
On Planning with Qualitative State-Trajectory Constraints in PDDL3 by
Compiling them Away

Luigi Bonassi,1 Alfonso Emilio Gerevini,1 Francesco Percassi,2 Enrico Scala1

1 Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Italy
2 School of Computing and Engineering, University of Huddersfield, UK

l.bonassi005@unibs.it, alfonso.gerevini@unibs.it, f.percassi@hud.ac.uk, enrico.scala@unibs.it

Abstract

We tackle the problem of classical planning with qualitative
state-trajectory constraints as those that can be expressed in
PDDL3. These kinds of constraints allow a user to formally
specify which temporal properties a plan has to conform with
through a class of LTL formulae. We study a compilation-
based approach that does not resort to automata for repre-
senting and dealing with such properties, as other approaches
do, and generates a classical planning problem with condi-
tional effects that is solvable iff the original PDDL3 problem
is. Our compilation exploits a regression operator to revise
the actions’ preconditions and conditional effects in a way to
(i) prohibit executions that irreversibly violate temporal con-
straints (ii) be sensitive to executions that traverse those nec-
essary subgoals implied by the temporal specification. An ex-
perimental analysis shows that our approach performs better
than other state-of-the-art approaches over the majority of the
considered benchmark domains.

Introduction
The PDDL3.0 language (Gerevini et al. 2009) is a popu-
lar and standard planning formalism that can express state-
trajectory constraints in planning problems. PDDL3.0 pro-
vides primitives allowing the specification of such con-
straints through a subclass of LTL formulas (Pnueli 1977)
that has been shown to be useful in planning (Gerevini et al.
2009). In PDDL3.0, a classical planning problem extended
with state-trajectory constraints is the task of synthesizing a
course of actions that reaches the problem goals, and gener-
ates a sequence of states that conforms with the given state-
trajectory constraints.

Two lines of research have been investigated to address
this reasoning task: the former aims at efficiently supporting
the trajectory constraints directly into the search engines via
sophisticated heuristic adaptations (Coles and Coles 2011;
Benton, Coles, and Coles 2012) or problem decomposition
(Chen, Wah, and Hsu 2006; Hsu et al. 2007); the latter uses
a compilation-based approach (Baier, Bacchus, and McIl-
raith 2009; Baier and McIlraith 2006; Edelkamp, Jabbar,
and Nazih 2006; Edelkamp 2006; Torres and Baier 2015;
Wright, Mattmüller, and Nebel 2018). The compilation ap-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

proach of a problem with trajectory constraints aims at gen-
erating an equivalent representation without them that can
be effectively handled via off-the-shelf classical planners.
Although native approaches have the potential to customize
search and heuristics for the problem at hand, they lack the
modularity of a compilation-based schema. Compilation-
based approaches have been investigated also for a class of
trajectory constraints much richer than PDDL3.0 constraints,
expressible through the full Linear Temporal Logic (LTL)
(Pnueli 1977) interpreted over finite traces (Giacomo and
Vardi 2013). However, this generality in expressing trajec-
tory constraints can be a barrier for scaling up the planner
performance. Indeed, to handle the expressive power of ar-
bitrary nested LTL formulae (unsupported in PDDL3.0), cur-
rent compilation-based mechanisms undergo a complex pas-
sage through the automata representing such formulae.

We propose a novel compilation-based schema that is
specifically designed for qualitative PDDL3.0 trajectory con-
straints. Our compilation substantially revisits the automata-
less approach proposed by Percassi and Gerevini (2019) for
soft trajectory constraints through the lens of hard trajectory
constraints. We do so by revising the schema in two main
important aspects: first, we characterize the state-trajectory
constraints into two classes. The former class encompasses
constraints for which it is possible to always prune any plan
prefix that violates them. The latter class encompasses con-
straints that induce intermediate goals, landmarks (Richter
and Westphal 2010) that every plan needs to traverse. This
characterization leads to devise a simple compilation that
can efficiently prune plan prefixes not complying with the
first class of constraints, and that is aware of those plan pre-
fixes where intermediate goals are reached. Then, we revisit
how we anticipate the effects of the action during search, and
do so by exploiting Rintanen (2008)’s notion of regression
for the formulas mentioned in the trajectory constraints.

Our experimental analysis shows that the novel compi-
lation substantially extends the reach of planning over the
considered class of planning problems.

Background and Preliminaries
We borrow standard notions from propositional logic and the
work by Gerevini et al. (2009) on PDDL3.0; the reader is re-
ferred to this work for a complete treatment of the language.

A classical planning problem is a tuple Π = 〈F,A, I,G〉

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

46

where F is a set of atoms, I ⊆ F is the initial state, G is a
formula over F , and A is a set of actions. An action a ∈ A
is a pair 〈Pre(a),Eff(a)〉, where Pre(a) is a formula over
F expressing the preconditions of a, and Eff(a) is a set of
conditional effects, each of which is a pair c . e where: c is
a formula and e is set of literals, both over F . With e− and
e+ we indicate the partition of e featuring only negative and
positive literals, respectively. A state s is a subset of F , with
the meaning that if p ∈ s, then p is true in s, and if p /∈ s,
p is false in s. An action is applicable in s if s |= Pre(a),
and the application of an action a in s yields the state s′ =
(s \

⋃
c.e∈Eff(a)
with s|=c

e−)∪
⋃

c.e∈Eff(a)
with s|=c

e+. We indicate with s′ = s[a]

the state resulting from applying action a in s, and assume
conflicting effects (p and ¬p) are only yield by conditional
effects having their conditions mutually exclusive in s. A
plan π for a problem Π = 〈F,A, I,G〉 is a sequence of
actions 〈a0, a1, ..., an−1〉 in Π; plan π is valid for Π iff there
exists a sequence of states (state trajectory) 〈s0, s1, ..., sn〉
such that s0 = I , ∀ i ∈ [0, . . . , n − 1] we have that si |=
Pre(ai) and si+1 = si[ai], and sn |= G.

PDDL3.0 introduced state-trajectory constraints as a class
of temporal logic formulae over state trajectories. Such con-
straints can be either soft or hard. While soft constraints are
used to define plan quality, hard constraints express neces-
sary conditions that the state trajectory of a valid plan must
satisfy. In this work, we focus on hard constraints, and in
particular on those that in PDDL3.0 are called “qualitative”
(Gerevini et al. 2009), because involving only non-numeric
terms. For convenience such a class of constraints here is
called trajectory constraints.

In addition to the standard problem goals, a trajectory
constraint can be of the following types: always φ (Aφ),
which requires that every state traversed by the plan sat-
isfies formula φ; at-most-once φ (AOφ), which re-
quires that formula φ is true in at most one continuous
subsequence of traversed states; sometime-before φ ψ
(SBφ,ψ), which requires that if φ is true in a state tra-
versed by the plan, then also ψ is true in a previously tra-
versed state; sometime φ (STφ), which requires that there
is at least one state traversed by the plan where φ is true;
sometime-after φ ψ (SAφ,ψ), which requires that if φ
is true in a traversed state, then also ψ is true in that state or
in a later traversed state.

More formally, a trajectory constraint c is satisfied in a
state trajectory σ = 〈s0, . . . , sn〉 (σ |= c) if the following
conditions hold:
σ |= (always φ) iff ∀i : 0 ≤ i ≤ n · si |= φ

σ |= (sometime φ) iff ∃i : 0 ≤ i ≤ n · si |= φ

σ |= (at-most-once φ) iff ∀i : 0 ≤ i ≤ n · if si |= φ then

∃j : j ≥ i · ∀k : i ≤ k ≤ j · sk |= φ and ∀k : k > j · sk |= ¬φ

σ |= (sometime-after φ ψ)

iff ∀i : 0 ≤ i ≤ n · if si |= φ then ∃j : i ≤ j ≤ n · sj |= ψ

σ |= (sometime-before φ ψ)

iff ∀i : 0 ≤ i ≤ n · if si |= φ then ∃j : 0 ≤ j < i · sj |= ψ.

All φ/ψ are first order formulae that we assume grounded
and expressed in negation normal form (NNF). In our work,

we call PDDL3.0 planning problem a tuple 〈Π, C〉 where Π
is a classical planning problem and C is a set of trajectory
constraints; the valid plans of 〈Π, C〉 are all valid plans of Π
whose state trajectories satisfy all constraints in C.

Our method uses an operator R for regressing a formula
over the effects of an action that is inspired by the notion of
regression introduced by Rintanen (2008).
Definition 1 (Regression operator). The regression R(φ, a)
of a NNF formula φ through the effects Eff(a) of action a is
the formula obtained from φ by replacing every atom f in φ
with Γf (a) ∨ (f ∧ ¬Γ¬f (a)), where Γl(a) for a literal l is
defined as

Γl(a) =
∨

c.e∈ Eff(a)
with l∈e

c.

Note that Definition 1 implies that s[a] |= φ iff s |= R(φ, a),
for every φ, s and a.

Compilation Method
This section describes a compilation schema, called TCORE
(Trajectory constraints COmpilation via REgression), for
translating a PDDL3.0 problem into an equivalent planning
problem without constraints, that can be attempted by clas-
sical planners supporting conditional effects.

TCORE makes extensive use of the operatorR (Def. 1) and
of a set of monitoring atoms. These are used to extend the
action preconditions and conditional effects in order to (i)
block invalid extensions of the plan prefix generated during
planning, and (ii) keep track of the truth of relevant (w.r.t.
trajectory constraints) formulae in the states generated by
the plan prefix. The regression makes it possible to identify
what actual influence the action has over the trajectory con-
straint of interest. Monitoring atoms serve the purpose of
collecting relevant facts on the plan state trajectory and as-
serting their truth/falsity. These reflect whether a constraint
c has been satisfied (the holdc atom), or whether some for-
mula ψ has ever held in some state generated by the plan
prefix (the seenψ atom).

We show how the extended action preconditions and ef-
fects are constructed by distinguishing trajectory constraints
into two classes: invariant trajectory constraints (ITC) and
landmark trajectory constraints (LTC). Intuitively, ITCs can
be checked along any plan prefix and if they are violated,
there is no way the planner can ever re-establish them; they
are invariant conditions that must be maintained over the
state trajectory of the plan. LTCs are constraints that require
certain conditions true at some state over the state trajectory
of the plan. The ITCs are: Aφ, AOφ, SBφ,ψ . For each AOφ
and SBφ,ψ , we add the fresh predicates seenφ and seenψ to
record whether φ and ψ have ever held. The LTCs are: STφ
and SAφ,ψ . For each LTC, we add a predicate holdc. Such a
predicate is meant to record whether the constraint is already
satisfied or not according to the current plan prefix.

Algorithm 1 describes the full compilation. As a very first
step, we create the necessary atoms (line 3) and setup the
initial state so as to reflect the current status of the trajectory
constraints; in particular we need to capture if a LTC is al-
ready achieved in I , or if a formula (φ or ψ) that is necessary

47

Algorithm 1: TCORE
Input : A PDDL3.0 Planning Problem 〈〈F,A, I, G〉, C〉

1 A′ = {}
2 G′ = >
3 F ′ = monitoringAtoms(C) ; // Additional atoms generation

4 I′ =
⋃

c:STφ∈C
{holdc | I |= φ} ∪

⋃
c:SAφ,ψ∈C

{holdc | I |= ψ ∨ ¬φ}∪⋃
SBφ,ψ∈C

{seenψ | I |= ψ} ∪
⋃

AOφ∈C
{seenφ | I |= φ}

5 if ∃SBφ,ψ ∈ C.I |= φ ∨ ∃Aφ ∈ C.I |= ¬φ then
6 return Unsolvable Problem; // It exists an unsatisfiable ITC
7 foreach a ∈ A do
8 E = {}
9 foreach ITC c ∈ C do

10 if c is Aφ then
11 ρ = R(¬φ, a)
12 else if c is AOφ then
13 ρ = R(φ, a) ∧ seenφ ∧ ¬φ
14 E = E ∪ {R(φ, a) . {seenφ}}
15 else if c is SBφ,ψ then
16 ρ = R(φ, a) ∧ ¬seenψ
17 E = E ∪ {R(ψ, a) . {seenψ}}
18 Pre(a) = Pre(a) ∧ ¬ρ
19 foreach LTC c ∈ C do
20 if c is STφ then
21 ρ = R(φ, a)
22 else if c is SAφ,ψ then
23 E = E ∪ {R(φ, a) ∧ ¬R(ψ, a) . {¬holdc}}
24 ρ = R(ψ, a)

25 E = E ∪ {ρ . {holdc}}
26 Eff(a) = Eff(a) ∪ E
27 A′ = A′ ∪ {〈Pre(a), Eff(a)〉}
28 foreach LTC c ∈ C do
29 G′ = G′ ∧ holdc
30 return Classical Planning Problem 〈F ∪ F ′, A′, I ∪ I′, G ∧G′〉

for the evaluation of an ITC is already true in I . Depending
on the kind of input constraint, we set the associated moni-
toring atom: for each c = STφ such that φ is already true in
I , and for each c = SAφ,ψ such that ψ is already true in I or
φ is false in I , we set holdc true in I ′. Analogously, for all
constraints SBφ,ψ (AOφ) we set seenψ (seenφ) true in I ′ if
ψ (φ) is true in I . Then we check whether any ITC is already
unsatisfied; if so, the problem is unsolvable.

After the initialization phase, the algorithm iterates over
all actions and constraints to modify each original action
model (preconditions and effects) by considering the inter-
actions between the constraints and the action model. If the
constraint is a ITC, the algorithm determines, by regression,
a condition ρ such that, if ρ holds in the state where the
action is applied, the execution of such an action will vio-
late the constraint. Condition ρ models whether (i) the ac-
tion makes formula φ false (in the case of Aφ, line 10), (ii)
the action makes formula φ true for the second time (in the
case of AOφ line 12), or (iii) the action makes formula φ true
while seenψ is false (in the case of SBφ,ψ , line 15). The re-
gressed condition ρ is negated and then conjoined with the
precondition of the action. This way, if the action will vio-
late the constraint in a given state, such an action is deemed
inapplicable by the planner. In the case of ITCs, conditional
effects are added to keep track of whether relevant formulae
have ever held in the state trajectory of the plan prefix. For
instance, SBφ,ψ requires to deal with the truth of seenψ: if
an action makes ψ true, then the action must make seenψ
true too. This way, we can prevent to apply an action a when
it makes φ true and ψ has not held before in current plan
state trajectory (lines 15–18).

For each LTC c ∈ C, the algorithm yields a formula ρ
that is true only in those states where the action achieves
the targeted formula expressed in c. Note here the slightly
different treatment for the two types of LTCs. While STφ
only requires φ to be true, for SAφ,ψ we need to signal the
necessity of ψ only when φ becomes satisfied; we do so by
introducing two conditional effects (line 23 and 24) affecting
the additional goal holdc of G′ (line 29). Also observe that
φ can become true multiple times, and each state satisfying
φ needs to be followed by a state such that ψ is true again;
this state can also be the same state in which φ holds, as
prescribed by the semantics of PDDL3.0.

Note that Algorithm 1 can add irrelevant preconditions
and conditional effects that can easily be omitted by look-
ing at whether regression leaves a formula unaltered. E.g.,
for Aφ, if ρ = R(¬φ, a) = ¬φ, there is no need to extend
Pre(a) with ¬ρ = φ at line 18. Such optimizations are im-
plemented but omitted here for clarity and compactness.

As trajectory constraints are monitored along the entire
plan, and regression through effects provides sufficient con-
ditions for ensuring that no ITC is violated by an action and
no LTC remains unsatisfied at the plan end, it is easy to see
that the compiled problem always finds a solution that con-
forms with the trajectory constraints of the problem. More-
over, since the exploited regression establishes necessary
conditions too, the existence of a solution in the compiled
problem implies that the original problem is solvable.

Theorem 1. Let Π = 〈〈F, I,A,G〉, C〉 be a PDDL3.0 plan-
ning problem, and let Π′ = 〈F ′, I ′, A′, G′〉 be the classical
planning problem generated by Algorithm 1. Π admits a so-
lution iff so does Π′.

Experimental Results
Our experimental analysis compares the performance of
planning using TCORE with other five state-of-the-art ap-
proaches handling trajectory constraints. Specifically, we
consider the last available version of three native PDDL3.0
planners, i.e., SGPLAN (Hsu et al. 2007), OPTIC (Benton,
Coles, and Coles 2012), MIPS-XXL (Edelkamp, Jabbar, and
Nazih 2006), and two compilation-based approaches sup-
porting LTL constraints over finite traces, i.e., the expo-
nential (LTL-E) and the polynomial (LTL-P) compilation by
Baier and McIlraith (2006) and Torres and Baier (2015),
respectively. We will refer to MIPS-XXL simply as MIPS.
TCORE is implemented in Python, and it can be downloaded
from https://bit.ly/3sSbFCU. The compiled problems gener-
ated by TCORE, LTL-E and LTL-P were solved using LAMA
(Richter and Westphal 2010).

Our benchmark suite involves domains from the 5th Inter-
national Planning Competition (https://lpg.unibs.it/ipc-5/).
Since the instances of the competition did not contain qual-
itative state-trajectory constraints, but only preferences, we
generated a new set of instances as follows. For each in-
stance with preferences, we ran some planners support-
ing preferences, i.e. LAMA and Mercury (Domshlak, Hoff-
mann, and Katz 2015) with the compiler by Percassi and
Gerevini (2019), and LPRPG-P by Coles and Coles (2011),
and we collected all plans generated within 30 CPU minutes.

48

Figure 1: Coverage (y-axis) versus planning time (x-axis).

Out of this set, we took up to 5 plans (those with the larger
number of satisfied preferences) and, for each of them, we
generated a new problem instance having all satisfied pref-
erences converted in qualitative state-trajectory constraints.
This gave us a grand total of 416 instances: 79 for Trucks,
90 for Openstack, 55 for Storage, 94 for Rover, and
98 for TPP. For LTL-E and LTL-P, we used the most effec-
tive translation from PDDL3.0 to LTL among those provided
by the tools, and by De Giacomo et al. (2014).

We measured the number of instances solved by each sys-
tem in each domain (coverage) and the CPU time spent to
find a solution, if any. For compilation-based approaches,
CPU time is compilation time plus planning time. All exper-
iments ran on an Xeon Gold 6140M 2.3 GHz, with time and
memory limits of 1800s and 8GB, respectively.

Domain TCORE LTL-E LTL-P OPTIC MIPS SGPLAN
Rover (94) 92 35 0 33 11 0
TPP (98) 22 58 1 9 1 1
Trucks (79) 78 41 0 67 29 35
Openstack (90) 88 78 10 89 89 0
Storage (55) 31 23 8 30 13 14
Total (416) 311 235 19 228 143 50

Table 1: Coverage of the considered systems. In parenthesis, the
number of benchmark instances for a given domain.

Coverage Analysis. Table 1 gives an overall picture of the
coverage obtained by all systems. The system obtaining the
highest coverage is TCORE, which solved more instances
than the competitors in three out of 5 domains, and achieved
a substantially higher total coverage. The performance of
TCORE in Rover is remarkable; here TCORE solves three
times more the instances solved by LTL-E (the second best
performer). Yet, there seems to be some complementary be-
tween LTL-E and TCORE. Indeed, in TPP, LTL-E achieves
the best coverage, overcoming TCORE by a substantial mar-
gin. Since TCORE is tailored for PDDL3.0, one could expect
that it performs always better against both LTL-E and LTL-P.
TCORE works on the ground representation of the problem,
and this requires to ground actions upfront before compiling
them. In TPP, TCORE did not manage to even trespass the
grounding phase for several instances, causing a substantial
drop in coverage. Instead, LTL-E works directly on the first-
order representation, and this turned out to be very prolific.
To gain more insights on the difference of performance be-
tween LTL-E and TCORE, we measured the number of atoms
and effects generated by these two compilations. Our find-
ings show that the grounded instances generated by TCORE

Figure 2: Constraints grouped by type across all domains.

Figure 3: Left: TCORE (y-axis) vs OPTIC (x-axis); Right:
TCORE (y-axis) vs LTL-E (x-axis). Points represent CPU sec-
onds for the two systems over all instances.

contain always less atoms and effects than those generated
by LTL-E; TCORE generates from 20.6% to 86.9% less atoms
than LTL-E, and the difference of effects is from 1 to 3 orders
of magnitude. Finally, we related performance with number
and types of constraints (Fig. 2); the PDDL3.0 native systems
(OPTIC, SGPLAN) provide poor performances over instances
involving LTCs, but they perform better when the constraints
are only ITCs (e.g., in Openstack for OPTIC).
CPU-time Analysis. Figure 1 analyzes the relationship be-
tween coverage and time allotted to each planner. The
compilation-based approaches tend to increase coverage
more slowly than the other approaches; this is due to the
time that they spent for compilation. Native PDDL3.0 sys-
tems achieve high coverage in a handful of seconds, with
SGPLAN exacerbating this trend to the point that its highest
coverage is reached only after 4 seconds. Figure 3 shows a
pairwise CPU-time comparison between the two best per-
forming compilation-based methods, and between TCORE
and OPTIC. TCORE is generally faster than LTL-E (which in
turns dominates LTL-P), while it is slower than OPTIC due
to the overhead caused by the compilation. Yet OPTIC ex-
ceeds the time limit for many instances (in Rover, TPP and
Trucks) that are solved by TCORE.

Conclusions
We have presented a new method for compiling away the
class of PDDL3 qualitative state-trajectory constraints. The
compilation exploits the structure of the problem actions to
obtain an encoding that is more efficient than those relying
upon explicit constructions of automatons for the general
class of LTL-based constraints. Experimental results show
that planning through our method can achieve better per-
formance also with respect to planners that natively support
PDDL3. Future work includes investigating the compilation
of trajectory constraints in metric-temporal domains.

49

Acknowledgments
We thank all the anonymous reviewers for their helpful com-
ments.

References
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence 173(5-6): 593–
618.
Baier, J. A.; and McIlraith, S. A. 2006. Planning with First-
Order Temporally Extended Goals using Heuristic Search.
In AAAI, 788–795. AAAI Press.
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. In ICAPS. AAAI.
Chen, Y.; Wah, B. W.; and Hsu, C. 2006. Temporal Plan-
ning using Subgoal Partitioning and Resolution in SGPlan.
J. Artif. Intell. Res. 26: 323–369.
Coles, A. J.; and Coles, A. 2011. LPRPG-P: Relaxed Plan
Heuristics for Planning with Preferences. In ICAPS. AAAI.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black
planning: A new systematic approach to partial delete relax-
ation. Artif. Intell. 221: 73–114. doi:10.1016/j.artint.2014.
12.008. URL https://doi.org/10.1016/j.artint.2014.12.008.
Edelkamp, S. 2006. On the Compilation of Plan Constraints
and Preferences. In Proceedings of the Sixteenth Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2006, 374–377.
Edelkamp, S.; Jabbar, S.; and Nazih, M. 2006. Large-scale
optimal PDDL3 planning with MIPS-XXL. 5th Interna-
tional Planning Competition Booklet (IPC-2006) 28–30.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimental
evaluation of the planners. Artificial Intelligence 173(5-6):
619–668.
Giacomo, G. D.; Masellis, R. D.; and Montali, M. 2014.
Reasoning on LTL on Finite Traces: Insensitivity to Infinite-
ness. In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, 1027–1033.
Giacomo, G. D.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In IJCAI,
854–860. IJCAI/AAAI.
Hsu, C.; Wah, B. W.; Huang, R.; and Chen, Y. 2007. Con-
straint Partitioning for Solving Planning Problems with Tra-
jectory Constraints and Goal Preferences. In IJCAI, 1924–
1929.
Percassi, F.; and Gerevini, A. E. 2019. On Compiling
Away PDDL3 Soft Trajectory Constraints without Using
Automata. In Proceedings of the Twenty-Ninth International
Conference on Automated Planning and Scheduling, ICAPS
2019, 320–328.
Pnueli, A. 1977. The Temporal Logic of Programs. In
FOCS, 46–57. IEEE Computer Society.

Richter, S.; and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39: 127–177.
Rintanen, J. 2008. Regression for Classical and Nondeter-
ministic Planning. In ECAI, volume 178 of Frontiers in Ar-
tificial Intelligence and Applications, 568–572. IOS Press.
Torres, J.; and Baier, J. A. 2015. Polynomial-Time Refor-
mulations of LTL Temporally Extended Goals into Final-
State Goals. In Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2015, 1696–1703.
Wright, B.; Mattmüller, R.; and Nebel, B. 2018. Compiling
Away Soft Trajectory Constraints in Planning. In Principles
of Knowledge Representation and Reasoning: Proceedings
of the Sixteenth International Conference, KR 2018, 474–
483. AAAI Press.

50

