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Abstract

Partial Order Causal Link (POCL) planning follows the prin-
ciple of least commitment in that it maintains only a partial
order on its actions to prevent unnecessary early commitment
during search. This can reduce the search space significantly
by systematically representing up to an exponential number
of action sequences in just a single search node. Progress
on goal achievement is represented fully by this partial or-
der and by causal links, which represent the causal relation-
ships between these actions as well as between the initial
state and goal. Plan existence for a state in classical planning
thus corresponds to plan existence for a partial plan in POCL
planning. Yet almost no theoretical investigations for POCL
plan existence were conducted so far. While delete-relaxation
makes plan existence tractable in classical planning, we show
it to be NP-hard in POCL planning unless the current plan is
totally ordered or causal links are almost completely ignored.

Introduction
Partial Order Causal Link (POCL) planning is a planning
technique that follows the principle of least commitment
(Weld 1994). Plans are only partially ordered, thereby repre-
senting many possible action sequences in one single search
node, which can result into an exponential search space re-
duction (Minton, Bresina, and Drummond 1994). In lifted
POCL planning, least commitment can further prevent un-
necessary early variable assignments by only binding those
necessary to reach the current subgoals, leading to further
search space reductions (Younes and Simmons 2002).

In the early days of AI planning, POCL search was the
dominating planning approach, but it was abandoned by
many researchers in favor of better-scaling approaches in
the late 90s (Weld 2011). Today, undoubtedly the currently
most successful approach is heuristic progression search in
the space of states. The success of that approach is mainly
based upon well-informed heuristics that estimate the dis-
tance from a current state to a goal state in terms of miss-
ing actions or action costs. However, POCL planning was
never theoretically proven to be generally inferior to other
approaches, it is simply being less advanced at the moment
due to the non-availability of informed heuristics.
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Though POCL planning algorithms are currently inferior
to other approaches when it comes to classical plan exis-
tence, POCL approaches seem attractive when it comes to
solving problems where execution time matters – due to
POCL plans’ inherent parallel action representation (Bene-
dictis and Cesta 2020; Vidal and Geffner 2006, 2004),
and there also exists an approach combining POCL tech-
niques with state-based forward search for temporal plan-
ning (Coles et al. 2010).

Today, POCL techniques are actively deployed in many
hierarchical planning approaches (Bercher et al. 2016). E.g.,
the FAPE planner (Bit-Monnot et al. 2020; Bit-Monnot,
Smith, and Do 2016; Dvor̆ák et al. 2014) is a plan-space
based hierarchical planner that focuses on dealing with prob-
lems with time. HATP (Sebastiani et al. 2017; Lallement,
de Silva, and Alami 2018) and CHIMP (Stock et al. 2015)
are recent hierarchical planners deployed to robotics. HiPOP
(Bechon et al. 2014) and its successor pyHiPOP (Lesire and
Albore 2021), as well as the PANDA planner (Bercher et al.
2017; Bercher, Keen, and Biundo 2014) are two further cur-
rent POCL-based hierarchical planners (which do not fea-
ture time). Another current hierarchical planner based on
POCL techniques is deployed for the generation of narra-
tives (Winer and Young 2016).

As Weld (2011) pointed out, heuristic development in
POCL planning is much more complicated than in state-
based progression search, because there is no current state
available, but instead a partially ordered set of actions with
causal links between them, which encode which precon-
ditions of these actions have already been achieved (by
the other actions in the current plan). The same observa-
tion holds for POCL-based hierarchical planning, where
heuristics are again currently inferior to those developed
for state-based progression in hierarchical planning (Höller
et al. 2020; 2018). Whereas the complete progress in state-
based search is given by a current state, the search progress
in POCL planning is given by the current POCL search
node. So any heuristic that relaxes the current plan would
not just make the “search path to the goal” easier, but it
would also throw away information about the current search
progress thus making the semantics of the goal distance a
bit harder to grasp. In progression search, this would cor-
respond to not using the current state as a basis for heuris-
tic estimates, but “some” superset. Yet all currently exist-
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actions of causal links ordering insertable Computational Theoreminitial plan respected? constraints actions Complexity
* * * original PSPACE-complete Thm. 1 and Cor. 1

original * partial order delete-relaxed NP-complete Prop. 2 and Cor. 2
delete-relaxed no * delete-relaxed in P Thm. 2

* * total order delete-relaxed in P Thm. 3 and Cor. 3
* yes partial order delete-relaxed NP-complete Thm. 4

original * partial order none NP-complete Nebel and Bäckström (1994, Thm. 15)
Erol, Hendler, and Nau (1996, Thm. 8)

delete-relaxed * * none in P Prop. 3

Table 1: The table summarizes our complexity results for POCL planning as well as the most related results from the literature.
If a cell contains “*” the results hold for both possibilities. Note that the column on causal links relates to Def. 5, where we
define a weaker problem relaxation demanding that the initially given causal links have to be respected even by delete-relaxed
actions (it thus strengthens the impact of causal links despite delete relaxation).

ing POCL heuristics do perform some relaxation on the cur-
rent plan, namely by either relaxing the ordering constraints,
the delete effects of the actions already present in the cur-
rent plan, the current plan’s causal links, or any combina-
tion thereof1 (Shekhar and Khemani 2015; Bercher, Geier,
and Biundo 2013; Bercher et al. 2013; Younes and Simmons
2003; Nguyen and Kambhampati 2001; Bylander 1997).

Apart from a search node’s actions, it’s the causal links
that encode the search progress. Informally, a causal link
connects one action’s effect with another action’s precon-
dition thus protecting it, i.e., it prevents any other action that
deletes that condition to be inserted or ordered in between
these actions. Thus, any causal link induces a constraint on
which action may be ordered (or inserted) at which posi-
tion within a plan. This “pruning power” of a causal link has
a severe influence on which actions may remain available
in certain intervals. Ignoring this pruning power in heuris-
tics is thus a relaxation on the current search progress, yet
this is done by both state-of-the art heuristics in POCL plan-
ning (Younes and Simmons 2003; Nguyen and Kambham-
pati 2001). It is however not known whether these relax-
ations were actually necessary for tractability, i.e., whether
it would be possible to exploit the pruning power of causal
links without becoming intractable. The same applies to all
POCL-based hierarchical planners we mentioned earlier. To
the best of our knowledge, none of the deployed heuristics
exploits the causal links for pruning or making the heuristics
more informed. We believe that this is also a consequence of
lacking theoretical investigations of POCL plans – an opin-
ion shared with others (Tan and Gruninger 2014).

To obtain a fundamental understanding of the computa-
tional hardness in POCL planning, and the role of causal
links in particular, we make the following contributions:
We first prove that POCL planning problems, where we are

1To be precise, Bercher et al. (2013) present a heuristic that does
not do any of these relaxations, i.e., it respects delete effects of the
initial plan as well as all causal links. To remain tractable they relax
the problem by guessing a fixed number of linearizations which
required them to fall back to a different heuristic in those cases
where all guessed linearizations turned out unsolvable.

given a POCL plan as input rather than a standard clas-
sical planning problem, is PSPACE-complete. We then
provide a complete picture of the computational complex-
ity of delete-relaxation in POCL planning. Delete relaxation
is one of the most important problem relaxations in state-
based planning, because it results into a tractable problem
class (Bylander 1994). We investigate delete-relaxation for
the input plan, the action portfolio (i.e., those actions that
can be inserted), and both. We furthermore introduce a novel
problem relaxation, where delete-relaxed actions may be in-
serted into plans, but only in “intervals” where their origi-
nal, non-relaxed versions do not conflict with existing causal
links from the input plan. All these results are studied for
partially and totally ordered input plans. The results vary
between tractability (P) and intractability (NP-complete),
where tractability can only be achieved for totally ordered
input plans or when the pruning power of causal links is ig-
nored completely. Tab. 1 summarizes our results.

Related Work on Complexity Studies
in POCL Planning

In the context of Hierarchical Task Network (HTN) plan-
ning, Erol, Hendler, and Nau (1996) showed that it is NP-
complete to decide whether a partially ordered set of actions
has an executable linearization. Nebel and Bäckström (1994)
studied various questions regarding partially ordered plans,
such as possible or necessary truth of properties before or
after plan steps. Their most important result related to our
studies is, similar to the result by Erol, Hendler, and Nau, the
NP-completeness of deciding whether a partially ordered
set of actions possesses an executable linearization. This can
be regarded as a base-case of POCL planning, where all re-
quired actions are already inserted, and one only needs to
figure out whether they can be arranged in the right way.
Kambhampati and Nau (1996) studied related questions un-
der different assumptions. The authors, quote, “believe that
the results in this paper complement [the ones by Nebel
and Bäckström] and together provide a coherent interpre-
tation of the role of modal truth criteria in planning”. Moti-
vated by designing well-informed POCL heuristics, Bercher
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et al. (2013) generalized Nebel and Bäckström’s as well as
Erol, Hendler, and Nau’s result by showing that this problem
does not become easier when one is allowed to insert delete-
relaxed actions (cf. Prop. 2). Also motivated by provid-
ing theoretical insights for POCL heuristic design, Tan and
Gruninger (2014) directly built on Nebel and Bäckström’s
results and refined them by a more in-depth analysis show-
ing the impact of the interaction of preconditions and effects
thereby giving a more detailed picture for when finding such
a linearization is possible in polynomial time, and when it
remains NP-hard.

Only loosely related to our problem are various complex-
ity investigations regarding plan optimization. POCL plans
are particularly attractive for reasoning about plan optimiza-
tion since causal links explicitly represent the causal rela-
tionships between actions (Waters, Padgham, and Sardina
2020; Waters et al. 2018; Muise, Beck, and McIlraith 2016).
One work investigates the computational hardness for op-
timizing the action set of a POCL plan (Olz and Bercher
2019), whereas several works investigate the computational
hardness of optimizing ordering constraints or execution
time (makespan) for partially ordered plans and POCL plans
in particular (Bercher and Olz 2020; Aghighi and Bäckström
2017; Bäckström 1998).

Problem Formalization
Often POCL plans are defined in a lifted manner, where
the propositions are formalized using first-order predicates
rather than (ground) propositions, as this allows for even less
commitment due to delayed variable assignment (Younes
and Simmons 2002). For the sake of simplicity, we base
our complexity investigations on a propositional model. The
studies can still be transferred to a formalization with vari-
ables, where our results serve as lower bounds.

We first define classical planning problems in the standard
STRIPS notation, and later on extend it to the notation of
POCL plans and POCL problems. We follow the notation
used by Bercher and Olz (2020).

A classical planning problem is a tuple (F,A, sI , g) de-
fined as follows. F denotes a finite set of fluents, they de-
scribe the propositional world properties. We call any s ∈
2F a state. A ⊆ 2F × 2F × 2F is a finite set of actions.
For an action a ∈ A, pre(a) ⊆ F denotes its preconditions,
add(a) ⊆ F its add effects, and del(a) ⊆ F its delete ef-
fects. For the purpose of this paper we restrict to the case
where add(a) ∩ del(a) = ∅ holds for all a ∈ A. According
to the standard definition of action applicability (see below),
this case can be compiled away via removing any elements
from del(a) that also occur in add(a) since precedence is
given to add effects over delete effects2. An action a ∈ A
is called applicable (or executable) in a state s ∈ 2F if

2Planning models with such overlappings in the add and delete
effects are equivalent regarding the standard notion of applicability
for solution sequences as defined later. However, such cases might
be introduced on purpose when aiming at partially ordered solu-
tions to enforce certain ordering constraints. Dealing with these
cases will however complicate some theorems and proofs, so we
still pose this restriction and leave dealing with it future work.

and only if pre(a) ⊆ s. If a is applicable in s, the state
transition function γ : A × 2F → 2F returns its successor
state γ(a, s) = (s \del(a))∪add(a). A sequence of actions
a = (a1, . . . , an) is applicable in a state s0 if there exists a
sequence of states s1, . . . , sn, such that for all 1 ≤ i ≤ n
it holds that ai is applicable in state γ(ai, si−1) = si. The
state sn is called the state generated by a. Finally, sI ∈ 2F is
the initial state and g ⊆ F is the goal description implicitly
defining a set of goal states G = {s | s ⊇ g}.
Definition 1 (Classical Solution to Classical Problem). An
action sequence a is called a classical solution to a (classi-
cal) planning problem (F,A, sI , g) if and only if it is appli-
cable to sI and generates a goal state s ⊇ g.

When applying POCL search algorithms to solve a clas-
sical planning problem, search nodes are so-called partial
plans, i.e., partially ordered sets of actions, which use causal
links as the main means to evaluate and achieve executabil-
ity (Weld 1994). We will also call these partial plans POCL
plans or just plans for short, as it is always clear from con-
text whether we refer to an actual solution (which would
usually be referred to as “plan”). More formally, a plan is
a tuple P = (PS ,≺,CL), where PS is a finite set of plan
steps, where each plan step (l, a) ∈ PS consists of an action
a ∈ A, labeled with a label l unique in PS . ≺ ⊆ PS × PS
is a strict partial order defined on the plan steps. We require
action labeling to differentiate between multiple occurrences
of an action in the same plan. Just like for actions, we use
the notation pre(ps), add(ps), and del(ps) to refer to the
precondition, add, and delete effects of a plan step’s action.

The set of causal links CL ⊆ PS × F × PS is used to
annotate the causal relationships between plan step precon-
ditions and effects, and they will be used to define whether or
not a partial plan is executable. A causal link (ps, f, ps′) ∈
CL indicates that f is both a precondition of ps′, the con-
sumer of the link, as well as an effect of ps, the producer of
the link (i.e., such a link implies f ∈ add(ps) ∩ pre(ps′)).
We also demand that every causal link (ps, f, ps′) ∈ CL im-
plies (ps, ps′) ∈ ≺. Let (ps, f, ps′) ∈ CL be a causal link.
Its fluent f is also called protected by that link, because all
POCL-based search algorithms will ensure that f will never
be deleted between those steps. Formally, we say that a par-
tial plan P = (PS ,≺,CL) raises a causal threat if there ex-
ists a causal link (ps, f, ps′) ∈ CL as well as a threatening
plan step ps′′ ∈ PS , such that ps′′ could be ordered between
ps and ps′ while violating the protected condition. Formally,
ps′′ is threatening (ps, f, ps′) if and only if f ∈ del(ps′′),
and (≺ ∪ {(ps, ps′′), (ps′′, ps′)})+ (where X+ denotes the
transitive closure of X) is a strict partial order.

To represent the initial state and goal state of a classical
planning problem, we further extend the definition of POCL
plans. We demand that any POCL plan contains two spe-
cial plan steps, we call them init and goal, such that init is
ordered strictly before all other steps, and goal is ordered
strictly after each other step. The respective actions (which
will not be part of the action set A, so that they cannot
be inserted) are also called init and goal, and defined by
pre(init) = del(init) = add(goal) = del(goal) = ∅,
as well as by add(init) = sI and pre(goal) = g. We can
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now define what it means for a POCL plan to be a solution.
Definition 2 (POCL Solution to Classical Problem). A
POCL plan P is called a POCL solution to a (classical)
planning problem if and only if every precondition of its plan
steps is protected by a causal link and it does not raise any
causal threat.

Please note the following (commonly known) observation
relating Def. 1 to Def. 2.
Proposition 1 (Solution Correspondence). Let P be a clas-
sical planning problem. Then, P has a classical solution if
and only if it has a POCL solution.

This proposition is easy to see because any POCL solu-
tion is just a compact representation of up to an exponential
number of classical solutions, so any linearization of its plan
steps compatible with its ordering constraints is a classical
solution. The other way round, any action sequence can be
turned into a (totally ordered) POCL plan by simply insert-
ing the required causal links, which can be done in polyno-
mial time (Kambhampati 1994; Muise, Beck, and McIlraith
2016).

To be able to express the decision problem whether a cur-
rent search node (i.e., POCL plan) has a solution, we now
provide a definition of a POCL planning problem that gen-
eralizes classical planning problems in the sense that the
“problem to solve” is not just given by an initial state and
goal description, but by an arbitrary POCL plan. Note that
every search node produced during plan-based POCL search
can be regarded as a POCL planning problem thus motivat-
ing our definition.

A POCL planning problem is a tuple (F,A, PsI ,g), con-
sisting of a finite set of fluents F , a finite set A of actions,
and an initial partial plan PsI ,g = (PS I ,≺I ,CLI). The
POCL plan PsI ,g contains the two designated plan steps
{init, goal} ⊆ PSI as defined above, which are set accord-
ing to the problem’s initial state sI ∈ 2F and goal descrip-
tion g ⊆ F . We call the problem totally ordered if ≺I is a
total order, and partially ordered otherwise.

We can now define a solution to a POCL problem as any
solution plan that is a refinement of PsI ,g , i.e., it may con-
tain additional plan steps, causal links, and ordering con-
straints, but it may not change any of the contents of PsI ,g .
This reflects the idea of “refinement planning” (Kambham-
pati 1997) and any existing POCL search procedure, where
decisions taken can never be taken back.
Definition 3 (POCL Solution to POCL Problem). Let P =
(F,A, PsI ,g) be a POCL planning problem and P be a
POCL plan. P is a POCL solution to P if and only if:
• Let P = (PS ,≺,CL) and PsI ,g = (PS I ,≺I ,CLI).

Then, PS ⊇ PS I , ≺ ⊇ ≺I , and CL ⊇ CLI .
• Every precondition of P ’s plan steps is protected by a

causal link and P does not raise any causal threat.
The first criterion demands that any solution is a refine-

ment of the initial plan, meaning that it is a superset of the
input with regard to the ordering constraints, causal links,
and plan steps. The second criterion ensures the plan’s exe-
cutability, which, because it contains the init and goal steps,
implies that the original classical problem is solved.

Whenever a POCL algorithm produces some POCL
search node P , we can now consider it as a POCL planning
problem, and thus investigate its computational complexity.

Complexity Results: Plan Existence
In this section we study the computational complexity of the
plan existence problem, i.e., we are interested in the com-
plexity of deciding whether there is a solution that can be
reached from the current POCL plan. We start with the gen-
eral case and investigate a range of results related to delete
relaxation later on.

General Case
It is well known that deciding (ground) classical plan-
ning problems is PSPACE-complete (Bylander 1994). For
POCL problems, we don’t just want to achieve some goal
fluents from an initial state, but we must make sure that the
initially given POCL plan is respected, which poses vari-
ous further restrictions due to the actions/plan steps already
present as well as the causal links defined among them,
which further limit the amount of actions that can be used
at certain positions within a final plan. This, however, will
not increase the computational hardness as stated next.

Theorem 1. Let P be a totally or partially ordered POCL
planning problem. Deciding whether P has a solution is
PSPACE-complete.

Proof. Membership: If the problem is partially ordered,
guess a linearization of the plan steps of PsI ,g =
(PSI ,≺I ,CLI) that is compatible with its ordering con-
straints ≺I . Let that sequence be ps0, . . . , psn+1, where
|PS I | = n + 2, ps0 = init, and psn+1 = goal. We will
create n + 1 classical planning problems, i.e., one for the
goal and one for each of the “inner” plan steps of PsI ,g . We
will construct them in a way such that the solutions for the
different subproblems can be concatenated later on.

For this, we simply have to guess a sequence of n states,
s1, . . . , sn satisfying si ⊇ pre(psi) for all 1 ≤ i ≤ n. Each
of these states will be used as the goal description for the
problem defined between psi−1 and psi. The required initial
states of the next subproblem can be obtained by applying
the respective steps to the guessed states. With s′i we repre-
sent the initial state after a step psi. Also define s′0 = sI and
sn+1 = g thus defining n + 1 classical planning problems
of the form (s′i−1, si), for all 1 ≤ i ≤ n+ 1.

We need to make sure that available actions between
psi−1 and psi respect causal links, defined by:

Ai−1,i = A \ {a ∈ A | f ∈ del(a), (psj , f, psk) ∈ CL,

and j < i ≤ k} for all 1 ≤ i ≤ n+ 1

This gives us the n + 1 classical problems
(F,Ai−1,i, s

′
i−1, si), for 1 ≤ i ≤ n + 1. Their solu-

tions, if they exist, can easily be concatenated without
invalidating the resulting complete plan. All intermediate
(classical) problems can be solved in PSPACE (Bylander
1994), and we know that there exists a classical solution
if and only if there exists a POCL solution (Prop. 1). We
furthermore had to guess the linearization and n states.
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Since NPSPACE = PSPACE (Savitch 1970), we
obtain PSPACE membership in total.

Hardness: POCL problems generalize classical problems,
which are PSPACE-complete (Bylander 1994).

Delete Relaxation
We will now investigate the plan existence complexity for
delete relaxation, where action delete effects are ignored.
Other than in progression search in the space of states it is
not completely clear how delete relaxation should be defined
in the POCL setting. The core difference is that in our case
the input plan also contains actions as well as causal links,
so the question is whether they should be delete-relaxed as
well, and what the impact on the computational complexity
will be if we do or don’t. As argued previously, not relax-
ing anything that is part of the initially given plan would be
motivated by not throwing away information encoding the
current search progress. We will consider delete-relaxation
for either the input plan, the action portfolio, or both.
Definition 4 (Delete-relaxed POCL Problem). Let P =
(F,A, PsI ,g) be a POCL planning problem and PsI ,g =
(PS I ,≺I ,CLI) its initial partial plan.

• We call PA+

= (F,A+, PsI ,g) the POCL planning prob-
lem with delete-relaxed actions and define the set A+ as
{(pre(a), add(a), ∅) | a ∈ A}. Note that the actions in
the plan steps of PsI ,g are still taken from A.

• We call PP+ = (F,A, P+
sI ,g) the POCL planning prob-

lem with delete-relaxed plan and define the partial plan
P+
sI ,g = (PS ′I ,≺I ,CLI)

3 with PS ′I = {(l, a+) | (l, a) ∈
PS I , and a+ = (pre(a), add(a), ∅)}.

• Consequently, PA+

P+ = (F,A+, P+
sI ,g) denotes the POCL

planning problem with delete-relaxed actions and plan.
We start our investigations with the case where the input

plan is delete-relaxed, but the actions to insert are not. As
we have seen from our previous proof, the impact of the ini-
tial partial plan is rather limited in this case, since it merely
defines a linear sequence of classical problems, one for each
interval between two consecutive plan steps. So it is not sur-
prising that the problem stays hard if we do not relax the
action set that is used to solve these problems:
Corollary 1. Let PP+ be a totally or partially ordered
POCL planning problem with delete-relaxed plan. Deciding
whether PP+ has a solution is PSPACE-complete.

So it is clear that we need to relax the available action
set as well. Let us start our investigations with the most re-
stricted case, where both the initial partial plan is delete-
relaxed, as well as all actions that can be inserted. This prob-
lem class is the underlying one that’s currently used by the
state-of-the art POCL heuristics Add Heuristic for POCL
planning (Younes and Simmons 2003) and Relax (Nguyen
and Kambhampati 2001).

Theorem 2. Let PA+

P+ be a totally or partially ordered
POCL planning problem with delete-relaxed actions and
plan. Deciding whether PA+

P+ has a solution is in P.
3Technically, we also had to alter ≺I so that it’s defined upon

PS ′
I instead upon PS I . Omitted to improve readability.

Proof. It is commonly known that delete-relaxed classi-
cal problems can be decided in polynomial time (Bylander
1994). In our case, however, we also have to respect the
available partial order as well as existing causal links. Causal
links can effectively be ignored, because the only way they
would impose a constraint is if there were any delete effects
that could cause causal threats, which is not the case due to
the full delete-relaxation. The following procedure, running
in P, can decide the problem:

1. Construct the delete-relaxed planning graph (RPG) until
a fixed point is reached. This can be done in polynomial
time (Hoffmann and Nebel 2001).

2. Note that all actions that could possibly by applied are
now part of the RPG, and that the final layer of fluents
can not grow anymore, even after applying the actions in
the plan. So we only need to check whether the actions
in the plan can be applied in this final layer. Also note
that ordering constraints do not matter anymore. We can
thus iterate over the plan’s actions in any order and check
whether their preconditions are part of the final RPG flu-
ent layer. Return “success” if and only if this is the case.

We now ask whether it is required to also ignore the delete
effects of the input plan as well as its causal links (on top of
delete-relaxing the action portfolio) to obtain tractability. A
partial answer to this question was given previously. It shows
that delete-relaxing the actions, but not the current plan is
NP-complete (Bercher et al. 2013, Thm. 1). We re-state it
here for the sake of completeness and to have it available in
our formalization.

Proposition 2. Let PA+

be a POCL planning problem with
delete-relaxed actions. Deciding whether PA+

has a solu-
tion is NP-complete.

This result was shown via a reduction from SAT, adapt-
ing the proof of Thm. 15 by Nebel and Bäckström (1994),
which states that it is NP-complete to decide whether a par-
tially ordered set of actions has an executable linearization.4
Thus, this result gets generalized by Prop. 2 in the sense that
finding an executable linearization of a partially ordered set
of actions does not become easier when we are allowed to
insert delete-relaxed actions. This result is quite interesting
because it shows that it is not sufficient to delete-relax the ac-
tions in the action portfolio to obtain tractability – which is
in contrast to state-based search (Bylander 1994), where the
tractability result is exploited by the influential FF heuristic
(Hoffmann and Nebel 2001) and many more.

4Note that Nebel and Bäckström and Erol, Hendler, and
Nau (1996) showed the same result independently. Nebel and
Bäckström showed this for unconditional event systems, which co-
incides with standard STRIPS. Erol, Hendler, and Nau showed it
for a special case of HTN planning, where the problem is given
by a primitive task network, i.e., a partially ordered set of actions.
Erol, Hendler, and Nau’s proof exploits a constraint formula, which
is not available to us. However, when restricting the SAT formula
to be in conjunctive normal form (as Nebel and Bäckström did), the
proof can easily be altered to work without a constraint formula.
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If the input plan is restricted to be totally ordered, we ob-
tain a lower complexity:

Theorem 3. Let PA+

be a totally ordered POCL planning
problem with delete-relaxed actions. Deciding whetherPA+

has a solution is in P.

Proof. The following is a polytime decision procedure:

1. Check whether there are causal threats in the input plan.
If so, return fail, because such a threat cannot be repaired
since the plan is already totally ordered. If not, continue.
Causal links can be ignored from now on since no further
threats can be raised.

2. Create a series of delete-relaxed classical planning prob-
lems (F,A+, s′i−1, si), 1 ≤ i ≤ n + 1, similar to the
membership proof of Thm. 1. As before, define s′0 = sI
and sn+1 = g. This proof, however, relied on guessing
the goal states si, which we obtain differently:
• Construct the RPG in s′i−1 until a fixed point is reached,

which can be done in P (Hoffmann and Nebel 2001).
This fixed point will serve as si.

• Compute s′i via the application of psi, the ith plan step
in the sequence, to si.

All subproblems are delete-relaxed and can thus be de-
cided in P (Bylander 1994), and there exists a solution to
PA+

if and only if each subproblem has a solution.

We can still slightly improve on this result by yet another
problem relaxation the literature did not consider so far.

Delete-Relaxation Respecting Causal Links
We have seen in the previous proof that for totally ordered
input plans and delete-relaxed actions to be inserted, the sub-
problems can be decided in polynomial time. The proof fur-
thermore “ignored” the influence of causal links present in
this plan on the actions to be inserted. Those causal links did
not play any role for the inserted actions because they were
all delete-relaxed and thus could not possibly conflict with
the causal links already present.

It is however easy to see that in those n+ 1 subproblems
we also could have respected these links by simply disal-
lowing delete-relaxed actions if their original, non-relaxed
counterpart would violate the respective link. This effec-
tively acts as a simple “filter” that can be performed in poly-
nomial time. And it makes perfect sense to disallow these
actions because we know that no such action could possibly
be applied in the non-relaxed plan – any heuristic estimate
based on such actions makes a relaxation of which we know
for sure that the estimate is wrong in the sense that it might
return a finite estimate although the perfect heuristic based
upon such an action is infinity.

We thus define a novel problem relaxation, where, de-
spite delete-relaxation, causal links that are already present
in the input plan are respected in the way that inserted delete-
relaxed actions may still raise a causal threat if their origi-
nal non-relaxed counterpart would raise a threat (with those
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Figure 1: An example plan with initially given causal links.
In addition to the actions that are already in the plan, the ad-
ditional actions depicted below can be added as well. Note
that their delete effects are grayed out because they are par-
tially ignored (they are only considered to restrict the inter-
vals in which they can be inserted).

links already present). Note that we define this constraint for
the general case of partially ordered input plans.

Fig. 1 shows a simple example plan to illustrate this con-
cept. This plan has one open precondition, b, of the plan
step A. There are two further actions, B1 and B2, that are
suitable to support that precondition. Although their delete-
relaxed version will be inserted, their delete effects are still
respected with regard to the causal links already present.
That means that if B1 is inserted, it may only be added be-
fore the plan step middle because its delete effect R would
raise a threat with the causal link protecting R. If we in-
sert B2 instead, then we may only do so after the middle
step, which in turn also restricts the ordering constraints in-
volving A (since A requires the effect of B2 and must thus
be ordered behind it). So the question might arise whether
delete relaxation even makes the problem easier in this case.
To see this, consider the altered example in which the pre-
condition c of B1 and B2 is not already true in the initial
state, but must be achieved first by some additional series
of actions. For this, we can again rely on delete relaxation
thus simplifying the problem (we only need to make sure
again that these actions do not threaten causal links that are
already present in the input plan).

Definition 5 (Delete-relaxed POCL Problem Respecting
Causal Links). Let P be POCL planning problem with ini-
tial partial plan PsI ,g = (PS I ,≺I ,CLI). We denote by
PA+

links and PA+

P+,links the POCL planning problem with
delete-relaxed actions (and plan, respectively) respecting
causal links. They are both syntactically defined like PA+

and PA+

P+ , respectively, but with altered solution criteria. A
partial plan P = (PS ,≺,CL) is a solution to PA+

links or
PA+

P+,links, respectively, if and only if:

• PS ⊇ PS I , ≺ ⊇ ≺I , and CL ⊇ CLI . (Unchanged)
• All preconditions of P ’s plan steps are protected by a

causal link and there are no causal threats. (Unchanged)

• Let psa
+

= (l, a+) ∈ PS \ PS I be a delete-relaxed plan
step. Let a ∈ A be the non-relaxed version of a+ ∈ A+

41



and define psa = (l, a). Then, there may not be a causal
link (ps, f, ps′) ∈ CLI , such that psa would threaten it,
i.e., PS and≺ substituting psa for psa

+

may not induce a
causal threat (see footnote5 for a formal definition). (New)

The first two solution criteria remained unchanged, and
in addition we demand that exactly those causal links of the
input plan are respected in the sense that even delete-relaxed
actions may not threaten those initially given causal links
(which can be achieved by additional ordering insertions).
This means that some (delete-relaxed) actions may only be
available in certain “positions” of the partial plan thus mak-
ing heuristic estimates more informed since relaxed actions
would be forbidden at positions where their original versions
could not possibly be used.

By exploiting this stronger notion of causal links in the
presence of delete relaxation, we can also generalize Prop. 2
by stating that it remains NP-complete to decide a POCL
problem with non-delete-relaxed initial partial plan even if
we respect causal links. Since one problem is a special case
of the other, hardness follows directly. And since member-
ship can be shown by guessing a total ordering, respect-
ing the causal links is again just applying a series of filters,
which can be done in polynomial time.

Corollary 2. Let PA+

links be a POCL problem with delete-
relaxed actions respecting causal links. Deciding whether
PA+

links has a solution is NP-complete.

We can now state the corollary mentioned in the begin-
ning of this subsection, which provides a tighter result than
Thm. 3 (and Thm. 2) because it relies on a problem with
fewer relaxations.

Corollary 3. Let PA+

links and PA+

P+,links be a totally ordered
POCL problem with delete-relaxed actions (and plan, re-
spectively) respecting causal links. Deciding whether PA+

links

and PA+

P+,links have a solution is in P.

Whereas this result for totally ordered plans was easy to
discover, it raises the question whether the problem remains
in P or becomes NP-complete if we assume a partially or-
dered delete-relaxed input plan, but demand that its causal
links are respected despite delete-relaxation.

We can see from the example illustrated in Fig. 1 that
there is no obvious greedy strategy anymore on how to
achieve open conditions. The reason is that the partial order
of the existing plan steps dictates over which intervals their
causal links span, which influences which delete-relaxed ac-
tions can be inserted at specific locations. For example, if
we move A before middle, its causal link protecting a be-
comes active earlier and thus poses more constraints. But
depending on which actions we add, we might have to move

5Formally, if PsI ,g = (PS I ,≺I ,CLI) is the input plan, P =
(PS ,≺,CL) the solution candidate, (psf , f, ps′f ) ∈ CLI , and

psa
+

= (l, a+) ∈ PS \ PSI with f ∈ del(a), let PS ′′ = (PS \
{(l, a+)})∪{(l, a)} and≺′′ = (≺\{(ps, (l, a+)), ((l, a+), ps) |
ps ∈ PS}) ∪ {(ps, (l, a)) | (ps, (l, a+)) ∈ ≺} ∪ {((l, a), ps) |
((l, a+), ps) ∈ ≺}. Then, (≺′′∪{(psf , (l, a)), ((l, a), ps′f )})+ is
a strict partial order.

existing steps like A thus changing where specific causal
links become active. This observation is exploited by our
proof, which shows that respecting existing causal links in a
partial-order setting is NP-complete.

Theorem 4. Let PA+

P+,links and PA+

links be a POCL plan-
ning problem with delete-relaxed actions (and plan, respec-
tively) respecting causal links. Deciding whether PA+

P+,links

and PA+

links have a solution is NP-complete.

Proof. Membership: We can adapt the procedure for
Thm. 2. That procedure assumes a totally ordered plan,
which we can guess in a first step (and check whether it
contradicts existing causal links). There are just two steps
we need to adapt. One is the application of the steps in the
plan, which now might also delete fluents, whereas Thm. 2
assumes only delete-relaxed steps. Furthermore we need to
make sure that in each interval between two plan steps of the
initial plan no delete-relaxed actions are inserted that have
a non-relaxed counterpart conflicting with any of the links
spanning over the current interval.

Hardness: We show hardness for PA+

P+,links, since PA+

links

will follow directly. We reduce from CNF-SAT, i.e., the deci-
sion problem whether a formula in conjunctive normal form
has a satisfying valuation, which is NP-complete (Hopcroft
and Ullman 1979). Let C = {C1, . . . , Cm} be a finite set of
clauses, where for each 1 ≤ i ≤ m, Ci = {li1, li2, . . . } rep-
resents a conjunct (i.e., disjunction) consisting of a finite set
of literals. The literals are based on the finite set of variables
X = {x1, . . . , xn}, where each literal l is of the form x or
¬x for some x ∈ X .

We construct the initial plan depicted in Fig. 2. As re-
quired by the problem definition, this plan contains only
delete-relaxed steps.

The initial state and goal description are given by:

init : (∅,
⋃

1≤i≤n

{xi=>−L, xi=⊥−L}, ∅)

goal : (
⋃

1≤i≤n

{xi=>−R, xi=⊥−R} ∪
⋃

1≤i≤m

{Ci}, ∅, ∅)

The Ci preconditions encode that every clause will be
made true. The purpose of the other fluents will be explained
later.

We introduce two plan steps and two further actions for
each variable xi ∈ X . We call the plan steps linked-xi=>
and linked-xi=⊥ to differentiate them from the additional
actions, which will be called xi=> and xi=⊥. The plan
steps’ actions are defined as follows:

linked-xi=> : ({xi=>−L}, {xi=>−R}, ∅)
linked-xi=⊥ : ({xi=⊥−L}, {xi=⊥−R}, ∅)

We refer to the plan steps of these actions by psi> and
psi⊥, respectively. The preconditions and effects of these
steps serve as consumer and producer of causal links with
init and goal, respectively, thus spanning over the entire plan
(hence their name linked-xi=> and linked-xi=⊥). Their
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Figure 2: Constructed plan for the proof of Thm. 4. The
delete-relaxed actions that may be inserted are depicted be-
low the plan. Note that these steps only depict delete effects
(in gray), but technically they are only available in the orig-
inal planning problem, not after inserting them. They are,
however, used to ensure that they do not violate any causal
link of the initial plan. The effects Cj , . . . and Ck, . . . of
these actions are derived from the clauses that become true
by setting the respective variable accordingly.

causal links are given by:

CLI :
⋃

1≤i≤n

{(init, xi=>−L, psi>)} ∪
{(init, xi=⊥−L, psi⊥)} ∪
{(psi>, xi=>−R, goal)} ∪
{(psi⊥, xi=⊥−R, goal)}

We now define the set of actions that can achieve the goal
fluents that are not yet protected by a causal link. For each
xi ∈ X we add two actions (only to the action portfo-
lio, not to the plan), each representing setting xi to either
true or false. Each of these actions makes all clause fluents
Ci ∈ pre(goal) true that correspond to a clause Ci ∈ C that
becomes true by setting xi accordingly:

xi=> : (∅, {Cj | xi ∈ Cj}, {xi=⊥−R, xi=>−L})
xi=⊥ : (∅, {Cj | ¬xi ∈ Cj}, {xi=⊥−L, xi=>−R})

This finishes our construction. We claim: The constructed
POCL problem has a solution if and only if the given SAT
formula has a satisfying valuation.

“⇒”: Assume P = (PS ,≺,CL) is a solution plan. Due
to the goal precondition(s) {C1, . . . , Cm}, we know that for

each Cj , 1 ≤ i ≤ m, at least one action with the corre-
sponding effect (i.e., xi=> or xi=⊥) is in the plan. If such
a step represents setting a variable xi to true, xi=> must be
in the plan. Because the delete effects of its original version
are xi=>−L and xi=⊥−R, it will have to be ordered behind
psi> as well as before psi⊥ thus enforcing the total order
(psi>, psi⊥) ∈ ≺. Note that the (delete-relaxed variant of
the) other action, xi=⊥, can not be in the plan, as other-
wise it would raise a threat: It has delete effects xi=⊥−L
and xi=>−R, which violates a causal link no matter where
it resides. The case if xi is set false works analogously with
the inverted order of psi⊥ and psi>. We can thus construct
a satisfying variable assignment from the respective order-
ings, where the left action of each pair (psi⊥, psi>) ∈ ≺ or
(psi>, psi⊥) ∈ ≺ corresponds to the assignment.

“⇐”: Let’s assume we have a satisfying variable assign-
ment. We design a solution P = (PS ,≺,CL) based on such
a truth assignment. Let xi ∈ X and assume it’s set true in the
assignment (the case for setting xi false works analogously).
Choose the ordering (psi>, psi⊥) ∈ ≺ and insert xi=> be-
tween these steps (and set its causal links) so that there are
no causal threats raised by the third (new) criterion of Def. 5.
xi=> will satisfy all goal fluents Cj , such that clause Cj is
made true by xi. Since all clauses can be made true by as-
sumption, we can repeat this process for all xi ∈ X to make
the plan executable.

We might also be interested in the special case arising
from disallowing action insertion, i.e., asking how hard it is
to decide whether a linearization for a delete-relaxed input
plan becomes when we allow for our notion of causal links.
This is clearly polynomial because the causal links already
present cannot raise any causal threats (causal threats might
only be raised by plan steps that got inserted).

Proposition 3. Let P linearize
P+,links denote a POCL plan-

ning problem with delete-relaxed plan respecting causal
links, where we forbid action insertion. Deciding whether
P linearize
P+,links has a solution is in P.

The two major NP-completeness results, i.e., Prop. 2
with Cor. 2 and Thm. 4 are somehow disappointing as they
show that we can only decide the plan existence problem for
delete relaxation in polynomial time (assuming P6=NP) if
we delete-relax all actions, including those in the initial plan,
and furthermore ignore the pruning power of existing causal
links. On the other hand this motivates the relaxations done
in previous POCL heuristics (Younes and Simmons 2003;
Nguyen and Kambhampati 2001), which can be computed
in P, so now we know that these relaxations were indeed
necessary to obtain a delete-relaxation POCL heuristic that
runs in polynomial time.

Discussion and Conclusion
We conducted a comprehensive complexity analysis for the
POCL plan existence problem. Apart from studying the gen-
eral case, which is PSPACE-complete, we studied the in-
fluence of delete-relaxation by analyzing plan existence for
delete-relaxing the current plan, the actions that can be in-
serted, or both. We furthermore proposed a weaker notion
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of delete-relaxation where delete-effects are ignored except
regarding causal links that already exist in the given partial
plan – since they encode the current progress of the search
leading to the current search node. Our investigations re-
veal that despite delete relaxation for the action portfolio, no
matter whether we allow delete effects in the current partial
plan or even relax them as well and only respect causal links
(despite doing delete-relaxation), we are still NP-complete.
Only if, on top of doing delete-relaxation for the action port-
folio, we ignore both – delete effects in the given partial plan
and its causal links – we end up being in P.

However, our investigations also point towards promising
future work regarding heuristic development for POCL plan-
ning. We have shown that for totally ordered input plans,
delete-relaxed POCL problems can be decided in P, even
if delete-relaxed actions have to respect existing causal links
(Thm. 3). This result might seem insignificant at first glance,
given that POCL planning is inherently about partial or-
ders. However, every single solution has always at least one
chain of plan steps connecting the goal description step to
the initial state step with a chain of causal links thus induc-
ing a total order. Heuristics could thus solve the intermedi-
ate problems with tighter action sets (similar to our proof of
Thm. 3) rather than considering the entire problem at once
thus performing severe problem relaxations and therefore
having much less informed heuristics.
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