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Abstract

Traditionally, planning provides for execution plans as se-
quences of actions with preconditions and effects. Execution
monitoring identifies failure conditions when the precondi-
tions of an action do not match the state. Interestingly, plan-
ning proceeds by consuming a given initial state and aban-
doning reasoning about any facts not true in that state. In
this paper, we define opportunities as such missing facts, and
contribute an algorithm to compute them and augment a plan
for execution with them. We then introduce a new execution
opportunity monitoring that focusedly checks for these op-
portunities at each execution state. Opportunistic replanning
proceeds now from the new state including the detected op-
portunities.

Introduction
Planning deals with the task of generating sequences of ac-
tions, plans, to be later executed. The execution system ap-
plies each action in the sequence and also monitors the new
states. When executing plans in dynamic environments, the
monitoring system checks whether the state after execut-
ing any action matches the one expected from the domain
model. This usually entails checking if preconditions of fu-
ture actions still hold. If there is a mismatch, a replanning
system generates a new plan from the current state. We will
call this approach replanning-F, as replanning from fail-
ure (Yoon, Fern, and Givan 2007).

A key observation is that planners focus on the given ini-
tial state. Therefore, they do not reason about alternative sce-
narios. Some current planners even remove from the search
space those actions whose preconditions are static facts and
do not hold in the initial state (Richter and Westphal 2010).
However, in dynamic environments these facts could be-
come true during execution. So, if planners would reason
about them, they could find better plans than the one in ex-
ecution. In this paper, we define such facts as opportunities.
If they are found during execution, we advocate for a second
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type of replanning, replanning-O, as replanning from oppor-
tunities. The execution will change the plan in execution if
the plan taking into account the opportunities is better than
the remaining part of the current plan. This can be seen as a
special case of counterfactual reasoning (Pearl 2013; Silva,
Melo, and Veloso 2018).

Example. Let us present the DOCUMENTS domain. Sup-
pose a robot needs to hold some documents. They are stored
inside a briefcase that it carries, but initially it does not
have the key of the briefcase. Fortunately, there is a copy
of each document, but they are distributed across several
rooms. So, the initial plan is to move around rooms to grab
the copies of the documents. Now, suppose that at any time
the robot finds the key. Since it is not a failure of the plan in
execution, replanning-F monitoring systems would continue
with the execution of the current plan. However, the key (op-
portunity) allows to compute a better plan by opening the
briefcase with the key, avoiding to move around offices (us-
ing the grab-with-key action). So, in replanning-O, the
planning module would first notice while searching that hav-
ing the key might be relevant to generate a new plan. Then,
the monitoring module could check at each action execution
step whether it has the key. If so, it would replan; not because
it is a failure of the current plan, but because it found an op-
portunity to generate a better plan. The briefcase might be
empty, so it has to replan to see if there is a better plan. If a
better plan is found, it can shift to the new plan.

Many real-world domains have opportunities as defined
here. Finding an item in the current shop, discovering a gas
station while driving, getting access to a new database, or
someone letting us use a tool instead of buying it.

The main contribution of this paper is a domain- and
planner-independent technique to automatically: extract op-
portunities when planning; augment the plan with them; and
monitor the action execution for performing replanning-O if
appropriate. The paper also includes experiments as an illus-
tration on the benefits it can provide to plans execution.

Background
A classical planning task is a tuple Π = {F,A, I,G}, where
F is a set of propositions, A is a set of instantiated actions,
I ⊆ F is an initial state, and G ⊆ F is a set of goals. Each
action a ∈ A is described by a set of preconditions (pre(a))
and a set of effects (eff(a)). We assume the standard seman-
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tics for preconditions, effects and applicability of actions.
Each action might incur a cost, c(a). The solution to a plan-
ning task is a plan; a sequence of actions π = (a1, . . . , an)
such that if applied in order from the initial state I would
result in a state sn, where goals are true, G ⊆ sn. Plan cost
is commonly defined as: C(π) =

∑
ai∈π c(ai). Now, we

define general opportunity and Plan-Based opportunities.

Definition 1 (General opportunity). Given a planning task
Π = {F,A, I,G}, a fact o ∈ F is an opportunity if: (i)
o 6∈ I; and (ii) it is static (no action can add or delete it,
@ai ∈ A, o ∈ eff(a)).

Definition 2 (Plan-Based opportunity). Given a planning
task Π = {F,A, I,G}, and a plan π that solves Π, an op-
portunity o ∈ F is a Plan-Based opportunity if:
∃a ∈ A, a 6∈ π, o ∈ pre(a), ∃a′ ∈ π, e ∈ eff(a) ∩ eff(a′).

A Plan-Based opportunity is a static precondition of an
action a not in the plan that achieves an effect that is also
achieved by some other action a′ in the plan. So, if o would
be true, the planner could use a instead of a′ in the plan.

Computation of Opportunities
A way to obtain opportunities would be to compute them
while the planner searches for a solution. We could store
as opportunities the static literals that were checked against
the state and did not hold. This is easy to obtain from old
backward-chaining planners (Veloso et al. 1995; Penberthy
and Weld 1992), but hard to obtain from current planners.
Modern planners prune actions at the pre-processing step by
removing ground actions if they have as a precondition some
fact that is static and it is not true in I .

Plan-based Opportunities
PLAN-BASED-OPPORTUNITIES, PBO, (Algorithm 1) first re-
gresses the goals through the plan. Then, it analyzes the ac-
tions that achieve any goal in the goal regression, and the
planner did not reason about them because they were not
part of the action set; they had at least one precondition that
is a static fact that was not true in I . Those preconditions
would be the opportunities.

The algorithm traverses the plan from the end backwards
in order to perform goal regression (step 3). For each goal g
in the regressed goals, if it is true in the initial state, the al-
gorithm removes the goal from the regressed goals (step 6).
Otherwise, it iterates over all grounded actions ga that could
achieve g (function ACHIEVERS(A, g) returns that set). If ga
was the one selected in that step of the plan (step 10), it adds
its preconditions to the regressed goals set. Otherwise, all
the static preconditions of ga that were not true in the initial
state are added to the opportunities of that action.

PBO stores opportunities with each action a in the plan,
O(a). Thus, when some action a in the plan is later executed,
monitoring only considers opportunities o ∈ O(a). This def-
inition of opportunities is quite restrictive, since replanning-
O will only be considered when some opportunity in O(a)
appears precisely when executing a. In order to make it more
general, we propagate opportunities back through the plan
(using function PROPAGATE-OPPORTUNITIES) by adding

Algorithm 1 PLAN-BASED-OPPORTUNITIES(Π, π)

Inputs: planning task Π = {F,A, I,G}, plan π
Outputs: opportunities vector O(a) (∀a ∈ π)

1: O ← 〈∅, ∅, . . . , ∅〉 |O| = |π|
2: regressed← G
3: π′ ←REVERSE(π)
4: while π′ not empty do
5: for all g ∈regressed do
6: if g ∈ I then
7: regressed←regressed\{g}
8: else
9: for all ga ∈ACHIEVERS(A, g) do

10: if ga = FIRST(π′) then
11: regressed←REGRESS(regressed,pre(ga))
12: else
13: for all p ∈ pre(ga) do
14: if p 6∈ I AND p is static then
15: O(ga)← O(ga) ∪ {p}
16: POP(π′)
17: O ←PROPAGATE-OPPORTUNITIES(O, π)
18: return O

each opportunity in O(ai) to O(ak), k = 1..i− 1, ∀ak ∈ π.
A key observation is that PBO is planner-independent, so we
do not have to modify the code of existing planners to com-
pute the opportunities. Also, PBO computes a bounded set of
opportunities that are directly relevant to the plan.

Figure 1: Three actions in the DOCUMENTS domain, a plan
and how the opportunity (has-key) is computed.

Example. Figure 1 shows an example of computing op-
portunities in a problem in the DOCUMENTS domain. There
are three rooms (r1 to r3), each room with a copy of one of
the three documents (d1 to d3) inside the briefcase. The goal
is to hold the three documents (or their copies). The plan
is in the bottom right of the figure. The last step achieves
the goal (holding d3) by using the grab action. An-
other action in the domain can achieve the same goal,
grab-with-key. However, it could not be used because
one of its preconditions, (has-key), is not true in the
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Algorithm 2 OPPORTUNITIESPLANEXECUTION(Π)

Inputs: planning task Π = {F,A, I,G}
Outputs: boolean (solved or not)

1: π ←PLAN(Π)
2: O ←PLAN-BASED-OPPORTUNITIES(Π, π)
3: s← I
4: while π not empty AND G 6⊆ s do
5: a←POP(π)
6: s′ ←EXECUTE(a,Π, O)
7: if NEEDREPLANNING(s′, π, a,O) then
8: π′, O ←PLANOPPORTUNITIES({F,A, s′, G}, π,O)
9: if π′ not empty then

10: π ← π′

11: s← s′

12: if G ⊆ s then
13: return True
14: else
15: return False

initial state. Algorithm 1 would find that alternative and it
would define (has-key) as the only opportunity.

Replanning
Algorithm 2 redefines a planning-execution cycle. It takes
as input a planning task and returns a boolean indicating
whether the planning-execution cycle achieved the goals or
not. The algorithm first computes a plan through function
PLAN. Then, it computes opportunities based on that plan
according to Algorithm 1.

EXECUTE executes the action and returns the new sensed
state. We have implemented an environment that adds oppor-
tunities.1 In the case of PBO, the system only needs to know
whether any of the pre-computed opportunities changed its
truth value. So, there is no need to sense the complete state;
only, the truth value of those opportunities. We do not con-
sider replanning-F as it is orthogonal to this work. In case
PBO is combined with replanning-F, it would check for the
opportunities plus the preconditions that are part of the goal
regression. NEEDREPLANNING checks whether it has found
an opportunity. In that case, it replans and checks whether it
should change the remaining part of the plan in execution.

Algorithm 3 describes PLANOPPORTUNITIES that com-
putes a plan from the new state. If the new plan’s cost is
better than the previous one, it computes a new set of oppor-
tunities, and returns the new plan and set of opportunities.

Example. Table 1 shows what happens if the robot finds
the key before executing the second step. It would replan,
and find that the new plan (right column) is better than the
initial one (left column), so it changes to the new plan.

Illustrative Example
This section presents an example of how the algorithm
works. We compare the PBO algorithm against a baseline,
that replans when there is any change in the environment,
Replan When Change (RWC). In this environment, the robot

1Through the EXECUTE function.

Algorithm 3 PLANOPPORTUNITIES(Π, π,O)

Inputs: planning task Π = {F,A, s′, G}, current plan π,
opportunities O

Outputs: plan π, opportunities O
1: π′ ←PLAN(Π)
2: if π′ not empty AND C(π′) < C(π) then
3: π ← π′

4: O ←PLAN-BASED-OPPORTUNITIES(Π, π′)
return π,O

Initial plan New plan

(grab d1 r1)
(move r1 r2) (grab-with-key d2)
(grab d2 r2) (grab-with-key d3)
(move r2 r3)
(grab d3 r3)

Table 1: Example of execution where the key is found before
executing the second step in the initial plan (left). Then, it
changes to the new remaining plan (right).

sees one new object everytime it executes an action. As ex-
plained before, PBO only replans when it finds an opportu-
nity computed with Algorithm 1. There is also a big differ-
ence on how these algorithms sense the environment. RWC
would sense all the new state, while PBO would only sense
whether any fact in O changed its truth value. We varied the
step at which the opportunity becomes true to analyze the
effect of finding it sooner or later, using two schemes: fixed
(at steps 1, 5 and 10); and proportional (10%, 50%, and 90%
of the original plan length).

We used as planner LAMA-FIRST, the first iteration of
LAMA (Greedy best-first search with a combination of the
FF and the landmark count heuristics) (Richter and Westphal
2010) implemented in Fast Downward (Helmert 2006).

The DOCUMENTS domain has been previously defined in
this paper. The grab actions have a cost of 1, and the move
action has a cost of 10. We generated problems with increas-
ing number of documents and rooms from 5 to 40. Experi-
ments were performed on a MacBook Pro, with processor
2.4 GHz Intel Core i5, 4Gb of RAM. We set a time bound
for the complete planning-execution cycle of 1800s, a time
bound for each planning episode of 500s and a time bound
for each time it computes opportunities of 300s.

Results
Figures 2(a) and (b) show the ratio between the total time
and the initial planning time for PBO and RWC. (a) shows
the fixed steps and (b) the proportional steps. The problems
are on the x-axis, while the different lines correspond to the
different values of the steps where an opportunity appears.
Similarly, Figures 2(c) and (d) show the ratio between the
total cost of the executed actions by PBO and the initial plan
cost. Smaller values are better.

Time to solve. The ratio of the total time PBO spends with
respect to the initial planning time is an order of magnitude
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x-axis: Problem, y-axis: Ratio total time x-axis: Problem, y-axis: Ratio cost of executed actions
(a) (b) (c) (d)

Figure 2: Ratio between total and initial planning times for (a) fixed and (b) proportional appearance of opportunities. Ratio
between the total cost of the executed actions and the initial plan cost for (c) fixed and (d) proportional.

less than RWC even if PBO has to add the time to compute the
opportunities. The main differences between PBO and RWC
are: (1) PBO performs focused monitoring, so it will only
replan if an opportunity appeared; and (2) once all possible
opportunities have appeared, PBO does not replan again. In-
stead, RWC replans at each time step something changes. If
generating a plan is expensive, RWC spends a huge amount
of time replanning. Also, there is very little influence on the
computation time of the steps where the opportunity arises.

Execution cost. The difference in execution cost for PBO
and RWC is negligible, so we only show the values for PBO.
When the opportunity appears early (fixed), it gets a reduc-
tion on 80-90% on the cost independently on how difficult
the problem is. The later it appears, the benefit on cost in-
creases with the difficulty of the problem for fixed (Fig-
ure 2(c)). For proportional (d), the cost ratio is proportional
to 10%, 50% and 90% with slight variations due to odd val-
ues of these percentages and the different cost of actions.

Related Work
Opportunities have been studied in cognitive science and
early work in planning (Birnbaum and Collins 1984; Seifert
and Patalano 2001; Schank and Abelson 1977). In cogni-
tive science, the definition of opportunities was domain-
dependent and performed by humans. The driver for op-
portunities was the pending goals that were associated with
cues. In our case, opportunities come from goal regression.

Recent approaches have used different definitions of op-
portunities: pre-defined goals that could be achieved in case
of underused resources or resources uncertainty (Cashmore
et al. 2017; Coles 2012; Horvitz, Koch, and Subramani
2007); new goals to be pursued (with little or no re-planning
capabilities) (Lawton and Domshlak 2004); or visiting some
specific waypoints in robotics applications (Thakur et al.
2013). Other replan for new goals requests (Haigh and
Veloso 1998) or to anticipate new goals (Fuentetaja, Borrajo,
and de la Rosa 2018). Our approach is domain-independent
and defines opportunities as state facts, not goals.

A related task consists of explaining why a plan
failed (Göbelbecker et al. 2010; Klenk, Molineaux, and
Aha 2013). These explanations can yield changes to the
goals, state or actions. The algorithms used to compute those

changes are able to capture the relevant facts from analysis
of the planning task similarly to our algorithms. However,
they: only compute excuses when the plan failed; use the
causal and domain transition graphs instead of doing plan-
based goal regression; and do not have a plan-execution loop
that considers the opportunities to improve execution.

Others have challenged assumptions made during plan-
ning and planned with different levels of detail (Trevizan and
Veloso 2014; Zickler and Veloso 2010; Martı́nez, Fernández,
and Borrajo 2016), learned to better match the environ-
ment (Jiménez, Fernández, and Borrajo 2013), performed
rationale-based monitoring (Veloso, Pollack, and Cox 1998)
or checked for optimality (Fritz and McIlraith 2007).

Conclusions
The main contributions of this paper are algorithms to com-
pute opportunities, and to focusedly monitor for those op-
portunities. We show through experiments in an illustrative
domain that opportunities can yield to significant improve-
ments on planning-execution time over replanning when
something changes in the environment, and cost/length of
executed plans over no replanning.
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