij such that 〈ai, . . . , aj〉
is executable in s0, γ(〈ai, . . . , aj〉, s0) |= φ

The set of invariants decreases monotonically with respect
to the leafs: We can always choose not to execute an action
and thus no invariant that was not in Ii can be in Ii+1. Com-
puting I1 is trivial: These are the invariants which hold in
the initial state s0. Let us now consider the general case. As-
sume that we have computed the set of invariants Ii. If we
execute any action a ∈ α(n`i) of the ith leaf, it will be exe-
cuted in a state satisfying Ii. If a’s preconditions are incom-
patible with Ii, i.e. prec(a) 6|= Ii, then it is impossible to
execute a at n`i . Thus a can be pruned from α(n`i). Next, we
have to determine the invariants Ii+1 – those that hold after
executing none or one of the actions in α(n`i). We have to
distinguish between the two types of invariants we consider.

Unary Invariants Positive unary invariants, i.e. single
state variables v, are irrelevant for pruning since we don’t
consider negative preconditions. Only a negative unary in-
variants, i.e. ¬v, can restrict the executability of actions.
Such an invariant represents the fact that a state variable v
cannot be made true. Checking whether an action’s precon-
ditions prec(a) are compatible with a set of negative unary
invariants is simple: Just check whether ∃v ∈ prec(a) :
¬v ∈ Ii. If we can execute an action a, its add effects add(a)
hold after executing it. We remove every ¬v from Ii+1 for
which v ∈ add(a) for some executable action a in α(n`i).
Note that actions of one leaf cannot enable each other. If we
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are in a state in which ¬x is an invariant and have two ac-
tions a and b in α(n`i) with add(a) = prec(b) = x, then a is
executable but b is not – even though a enables b, since we
can execute only one of the actions at this time we cannot
use a to enable b. On an abstract level, unary invariant prun-
ing is equivalent to the classical delete-relaxed reachability
analysis when restricted to the actions in a PDT’s leafs.

Binary Invariants While unary invariants only describe
the reachability of facts, binary invariants can express more
complex dependencies such as n-ary mutexes between state
variables, i.e. SAS+ variables (Bäckström and Nebel 1995).
Rintanen (1998) has presented a framework for handling
such binary invariants which perfectly fits our purpose. He
defines a function Fa(I) which filters out binary invariants
which can be violated by executing an actions a. One pro-
vides a set of binary, disjunctive invariants I which hold
prior to executing the action a. Fa(I) returns all invariants
that still hold after executing the action a in any state that
is compatible with I . Since we consider only positive pre-
conditions, only an invariant ¬x ∨ ¬y s.t. {x, y} ⊆ prec(a)
can cause an action a to be inapplicable. Such actions are
pruned from α(n`i). Based on the remaining actions we set
Ii+1 =

⋂
a∈α(n`

i)
Fa(I), i.e. all invariants that hold after ex-

ecuting any of the actions of n`i .

State Invariants Based on the two pruning techniques, we
obtain for the state before each of the leafs of the PDT a set
of invariants that will hold in that state. Provided we will
actually encode this state (see Section on Block Compres-
sion), we can add these invariants as clauses to the state. As
a general improvement to the encoding, we also compute the
general invariants derivable using the method presented by
Rintanen (1998). Since these invariants are true in all reach-
able states, we add them to every state. Adding invariants is
generally advantageous – and usually provide a significant
improvement in runtime – as it alleviates the SAT solving
from having to re-infer them itself for every time step. Fur-
ther SAT solver can use the invariants to cut branches of its
search tree that violate invariants early.

Example To illustrate our pruning techniques, we use our
example TOHTN in Fig. 1b. Further assume that the actions
a − g have the preconditions and effects shown in Tab. 1
and assume that s0 = ∅. We start with unary invariant prun-
ing. The (relevant) invariants of s0 are I1 = {¬x,¬y,¬z}.
We then process the first leaf labelled with {a}. Since a has
no preconditions, it is executable and we thus remove the
invariant ¬x and obtain I2 = {¬y,¬z}. We then proceed
to the second leaf labelled with {b}. b has the precondition
y but we know that the invariant ¬y holds. It is therefore
pruned, its effects are not applied, and thus I3 = I2. Next
we process the third leaf labelled with {c, d}. Both have no
preconditions and are not pruned. Their effects cause both
¬y and ¬z to be removed from the invariant set and thus
I4 = I5 = ∅. No further actions can be pruned at later leafs.
Using propagation, we can e.g. further deduce that a has to
be pruned from the first leaf since the only method that can
cause it is pruned as b is pruned from the second leaf.

If we use binary invariant pruning, we would derive that

the invariant ¬y ∨ ¬z holds after the third leaf – since ¬y
and ¬z hold in I3 and neither c nor d can make both y and
z true. This allows us to prune e from the fourth leafs label
set. Using propagation, this leaves only the sole solution of
the planning problem to be represented in the pruned PDT.

Block Compression
Both aforementioned grounded SAT encodings (Schreiber
et al. 2019; Behnke, Höller, and Biundo 2018a) encode the
actions assigned to the leafs of the PDT in a time-step-by-
time-step fashion. The executability of the final plan ω is
checked by executing its actions, i.e. those actions assigned
to the leafs of a selected decomposition tree, over a sequence
of time steps, where for each time step t the formula has vari-
ables expressing that the propositional state variable v ∈ V
is true at time step t. In the current encodings, per time step
only one leaf is considered for execution and thus at most
one action can be executed per time step. This requires that
the state prior to every leaf n` is explicitly represented. This
is done via a set of decision variables vn

`

for all state vari-
ables v ∈ V . For many of these states, it is however not
necessary to encode them as we will show in this section.
Instead multiple leafs can share the same state that is repre-
sented with one set of decision variables.

Schreiber et al. (2019) already identified a case in which
separate states are not necessary. Many modelled TOHTN
domains do not conform to the simplistic formalism we in-
troduced. They allow for specifying so-called method pre-
conditions. A method precondition is a set of state variables
prec(m) ⊆ V associated with a method. The method pre-
condition has to hold in the state in which the first primi-
tive action resulting from the subtasks of the method is ex-
ecuted. Some planners (e.g. PANDA (Höller et al. 2021))
use a compilation-based representation of method precondi-
tions. For a method m := A 7→ ω with a method precon-
dition prec(m), they create a new primitive action m′ with
the precondition prec(m) and no effects. The method m is
then changed to A 7→ m′ω. Using the SAT-encoding tech-
nique of Behnke, Höller, and Biundo (2018a), this will lead
to a lot of leafs that are labelled solely with method pre-
condition actions. For each such leaf n`, decision variables
vn

`

representing the state before the leaf are introduced. The
state before the next leaf n`′ will be wholly identical to the
state before n` – since no effects can be applied. In the SAT
formula, this is asserted using the clauses vn

` → vn
`′

and
¬vn` → ¬vn`′

for all v ∈ V . The variables n`′ and the
additional clauses are useless.

Schreiber et al. (2019) handled method preconditions sep-
arately and do not compile them into actions. For every node
n of the PDT to which a method can be applied, we can de-
termine the first leaf n`1 that is below n. I.e. the node below
n that occurs first in the total order of the leafs. The method
precondition of any method m applied to n can be checked
in the state before n`1. prec(m) is then asserted in this state,
which reduces the complexity of the generated SAT formula.

The technique by Schreiber et al. (2019) is handling only
the special case of method preconditions. We generalise
their idea to the concept of Block Compression. For Block
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Compression, we compile method preconditions into addi-
tional actions – to be able to handle actions and method
preconditions uniformly. For a method m applied to an in-
ner node n, we should execute the method precondition ac-
tion m′ in parallel with the action assigned to the first non-
method precondition leaf n`1 below n. The reason for this is
that the leaf of the method precondition n` and n`1 are im-
mediate successors and there is no “interference” between
the actions assigned to them – the method precondition ac-
tion as no effects and thus cannot change the state. In effect,
the method precondition and the action assigned to n`1 will
always be executed in the exactly same state. Block Com-
pression groups the leafs into (contiguous) blocks. A leaf n`
is allowed to belong to a block if all leafs prior to n` in that
block cannot be labelled with an action that will “interfere”
with the execution of any possible action n`. If we consider
a contiguous subsequence of leafs B = 〈n`1, . . . , n`n〉 and
their label sets 〈α(n`1), . . . , α(n`n)〉, we would like to omit
the computation and explicit representation of the states be-
tween the execution of the leafs. Instead, we would like to
consider only two states: the one before the first leaf of the
block sB0 and the one after the last leaf sB1 . We are then
looking for a criterion s.t. the executability of an action
a ∈ α(n`i) can be determine solely by checking whether
its preconditions are met in sB0 – irrespective of the actions
chosen for the other leafs. We formalise this strong notion of
compatibility as follows. Note that it is possible to select no
action for a particular leaf, i.e. leave the leaf empty.
Definition 4. We call a sequence of sets of actions
〈A1, . . . , An〉 block compatible, if for every state sB0 and se-
lection of actions from the sequence ω = ai1 , . . . , aim with
aj ∈ Aj and 1 ≤ ai1 < · · · < aim ≤ n, ω is executable in
sB0 if and only if all aij are executable in s0.

Checking block compatibility directly with Def. 4 is com-
putationally expensive, since we have to enumerate all states
sB0 and action selections. We instead check the simpler syn-
tactic criterion of non-dependence, which we show to be
equivalent to block compatibility.
Definition 5. Given a sequence of sets of actions B =
〈A1, . . . , An〉. A set of actions An+1 is non-dependent on
B iff ∀a ∈ An+1∀j ∈ {1, . . . , n}∀a′ ∈ Aj : prec(a) ∩
(add(a′) ∪ del(a′)) = ∅.
Theorem 2. A sequence of sets of actions A =
〈A1, . . . , An〉 is block compatible, if and only if ∀i ∈
{2, . . . , n} Ai is non-depended on 〈A1, . . . Ai−1〉.

Proof. If ∀i Ai is non-depended on 〈A1, . . . Ai−1〉, then A
is clearly block compatible. Assume thatA is block compat-
ible, but ∃i s.t. Ai is non-depended on 〈A1, . . . Ai−1〉. Then
there would be actions ai ∈ Ai and aj ∈ Aj with j < i and
either del(aj) ∩ prec(ai) 6= ∅ or add(aj) ∩ prec(ai) 6= ∅.

If del(aj) ∩ prec(ai) 6= ∅, consider s0 = V . 〈aj , ai〉 is
not executable, but aj and ai are executable in s0 – since
we have only positive preconditions. Thus, A would not be
block compatible. We can further assume that add(aj) ∩
prec(ai) = ∅, as any state variable added that is already a
precondition is useless. We know that del(aj)∩ prec(ai) =
∅, since j < i. We can select s0 = V \(add(aj)∩prec(ai)).

〈aj , ai〉 is executable in s0, but ai is not executable in s0.
Thus A would not be block compatible.

The notion of block compatibility is similar to the ∀-step
semantics in classical SAT-based planning (Kautz and Sel-
man 1996; Rintanen, Heljanko, and Niemelä 2006). The lat-
ter allows for a set of actions to be executed in parallel if they
can be executed in any arbitrary order. Block compatibility
on the other hand already has a fixed given order of actions
– even though there is still variability as we can select dif-
ferent actions (or on at all) for each leaf. This way, we can
a stronger compression than the ∀-step semantics. Further,
the ∀-steps semantics only allows for actions to be executed
in parallel, i.e. they still can be executed sequentially, we
force the actions to be executed in parallel as their presence
is required by the HTN structure, i.e. we cannot postpone an
action to a next time step.

What remains to encode is computation the state sB1 re-
sulting from the execution of all actions assigned to the leafs
inB. This state can be determined by considering – per state
variable v ∈ V – only the last action that affects v, or if none
exists the truth of v at the beginning of B. Determining this
precisely in a SAT formula is complicated as the “last action
that affects v” depends on the actual selection of actions.
We instead opt for a simplistic approach: We perform block
compression if it is not possible to select two actions ai and
aj from two leafs n`i and n`j with conflicting effects. This
allows us to assert the effects of all actions of the leafs in B
directly to hold in the state s1.

Definition 6. Given a sequence of sets of actions B =
〈A1, . . . , An〉. A set of actions An+1 is non-interfering with
B iff ∀a ∈ An+1∀j ∈ {1, . . . , n}∀a′ ∈ Aj : add(a) ∩
del(a′) = del(a) ∩ add(a′) = ∅.

We perform block compression as follows. We consider
the leafs n`1, . . . , n

`
n of the PDT in order and maintain a cur-

rent blockB starting withB = 〈n`1〉. For each n`i , we add n`i
to B if α(n`i) is non-dependent on and non-interfering with
the labels of B. Else we finish the block B and start a new
block B = 〈n`i〉. It might be possible to find a partitioning
of the leafs into fewer block than with this greedy method.
We use this greedy method as it can be computed efficiently.

For each computed block of leafs, we can omit the rep-
resentation of the intermediate (or inner) states – only the
state prior to the whole block and the one after the whole
block must be encoded. For encoding any action inside of
the block it suffices to refer to these two states for check-
ing its preconditions and asserting its effects. Block Com-
pression poses stronger requirements on the actions than the
∀-step semantics. As a result, we don’t need to add further
clauses to the formula (any selection of actions can be exe-
cuted in parallel) – while ∀-steps does (it must assert that its
conditions are met).

The effectiveness of Block Compression – measured in
terms of number of blocks – is dependent on the label sets
of the leafs. It is generally advantageous to have as small la-
bel sets as possible, since this reduces possibility for depen-
dence and interference. Further Block Compression does not
influence Leaf Pruning. Thus, if the planner performs both
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Figure 3: For every PDT created by SAT-1iB: The number
of actions in the label sets of leafs before and after pruning.

Leaf Pruning and Block Compression, we always perform
Leaf Pruning first and Block Compression second.

Example Consider again the PDT depicted in Fig. 1b –
without any pruning applied to it. We start Block Compres-
sion with a singleton block containing only the left-most leaf
labelled with {a}. Next, we consider whether we can add the
second leaf – labelled with {b} – to that block. We can, since
a and b are non-interfering (neither has delete effects) and b
does not depend on a (b’s only precondition is not an ef-
fect of a). Next, we consider whether to add the third leaf
labelled with {c, d} to the block. Both c and d are clearly
non-interfering with a and b, and d is non-dependent on a
and b. c is also non-dependent on a and b. In this situation b
would be dependent on c, but b will necessarily be executed
before c so this dependence is irrelevant – b can only be ex-
ecuted if y is already true in the initial state. Next, we try to
add the fourth leaf labelled with {e, f} to the block. Again e
and f are non-interfering with the actions in the block a, b, c,
and d. However both e and f are dependent on these actions.
e is specifically dependent on c because it has the precondi-
tion y and on d because of z. Similarly, f is dependent on d.
Thus, the so-far constructed block is finished and we start a
new one whose first leaf is the fourth leaf. Next we add the
last leaf of the PDT labelled with {g} to this second block.
As a result of Block Compression we get only two blocks
for the five leafs. One block consists of the first three leafs,
the second block of the latter two leafs. As a result, we have
to encode only three states – while we would have to encode
six states without Block Compression.

Evaluation
To determine whether leaf pruning and block compres-
sion are empirically effective, we have conducted the fol-
lowing evaluation. First, we compare our planner pan-
daPIsatt2 against the two already existing SAT-based TO-
HTN planners Tree-REX (Schreiber et al. 2019) and
PANDA-SAT (Behnke, Höller, and Biundo 2018a). Since

2satt = sat total order. German satt means full (saturated).
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Figure 4: For every PDT created by SAT-MB: The number
of leafs of the PDT and of blocks after block compression.

Tree-Rex and PANDA-SAT do not accept the same in-
put format, the first comparison uses only the domains by
Schreiber et al. (2019), for which identical versions in both
input languages are available. Second, we compare pan-
daPIsatt against the planners competing in the 2020 Interna-
tional Planning Competition (IPC) using the IPC domains3

as well as PANDA-SAT and the heuristic-search planner by
Höller et al. (2020). Further data is available (Behnke 2021).

Planners We have implemented pandaPIsatt in C++.
As our SAT solver we use Cryptominisat 5.8.0 (Soos,
Nohl, and Castelluccia 2009). We also used it for PANDA-
SAT (Behnke, Höller, and Biundo 2018a) and Tree-
Rex (Schreiber et al. 2019). Thus any differences in perfor-
mance cannot be attributed to the SAT solver.

We consider 12 different configurations of pandaPIsatt.
We have tested three versions of leaf pruning: only ab-
stract pruning (no marker), unary invariant pruning (marked
1), and binary invariant pruning (2). We always propa-
gate pruning information. We have tested both the encoding
with and without added invariants (i) and with and without
block compression (B). We e.g. denote with pandaPIsatt-
1IB: unary invariant pruning, added invariants, and block
compression. The base version pandaPIsatt uses exactly the
same encoding as PANDA-SAT, it just differs in program-
ming language and grounding. For grounding, we use the
grounder of pandaPI (Behnke et al. 2020).

We compare our planner to a wide range of TOHTN plan-
ners. For the heuristic search planner (Höller et al. 2020) we
use greedy search and the recently introduced taskhash loop
detection (Höller and Behnke 2021). As the inner heuris-
tics, we use ADD (Bonet and Geffner 2001), FF (Hoff-
mann and Nebel 2001), and LM-cut (Helmert and Domsh-
lak 2009) heuristics. The respective planners are denoted
with Greedy ADD, FF, and LMC. We have further in-
cluded all planners of the International Planning Competi-
tion 2020: HyperTensioN (Magnaguagno, Meneguzzi, and
de Silva 2021), Lilotane (Schreiber 2021a), PDDL4J (Pellier
and Fiorino 2021), SIADEX (Fernandez-Olivares, Vellido,
and Castillo 2021), and pyHiPOP (Lesire and Albore 2021).

3https://github.com/panda-planner-dev/ipc2020-domains
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Table 3: Coverage of SAT-based planners on the benchmark of Schreiber et al. (2019).

G
re

ed
y

R
C

A
D

D

G
re

ed
y

R
C

FF

pa
nd

aP
Is

at
t-

1i
B

pa
nd

aP
Is

at
t-

iB

pa
nd

aP
Is

at
t-

1i

pa
nd

aP
Is

at
t-

1B

pa
nd

aP
Is

at
t-

2i
B

pa
nd

aP
Is

at
t-

i

pa
nd

aP
Is

at
t-

B

pa
nd

aP
Is

at
t-

2i

pa
nd

aP
Is

at
t-

1

pa
nd

aP
Is

at
t-

2

H
yp

er
Te

ns
io

N

pa
nd

aP
Is

at
t -

2B

G
re

ed
y

R
C

L
M

C

L
ilo

ta
ne

pa
nd

aP
Is

at
t

PA
N

D
A

SA
T

+G

PA
N

D
A

SA
T

PD
D

L
4J

SI
A

D
E

X
py

H
iP

O
P

AssemblyHierarchical 30 .93 .91 .15 .15 .14 .14 .15 .15 .14 .15 .14 .14 .08 .14 .19 .13 .14 .11 .11 .06 .00 .02
Barman-BDI 20 .73 .86 .79 .77 .74 .70 .72 .73 .68 .71 .67 .67 1.0 .68 .54 .75 .67 .37 .00 .49 .92 .00
Blocksworld-GTOHP 30 .88 .88 .76 .63 .73 .79 .71 .60 .67 .69 .78 .78 .43 .73 .74 .71 .63 .24 .32 .43 .34 .01
Blocksworld-HPDDL 30 .72 .65 .12 .12 .11 .10 .11 .11 .10 .10 .10 .10 .89 .10 .26 .02 .10 .05 .00 .00 .00 .00
Childsnack 30 .68 .65 .70 .70 .71 .72 .72 .71 .72 .71 .71 .70 1.0 .70 .41 .87 .71 .35 .19 .47 .50 .00
Depots 30 .73 .85 .85 .78 .80 .86 .77 .74 .79 .75 .81 .81 .76 .77 .75 .74 .76 .40 .45 .60 .70 .00
Elevator-Learned 147 .63 .63 .91 .88 .85 .49 .81 .80 .49 .78 .47 .47 1.0 .49 .56 .76 .47 .24 .24 .01 .07 .01
Entertainment 12 .95 .95 .95 .95 .95 .95 .91 .94 .95 .88 .95 .95 .54 .94 .95 .16 .95 .65 .59 .27 .00 .07
Factories-simple 20 .32 .27 .29 .29 .28 .22 .29 .27 .22 .27 .21 .21 .14 .22 .21 .18 .21 .14 .14 .00 .00 .01
Freecell-Learned 60 .06 .08 .10 .09 .08 .09 .07 .07 .07 .06 .08 .08 .00 .07 .00 .08 .05 .00 .00 .00 .00 .00
Hiking 30 .72 .72 .65 .63 .65 .63 .63 .62 .62 .63 .62 .62 .83 .61 .32 .69 .60 .13 .21 .39 .00 .00
Logistics-Learned 80 .45 .48 .69 .62 .50 .52 .30 .43 .48 .26 .41 .41 .26 .31 .51 .34 .37 .13 .15 .00 .00 .00
Minecraft-Player 20 .07 .07 .09 .07 .09 .09 .09 .07 .09 .08 .09 .09 .25 .09 .02 .12 .07 .00 .00 .03 .13 .00
Minecraft-Regular 59 .58 .58 .49 .45 .43 .50 .38 .40 .47 .37 .43 .43 .88 .38 .45 .43 .40 .20 .14 .32 .33 .00
Monroe-FO 20 .49 .50 .72 .62 .66 .74 .44 .60 .65 .32 .72 .72 .97 .45 .24 .89 .64 .00 .02 .57 .25 .00
Monroe-PO 20 .22 .25 .58 .57 .54 .57 .31 .51 .58 .23 .57 .58 .00 .33 .16 .84 .54 .00 .02 .03 .00 .00
Multiarm-Blocksworld 74 .83 .33 .14 .14 .13 .13 .13 .13 .13 .12 .12 .12 .11 .12 .19 .04 .12 .05 .00 .00 .01 .00
Robot 20 .93 .94 .54 .54 .54 .51 .54 .54 .51 .54 .50 .50 .96 .51 .78 .52 .50 .39 .00 .27 .00 .05
Rover-GTOHP 30 .60 .52 .61 .57 .59 .55 .51 .59 .53 .50 .54 .53 .92 .50 .38 .57 .52 .20 .20 .62 .77 .14
Satellite-GTOHP 20 .71 .59 .75 .69 .66 .69 .63 .60 .72 .58 .67 .64 1.0 .62 .45 .62 .62 .28 .30 .73 .00 .19
Snake 20 .90 .89 .84 .76 .84 .83 .85 .77 .73 .84 .84 .83 1.0 .85 .71 .96 .77 .36 .30 .71 .29 .03
Towers 20 .50 .50 .33 .30 .33 .30 .34 .30 .28 .33 .31 .30 .77 .31 .46 .39 .28 .17 .00 .58 .47 .09
Transport 40 .70 .61 .90 .89 .89 .79 .85 .88 .78 .85 .79 .78 1.0 .81 .49 .77 .77 .50 .49 .70 .03 .23
Woodworking 30 .66 .66 .76 .72 .77 .76 .76 .73 .72 .76 .75 .76 .22 .74 .55 .99 .72 .39 .39 .17 .10 .09
Coverage 892 710 663 640 624 613 598 597 592 587 578 575 575 572 569 567 560 548 346 301 268 186 46
Normalised Coverage 18.8 18.2 17.0 16.5 16.5 16.1 16.1 15.9 15.8 15.5 15.7 15.8 15.7 15.5 14.6 14.9 15.1 9.8 8.1 10.0 6.1 1.6
IPC Score 15.0 14.4 13.7 12.9 13.0 12.7 12.0 12.3 12.1 11.5 12.2 12.3 15.0 11.5 10.3 12.5 11.6 5.3 4.3 7.5 4.9 0.9

Table 4: Performance of planner on the IPC 2020 domains. Each cell contains per planner and domain the number IPC-Score
for that domain. The bottom three rows indicate the total coverage, total normalised coverage, and total IPC score. Maxima are
indicated in bold.
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Note that Lilotane is a “successor” of Tree-REX (Schreiber
et al. 2019) that also uses a SAT encoding, which encodes
the HTN structure in a lifted fashion. Some of the IPC
participants have fixed bugs after the IPC (notably Hy-
perTensioN) or added further improvements to the planner
(Lilotane (Schreiber 2021b)). We compare pandaPIsatt with
these updated versions. Lastly, we include PANDA’s SAT
planner (Behnke, Höller, and Biundo 2018a) and a modified
version (PANDA SAT+G) that uses the grounder of Behnke
et al. (2020) – as PANDA’s was shown to be very slow on
certain domains (Wichlacz, Torralba, and Hoffmann 2019).

Results The comparison with Tree-REX is presented
in Tab. 3. Three configurations of SAT (iB, 1i, 1iB) solve
all 202 planning problems. The base configuration SAT al-
ready solves two instances more than Tree-REX, but there
is no pronounced difference between the configurations of
SAT with only a range of four instances. However, the dif-
ference is overall not very pronounced suggesting that this
benchmark set is too small for a meaningful comparison.
Since SAT and PANDA SAT use the same encoding and dif-
fer only in programming language and grounding, we can
see the effect of these changes: an increase from 171 to 198.
Grounding alone contributes only two additional instances.

The performance of the planners on the IPC 2020 domain
set is shown in Tab. 4. We state the IPC score (min{1, 1 −
log(t)/ log(1800)} where t is the runtime in seconds), to-
tal raw coverage, and the normalised coverage of all plan-
ners. Both IPC score and normalised coverage divide the
score per instance by the number of instance of that domain,
i.e. the maximum score per domain is 1. All except for two
of pandaPIsatt’s configurations (base and 2B) have a higher
coverage and normalised coverage than all IPC competitors.
Note that these are the updated versions of IPC planners.
If we were to consider the base IPC competitors, even the
base variant would have a higher coverage than all com-
petitors (the winner HyperTensioN solved 544 instances and
Lilotane 540 in their competition versions, while our base
version solves 548). The difference between pandaPIsatt and
PANDA SAT is quite pronounced on the IPC benchmark set
(548 vs 301 or 346 with grounding).

There is a pronounced difference between the configura-
tions of pandaPIsatt. Binary invariant pruning does not seem
to pay off when compared to unary invariant pruning. When
comparing the two best configurations (1iB and 2iB) we
see a difference of 43 instances. This can be attributed to
the higher runtime of binary invariant pruning (quadratic in
|V |) compared to unary invariant pruning (linear). No one
new technique can solely be made responsible for the in-
creased performance of the best configuration pandaPIsatt-
1iB – which seems to benefit from synergy effects between
the techniques. The three individual changes result in 575
(for 1), 587 (for B), and 592 (for i) solved instances, while
the combination yields 640. The second best configuration
(iB) still has only 624 solved instances. The increase of 16
instances from iB to 1iB is distributed over several domains,
hinting at a general improvement.

Next, we consider the strength of unary invariant pruning.
For this, we consider the 20088 PDTs constructed by 1iB.
Of these, 10648 PDTs (53%) were fully pruned, i.e. binary

invariant pruning could show that no solution exists. If we
consider the cumulative number of primitives in the label
sets α(`) for all leafs ` of the remaining 9440 PDTs, on av-
erage (per PDT) 38.8% of all primitives were pruned. Fig. 3
shows a scatter plot of the cumulative number of primitive
leaf labels before and after pruning. If we consider all label
sets of in the tree, on average 37.47% are pruned. For com-
paring the pruning strength of unary and binary invariants,
we consider the 14676 PDTs constructed by both methods
(1iB and 2iB). Of these 9119 were already shown to be un-
solvable by unary invariant pruning. For 1015 PDTs, binary
invariant pruning has exactly the same result as unary in-
variant pruning. Of the remaining 4542 PDTs, binary invari-
ant pruning could show unsolvability of 942. For the then
remaining PDTs, binary invariant pruning removed an ad-
ditional 4.30% of primitive actions assigned to leafs over
unary invariant pruning. Lastly, we discuss the effectiveness
of block compression. To eliminate the additional effects of
pruning (pruning removes actions from leafs which may al-
low for more block compression), we consider Block Com-
pression in the configuration iB. In Fig. 4, we show for ev-
ery constructed PDT its number of leafs and the number of
blocks that were computed. On average, Block Compression
reduced the number of time steps necessary to encode the
PDT by 38.81%. The median reduction was 47.84%. There
was no case where Block Compression could not perform
any compaction.

Conclusion
We presented two new techniques for SAT-based TOHTN
planning: leaf pruning and block compression. Leaf pruning
removes methods and tasks from consideration when creat-
ing the SAT formula by showing that any decomposition that
contains them at specific points cannot lead to an executable
plan. Block compression reduces the number of time-steps
necessary to encode executability of the resulting plan. We
showed that both techniques improve the empirical perfor-
mance of a SAT-based TOHTN planner. For future work,
we may improve the pruning techniques further and extend
them to also be able to handle partially-ordered HTN pan-
ning problems (Behnke, Höller, and Biundo 2019a, 2018b).
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