
Exploiting Cyclic Dependencies in Landmark Heuristics

Clemens Büchner, Thomas Keller, Malte Helmert
University of Basel, Switzerland

{clemens.buechner, tho.keller, malte.helmert}@unibas.ch

Abstract
Landmarks of a planning task denote properties that must
be satisfied by all plans. Existing landmark heuristics exploit
that each landmark must be achieved at least once. However,
if the orderings between the landmarks induce cyclic depen-
dencies, one of the landmarks in each cycle must be achieved
an additional time. We propose two novel heuristics for cost-
optimal planning that consider cyclic dependencies between
landmarks in addition to the cost for achieving all landmarks
once.
We show that our heuristics dominate the minimum hitting
set solution over any set of landmarks as well as h+ if all
delete-relaxation landmarks are considered. An experimen-
tal evaluation on benchmarks from the International Planning
Competition shows that exploiting cyclic dependencies can
lead to improved heuristics.

Introduction
Properties that are shared by every solution of a classical
planning task are called landmarks. Early work computed
landmarks along with an ordering between the landmarks
and used landmarks and landmark orderings to decompose
the planning task into several smaller subtasks with the land-
marks as subgoals (Porteous, Sebastia, and Hoffmann 2001;
Hoffmann, Porteous, and Sebastia 2004).

A crucial weakness of these approaches is that they are in-
complete. The LAMA planner (Richter and Westphal 2010),
winner of the satisficing track of the International Planning
Competition (IPC) 2008, was the first planning system that
guides a (path-dependent) search algorithm with a heuris-
tic that is obtained from landmarks. The landmark-count
heuristic computes a set of ordered landmarks for the ini-
tial state and keeps track of the number of landmarks that
remain to be achieved on every path. Since multiple land-
marks can be achieved by a single action, this heuristic is
inadmissible and hence not suited for optimal planning.

Karpas and Domshlak (2009) applied the idea of cost par-
titioning (Katz and Domshlak 2008; Yang et al. 2008) to
landmarks to obtain an admissible version of the landmark-
count heuristic, and Bonet and Helmert (2010) showed that
the heuristic value of an optimal cost partitioning over a
given set of landmarks is equal to the linear program (LP)

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

relaxation of the integer program (IP) that computes the min-
imum hitting set (MHS) over the landmarks.

While the MHS heuristic is the best possible admissi-
ble heuristic that only takes the landmarks into account, it
can be improved by considering the orderings between the
landmarks. One source of information that can be derived
from orderings are cyclic dependencies between landmarks.
While existing landmark heuristics exploit that each land-
mark must be achieved at least once, each cyclic dependency
of landmarks implies that one of the landmarks in the cycle
must be achieved at least twice. Paul and Helmert (2016)
exploit this observation for the game of FREECELL and ob-
tain heuristic values close to the perfect heuristic. Later, Paul
et al. (2017) found that the same idea can also be used to
solve all instances of the LOGISTICS domain of IPC 1998
and 2000.

In this paper, we generalize the idea to domain-
independent planning. After introducing the required back-
ground, we describe how the MHS IP can be strengthened
by the addition of cyclic landmark constraints and show that
the resulting heuristic dominates the MHS heuristic as well
as h+ if the set of landmarks consists of all delete-relaxation
landmarks. We further strengthen this result by presenting
another heuristic that additionally takes the type of ordering
relation into account. As the number of cycles can be expo-
nential in the number of landmarks, it is not tractable to pre-
compute all cycles. We therefore propose an algorithm that
is inspired by approaches for implicit hitting set problems
(Chandrasekaran et al. 2011): we solve an IP or LP to cover
a small (initially empty) set of cycles, generate a cycle not
covered by the solution, add the corresponding cyclic land-
mark constraint, and iterate until no more uncovered cycles
exist. We show the potential of considering cyclic dependen-
cies in an experimental evaluation on the IPC 1998–2018
benchmark suite.

Background
Classical Planning We consider classical planning in the
SAS+ formalism (Bäckström and Nebel 1995), where a
planning task is given as a 4-tuple T = 〈V , s0, G,A〉. V
is a finite set of finite-domain state variables v with associ-
ated domain dom(v). An atom v 7→ d is a value assignment
of value d ∈ dom(v) to v ∈ V . A partial variable assign-
ment is a set of atoms, each for a different variable. A state

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

65

is a variable assignment defined on all variables v ∈ V . We
use set notation such as v 7→ d ∈ s and function notation
such as s(v) = d interchangeably. s0 is the initial state, and
the goal G is a partial variable assignment. A is a finite set
of actions a = 〈pre, eff, cost〉 (also called operators), where
precondition pre(a) and effect eff (a) are partial variable as-
signments and cost(a) ∈ R+

0 is the cost of a.
An action a ∈ A is applicable in state s if s(v) = d for

all v 7→ d ∈ pre(a). Applying an applicable a in s results
in the state s′ = sJaK where s′(v) = d for all v 7→ d ∈
eff (a) and s′(v) = s(v) otherwise. An action sequence π =
〈a1, . . . , an〉 is applicable in s = s1 if si+1 = siJaiK for all
i = 1, . . . , n and each action ai is applicable in si. The state
that results from applying an applicable π in s is written as
sJπK. An s-plan is an action sequence π such thatG ⊆ sJπK.
The cost of an s-plan π = 〈a1, . . . , an〉 is the sum over the
action costs of the sequence: cost(π) =

∑n
i=1 cost(ai). An

s-plan is optimal if it has minimal cost among all s-plans.

Landmarks and Orderings A disjunctive action land-
mark (landmark for short) for a state s is a set of actions
L ⊆ A such that every s-plan contains an action a ∈ L.
The first occurrence of a landmark L in an s-plan π =
〈a1, . . . , an〉 is i iff ai ∈ L and aj /∈ L for all 1 ≤ j < i.
The last occurrence of L in π is i iff ai ∈ L and aj /∈ L
for all i < j ≤ n. We write firstL(π) = i if the first oc-
currence of L in π is i, and lastL(π) = i if i is the last
occurrence. Furthermore, the number of occurrences of L in
π is occL(π) =

∑n
i=1[ai ∈ L] ([·] denote Iverson brackets).

A landmark ordering denotes a dependency between two
landmarks. Given landmarks L and L′ for a state s, there is a
strong ordering L →s L

′ between L and L′ iff firstL(π) <
firstL′(π) for all s-plans π, and there is a weak ordering
L →w L′ between L and L′ iff firstL(π) < lastL′(π)
for all s-plans π. Observe that every strong ordering also
implies a weak ordering since firstL′(π) ≤ lastL′(π). We
say that an action sequence π = 〈a1, . . . , an〉 satisfies
such a strong (weak) ordering iff firstL(π) < firstL′(π)
(firstL(π) < lastL′(π)), and that it violates it otherwise.

Our definitions of ordering types differ from the orderings
that have been described by Hoffmann, Porteous, and Se-
bastia (2004). Natural, necessary and greedy necessary or-
derings are strong orderings. Reasonable orderings between
L and L′ guarantee firstL(π) ≤ lastL′(π), but unlike with
weak orderings, the inequality is not necessarily strict.

Landmark Graph Given a set of landmarks L and a set
of landmark orderingsO for state s, the corresponding land-
mark graph G = 〈L,O〉 is a directed graph with a vertex for
every landmark inL and an edge for every ordering inO. An
edge from nodeL toL′ is labeled with the type t ∈ {s,w} of
the corresponding ordering L →t L

′ (i.e., strong or weak).
A path in G is a chain of edges π = L1 →t1 · · · →tn Ln+1

such that Li →ti Li+1 ∈ O for 1 ≤ i ≤ n. A path
is a cycle if L1 = Ln+1, and a cycle is elementary if
Li 6= Lj for all pairs 1 ≤ i < j ≤ n. Given a cycle
c = L1 →t1 · · · →tn Ln+1, the set of landmarks in c is

L1 = {a1}

L2 = {a2}

L3 = {a3}

L4 = {a2, a4}

c1 c2
s

w

w

w

s

Figure 1: Example landmark graph.

L(c) = {Li | 1 ≤ i ≤ n}, and the set of orderings is
O(c) = {Li →ti Li+1 | 1 ≤ i ≤ n}. Two elementary cy-
cles c1 and c2 are distinct if one is not a cyclic permutation
of the other (i.e., O(c1) 6= O(c2)).

Figure 1 shows a landmark graph with four landmarks
L1 = {a1}, L2 = {a2}, L3 = {a3}, and L4 = {a2, a4}.
The orderings in the landmark graph create two elementary
cycles c1 = L1 →s L2 →w L1 and c2 = L2 →w L3 →w

L2. The cycle c′1 = L2 →w L1 →s L2 is not distinct from
c1, and the cycle c = L1 →s L2 →w L3 →w L2 →w L1

is not elementary, as it is a combination of the elementary
cycles c1 and c2 that includes L2 twice.

Landmark Heuristic Most often in planning, landmarks
are used to compute heuristic values. The cost of a minimum
hitting set is the most accurate admissible heuristic that can
be derived from a set of disjunctive action landmarks when
no further information is available. Let X be a set, F =
F1, . . . , Fn ⊆ 2X be a family of subsets of X , and c : X →
R+

0 be a cost function forX . A hitting set is a subsetH ⊆ X
that “hits” all subsets in F , i.e., H ∩ F 6= ∅ for all F ∈ F .
The cost of H is

∑
x∈H c(x). A minimum hitting set (MHS)

is a hitting set with minimal cost.
The cost of an MHS over a set of landmarks L ⊆ 2A cor-

responds to the objective value of the MHS integer program
which is given as follows:

min
∑
a∈A

Yacost(a) s.t. (1)

Ya ≥ 0 for all a ∈ A and (2)∑
a∈L

Ya ≥ 1 for all L ∈ L (3)

Note that Ya = 0 or Ya = 1 in all optimal solutions of
the MHS IP.1 An MHS can then be constructed from the IP
solution as the set of all actions a ∈ A with Ya = 1.

Definition 1. Landmark heuristic
Let T be a planning task, s be a state of T , and L be a set
of landmarks for s. The landmark heuristic hLM for s and L
is the objective value of the MHS IP over L.

Consider the example landmark graph for a state s from
a unit cost planning task in Figure 1, ignoring all ordering

1There are optimal solutions with Ya > 1 for some a in the
presence of 0-cost actions, but setting each such Ya to 1 instead is
still optimal.

66

relations (i.e., all edges) for now. We have hLM(s) = 3, as
Ya1 = Ya2 = Ya3 = 1 in every solution of the MHS IP
because of the landmark constraints for L1, L2, and L3, and
Ya4

= 0 in an optimal solution as the landmark constraint
for L4 is already satisfied with Ya2

= 1.
The landmark heuristic is an example of an operator-

counting heuristic (Pommerening et al. 2014). In general,
operator-counting heuristics are defined as the objective
value of an IP with the same variables Ya (and possibly ad-
ditional auxiliary variables), the same objective function as
in Definition 1, the basic constraints Ya ≥ 0, and usually
additional constraints.2

These additional constraints are called operator-counting
constraints, and they must guarantee that for every plan π,
setting Ya to the number of occurrences of a in π satis-
fies the constraint. As long as this condition is satisfied,
all operator-counting heuristics are admissible. In particu-
lar, this means that operator-counting heuristics can be im-
proved by adding additional operator-counting constraints.
Besides landmarks, operator-counting constraints can be de-
rived from network flow balance equations (Bonet 2013),
pattern databases (Pommerening, Röger, and Helmert 2013)
and abstract transition systems (Pommerening et al. 2014).

Cyclic Landmark Heuristic
We generalize the idea to exploit cyclic dependencies in
FREECELL (Paul and Helmert 2016) to domain-independent
planning. For each cycle in a given landmark graph, we can
deduce that at least one of the landmarks in the cycle must
occur twice to satisfy all of its orderings. This gives rise to
the following definition of cyclic landmark constraints.

Theorem 1. Cyclic landmark constraints
Let T be a planning task, s be a state of T , π be an s-plan
and c = L1 →t1 · · · →tn−1

Ln →tn L1 be a cycle in a
landmark graph for s.

The accumulated number of occurrences in π of all land-
marks in c must be at least n+ 1, i.e.,

n∑
i=1

occLi(π) ≥ n+ 1.

Proof. Every landmark in L(c) must occur in every s-plan
π, so occLi(π) ≥ 1 for all 1 ≤ i ≤ n, which implies∑n

i=1 occLi(π) ≥ n. We assume that π is an s-plan with∑n
i=1 occLi

(π) = n and derive a contradiction, from which
the claim follows.

Because all landmarks must occur at least once in π, by
the pigeonhole principle every landmark occurs exactly once
in π. Let L′ be a landmark that occurs first in π among all
landmarks from c, i.e. firstL′(π) ≤ firstL(π) for all L ∈
L(c). Since occL′(π) = 1, we get firstL′(π) = lastL′(π).
As L′ is part of cycle c, there is an L ∈ L(c) such that
L →w L′ ∈ O(c) (recall that every strong ordering implies
a weak ordering). By our choice of L′, the first (and only)
occurrence of L cannot be earlier than the first occurrence
of L′, i.e., firstL(π) ≥ firstL′(π) = lastL′(π). It follows that

2If the IP is infeasible, the heuristic value is ∞.

firstL(π) ≥ lastL′(π), which violates the ordering L →w

L′ ∈ O(c).

We apply this result by expressing the bound on the
number of occurrences of the landmarks of a cycle as
an operator-counting constraint. Combining this constraint
with the constraints of the landmark heuristic gives rise to
the cyclic landmark heuristic.

Definition 2. Cyclic landmark heuristic
Let T be a planning task with actions A, s be a state of T ,
G = 〈L,O〉 be a landmark graph for s, and C be a set of
cycles in G.

The cyclic landmark heuristic hcycle for s, G and C is the
objective value of the cyclic landmark IP:

min
∑
a∈A

Yacost(a) s.t. (4)

Ya ≥ 0 for all a ∈ A (5)∑
a∈L

Ya ≥ 1 for all L ∈ L and (6)

∑
L∈L(c)

∑
a∈L

Ya ≥ |L(c)|+ 1 for all c ∈ C. (7)

Consider again the example landmark graph in Figure 1,
this time ignoring only the types of the ordering relations
(i.e., the transition labels). It still holds that Ya1

, Ya2
and

Ya3
must be set to at least 1 in all solutions to satisfy the

landmark constraints for L1, L2, and L3, and Ya4
= 0 in

an optimal solution. Every solution must additionally sat-
isfy the cyclic landmark constraints Ya1 + Ya2 ≥ 3 and
Ya2 + Ya3 ≥ 3. An optimal solution has Ya2 = 2 because
a2 occurs in both cyclic landmark constraints, which yields
a heuristic value of hcycle(s) = 4.

Note that a feasible solution for the cyclic landmark IP
always exists in solvable planning tasks: setting Ya = 2 for
all a ∈ A satisfies all constraints of the IP. Because it is an
operator-counting heuristic, hcycle is admissible.

Theorem 2. Admissibility of hcycle
The cyclic landmark heuristic hcycle is admissible.

Proof. hcycle follows the template of an operator-counting
heuristic. Pommerening et al. (2014) show that all operator-
counting heuristics are admissible and that Constraints 5
and 6 are valid operator-counting constraints. Constraint 7
is an operator-counting constraint due to Theorem 1, noting
that

∑
a∈L Ya = occL(π) for all s-plans π when Ya is set

to the number of occurrences of a in π as required by the
operator-counting framework.

Because hcycle includes all operator-counting constraints
of hLM, it can never result in a worse heuristic estimate.

Theorem 3. Dominance of hcycle over hLM
Let s be a state of a planning task. Consider hLM and hcycle
using the same landmark graph for s.

Then hcycle(s) ≥ hLM(s). Furthermore, there are cases
where the dominance is strict.

67

A B C

#1

To C To B

Figure 2: Example logistics task with cyclic landmark de-
pendencies: in order to deliver both packages, the truck must
visit location B or C twice.

Proof. Dominance follows directly from Proposition 1 by
Pommerening et al. (2014).

As discussed above, Figure 1 shows a case where
hcycle(s) > hLM(s), proving that there are cases where the
dominance is strict.

Bonet and Helmert (2010) have shown that the landmark
heuristic is equal to h+ if the set of landmarks consists of
all sets of actions that are landmarks of the delete relaxation
(Hoffmann and Nebel 2001) of a planning task. Together
with Theorem 3 this leads to the following corollary.
Corollary 1. Dominance of hcycle over h+
Let T be a planning task, s be a state of T and G be a land-
mark graph for s over all delete-relaxation landmarks of s.

Then hcycle(s) ≥ h+(s). Furthermore, there are cases
where the dominance is strict.

Proof. Dominance follows directly from Theorem 3 and the
result of Bonet and Helmert (2010).

We show that there are cases where hcycle(s) > h+(s)
based on the LOGISTICS example depicted in Figure 2: two
packages need to be exchanged between locations B and C
by a truck which is initially stationed at a third location A.
The set of all delete-relaxation landmarks for the depicted
state contains the following (pairwise disjoint) disjunctive
action landmarks:

• landmarks Ld
B and Ld

C for driving to B and C,
• landmarks Ll

B and Ll
C to load packages at B and C, and

• landmarks Lu
B and Lu

C to unload packages at B and C.

Each package induces a weak ordering Ld
o →w Ld

t because
it must be loaded into the truck at its origin o before it can
be unloaded at its target location t. With C = {Ld

B →w

Ld
C →w Ld

B}, we have hcycle(s) = 7 > 6 = h+(s).

Strong Cyclic Landmark Heuristic
In the previous section, we enhanced the landmark heuristic
with constraints that take into account the existence of land-
mark orderings. In this section, we strengthen these cyclic
landmark constraints by additionally considering the type of
ordering (weak or strong).
Theorem 4. Strong cyclic landmark constraints
Let T be a planning task, s be a state of T , π be an s-plan
and c = L1 →t1 · · · →tn−1

Ln →tn L1 be a cycle in
a landmark graph for s. Let Lw(c) = {L′ | L →w L′ ∈

O(c)} be the set of landmarks on the right-hand side of a
weak ordering in c.

The accumulated number of occurrences in π of all land-
marks in Lw(c) must be at least |Lw(c)|+ 1, i.e.,∑

L∈Lw(c)

occL(π) ≥ |Lw(c)|+ 1.

Proof. If Lw(c) = ∅, the inequality simplifies to the impos-
sible 0 ≥ 1. In this case c is a cycle consisting only of strong
orderings. Because strong orderings are transitive (which is
immediate from their definition), the landmarks on the cycle
are strongly ordered before themselves, which is impossible
to satisfy. Hence, no s-plan exists and 0 ≥ 1 vacuously holds
for all s-plans π.

Otherwise, c contains at least one weak ordering. If all or-
derings in c are weak, the result follows from Theorem 1.
(Note that for cycles that only consist of weak orderings,
both theorems make identical claims.) Otherwise, c must
contain a strong ordering cyclically followed by a weak or-
dering: L →s L

′ and L′ →w L′′. Hence, for every s-plan π
we have firstL(π) < firstL′(π) and firstL′(π) < lastL′′(π),
which implies firstL(π) < lastL′′(π) and therefore L →w

L′′. We can thus contract the cycle by replacing L →s L
′

and L′ →w L′′ with L →w L′′, which reduces the num-
ber of strong orderings by one and does not change the set
Lw(c). By iterating the argument, we eventually arrive at the
case where all orderings are weak.

The strong cyclic landmark heuristic corresponds to the
landmark heuristic enhanced with strong cyclic landmark
constraints.

Definition 3. Strong cyclic landmark heuristic
Let T be a planning task with actions A, s be a state of T ,
G = 〈L,O〉 be a landmark graph for s, and C be a set of
cycles in G.

The strong cyclic landmark heuristic hstrong for s, G and
C is the objective value of the strong cyclic landmark IP:

min
∑
a∈A

Yacost(a) s.t. (8)

Ya ≥ 0 for all a ∈ A (9)∑
a∈L

Ya ≥ 1 for all L ∈ L and (10)

∑
L∈Lw(c)

∑
a∈L

Ya ≥ |Lw(c)|+ 1 for all c ∈ C. (11)

Consider once more the example from Figure 1, this time
also taking into account the ordering types. To satisfy the
landmark constraints, an optimal solution must set Ya1 , Ya2

and Ya3 to at least 1. The strong cyclic landmark constraint
for cycle c1 = L1 →s L2 →w L1 cannot be satisfied by
setting Ya2 = 2 as it was the case in the cyclic landmark
heuristic as L2 is reached via a strong ordering. The con-
straint can hence only be resolved by setting Ya1

= 2, and
it is therefore not possible to satisfy both strong cyclic land-
mark constraints by setting the same operator count to 2. As
a result, we have hstrong(s) = 5.

68

Theorem 5. Admissibility of hstrong
The strong cyclic landmark heuristic is admissible.

Proof. The same argument as in Theorem 2 applies, but this
time we have to show that Constraint 11 is an operator-
counting constraint. This follows from Theorem 4 and the
observation

∑
a∈L Ya = occL(π) for all s-plans π when Ya

is set to the number of occurrences of a in π as required by
the operator-counting framework.

The heuristic values of the strong cyclic landmark heuris-
tic hstrong can never be lower than the heuristic values of
the cyclic landmark heuristic hcycle presented in the previ-
ous section.

Theorem 6. Dominance of hstrong over hcycle
Let T be a planning task, s be a state of T and G be a land-
mark graph for s.

Then hstrong(s) ≥ hcycle(s). Furthermore, there are
cases where the dominance is strict.

Proof sketch. Constraints 10 and 11 imply Constraint 7, so
we can add Constraint 7 to the strong cyclic landmark IP
without changing its objective value. With this, dominance
follows from Proposition 1 by Pommerening et al. (2014).

As discussed above, Figure 1 shows a case where
hstrong(s) > hcycle(s), proving that there are cases where
the dominance is strict.

From Theory to Practice
The heuristics we describe in the preceding sections are hard
to compute in practice for several reasons: solving IPs is NP-
hard (Karp 1972), and the amount of elementary cycles in a
landmark graph can grow faster than exponentially in the
number of vertices (Johnson 1975). In this section we dis-
cuss how to make computing our heuristics feasible in prac-
tice.

LP-relaxation of integer programs It is possible to ap-
proximate an IP solution by solving the linear program with
the same objective function and set of constraints. This is
called the LP-relaxation, and it can be computed in polyno-
mial time. LP solutions may be real-valued whereas only
integer values are allowed in IP solutions. Pommerening
et al. (2014) show that the LP-relaxation of an operator
counting (IP) heuristic is also an admissible heuristic. Note
that the proofs for Theorems 3 and 6 do not assume integer-
valued solutions, and they are therefore also valid for the
LP-relaxations of the heuristics.

Generation of Ordered Landmarks Our contribution is
to exploit given landmarks and orderings; finding them is
an independent problem which we do not study in this pa-
per. Several methods for computing landmark graphs are de-
scribed in the literature (e.g., Richter, Helmert, and West-
phal 2008; Keyder, Richter, and Helmert 2010). These meth-
ods are designed to find fact landmarks for a state s: every
node in a landmark graph is associated with an atom v 7→ d,

and every s-plan must reach a state s′ where s′(v) = d. Ob-
viously, the orderings generated by these methods also order
fact landmarks rather than disjunctive action landmarks.

A fact landmark for atom v 7→ d induces a disjunctive ac-
tion landmark Lv 7→d that contains its possible achievers, i.e.,
Lv 7→d = {a ∈ A | v 7→ d ∈ eff (a)} (Karpas and Domsh-
lak 2009). We exploit this to construct the disjunctive action
landmark graph GL = 〈L,OL〉 from a set of fact landmarks
F and orderings OF over F , where

1. L contains a landmark Lv 7→d for every v 7→ d ∈ F ;

2. OL contains a strong ordering (Lv 7→d) →s (Lv′ 7→d′) for
every natural ordering (v 7→ d)→ (v′ 7→ d′) ∈ OF ; and

3. OL contains a weak ordering (Lv 7→d) →w (Lv′ 7→d′) for
every reasonable ordering (v 7→ d) → (v′ 7→ d′) if
Lv 7→d ∩ Lv′ 7→d′ = ∅3 and if there is no natural ordering
(v 7→ d)→ (v′ 7→ d′) in OF .

Note that the mapping of landmarks is surjective as different
atoms from F may have identical sets of possible achievers
and may hence be mapped to the same disjunctive action
landmark. This may even introduce cycles in GL that are not
present in GF .

Finding Cycles in Landmark Graphs A crucial part for
the quality of our heuristics are i) the existence and ii) the
efficient detection of cycles in the landmark graph. We do
not address i) in this paper, even though we believe that
landmark generation methods that actively search for cyclic
ordering dependencies, e.g., based on the domain-specific
landmark generation methods of Paul and Helmert (2016)
for FREECELL or Paul et al. (2017) for LOGISTICS tasks,
can significantly impact the performance of our heuristics.

We consider two different versions that address ii) here.
The JOHNSON cycle detection method uses Johnson’s Algo-
rithm (Johnson 1975) in every state s to determine all ele-
mentary cycles CJ for a given landmark graph G and com-
putes our heuristics for s, G and CJ . Johnson’s Algorithm
finds the next cycle in time that is polynomial in the num-
ber of landmarks |L|, but the number of elementary cycles
can be more than exponential in |L|. Detecting cycles with
JOHNSON is hence prohibitively expensive in the worst case.

The fact that a single cycle can be found efficiently is still
encouraging, though. The ORACLE cycle detection method
does not precompute all elementary cycles. Instead, it em-
beds the heuristic computation in an iterative process based
on the generic algorithm for solving instances of the implicit
hitting set problem (Chandrasekaran et al. 2011): starting
with the MHS LP (or IP) computed by the landmark heuris-
tic, ORACLE iteratively solves the LP, queries a cycle oracle
for a cycle constraint that is violated by the current solution
Y = {Ya | a ∈ A} (an uncovered cycle) and adds that
constraint to the LP. The process terminates when the oracle
confirms that all cycle constraints are satisfied by the cur-
rent LP solution. The generated set of cycles is a (typically

3The definition of reasonable orderings permits achieving both
facts simultaneously (Hoffmann, Porteous, and Sebastia 2004).
This is prohibited in our definition of weak orderings.

69

small) subset of all cycles which is large enough to repre-
sent the entire information gain of cyclic dependencies in
the landmark graph.

For this implicit cycle covering approach to be beneficial,
querying the cycle oracle has to be computationally cheap.
ORACLE first computes the excess operator count for each
landmark as YL := (

∑
a∈L Ya) − 1. Note that Y must sat-

isfy all landmark constraints, so
∑

a∈L Ya ≥ 1 and hence
YL ≥ 0 for all L ∈ L. ORACLE determines if a cycle c is
uncovered only based on YL : if the excess operator counts
of all L ∈ L(c) for the cyclic landmark heuristic hcycle and
of all L ∈ Lw(c) for the strong cyclic landmark heuristic
hstrong sum up to less than 1, the (strong) cyclic landmark
constraint of c is violated by Y and c is an uncovered cycle.

As generating all cycles can be prohibitively expensive,
checking every cycle if it is uncovered will not make ORA-
CLE more efficient than JOHNSON. Instead, we use the ex-
cess operator counts of all landmarks to directly generate an
uncovered cycle or determine that no uncovered cycle is left.
For an IP heuristic, we can do this by creating a subgraph G′
of G which is such that all cycles in G′ are cycles that are not
covered by Y and by applying any cycle detection algorithm
to G′. Because of the restriction to integer solutions, YL 6= 0
implies YL ≥ 1; therefore, we know for all uncovered cy-
cles c that YL = 0 for all L ∈ L(c) (for all L ∈ Lw(c)) for
hcycle (hstrong) as a single landmark with YL 6= 0 would
satisfy the (strong) landmark constraint of c by itself.

For hcycle , G′ is the subgraph of G that is induced by all
landmarks L with YL = 0; and for hstrong , G′ is a copy of
G except that all orderings L′ →w L for all L with YL 6=
0 are discarded. Any cycle in G′ induces a (strong) cyclic
landmark constraint that is violated by the current solution
Y, and if the graph is acyclic, no more violated cycles are
left and the objective value of the IP is the heuristic value of
the (strong) cyclic landmark heuristic for the current state.

If an LP heuristic is computed, we also compute ex-
cess operator counts for all landmarks, but we cannot sim-
ply remove vertices or edges from the landmark graph to
compute an uncovered cycle: excess operator counts with
0 < YL < 1 make the problem harder, as it is possible that
no single landmark satisfies the (strong) cycle constraint but
a set of landmarks may. It is nonetheless possible to deter-
mine efficiently if there is an uncovered cycle c in G: we use
the excess operator counts to generate a weighted graph G′
that is a copy of G except that it is weighted in the following
way: for hcycle , we set the weight of all orderings L → L′

to wL→L′ := YL′ ; and for hstrong , we set wL→L′ to YL′ if
L → L′ is weak, and we set wL→L′ to 0 otherwise.

ORACLE then applies an all-pairs shortest path algorithm
like the (polynomial) Floyd-Warshall algorithm (Floyd
1962; Roy 1959; Warshall 1962) to G′. It tests for each
L → L′ ∈ O, if the sum of its weight wL→L′ and the cost
of the shortest path from L′ to L is smaller than 1. If this is
not the case, L → L′ cannot be part of an uncovered cycle
and the next edge is tested until no more edges are left; oth-
erwise, ORACLE found the uncovered cycle whose (strong)
cyclic landmark constraint is violated the most among all
cycles including L → L′, and it returns that cycle.

Experimental Evaluation
We implemented our heuristics in version 19.06 of the
Fast Downward planner (Helmert 2006) with CPLEX 12.9
as LP solver. We consider a benchmark set consisting of all
1827 planning tasks without conditional effects from the op-
timal sequential tracks of the International Planning Com-
petitions 1998–2018. All experiments are conducted on In-
tel Xeon Silver 4114 processors running on 2.2 GHz with a
time limit of 30 minutes and a memory limit of 3.5 GB. All
benchmarks, code, and experiment data are published online
(Büchner, Keller, and Helmert 2021).

We present results for the LMRHW (Richter, Helmert,
and Westphal 2008), LMhm

(Keyder, Richter, and Helmert
2010), and LMBJOLP (Domshlak et al. 2011) landmark gen-
erators. For LMhm

, we consider m = 1 (LMh1

) and m = 2

(LMh2

). LMBJOLP combines the landmarks from LMRHW

and LMh1

. The other landmark generators that are imple-
mented in Fast Downward – LMZG (Zhu and Givan 2003)
and a landmark generator that checks for each fact if it is a
landmark in the delete relaxation – do not generate orderings
and are hence omitted from our discussion. We furthermore
enrich the LMhm

and LMBJOLP landmarks with the weak or-
derings found by the method of Hoffmann, Porteous, and
Sebastia (2004). LMRHW already uses the same method as a
subroutine and is not altered.

The MHS landmark heuristic hLM that considers land-
marks but ignores orderings serves as a baseline for our
experiments. We use the LP relaxation of hLM, hcycle and
hstrong to guide a search with the A∗algorithm (Hart, Nils-
son, and Raphael 1968) in all experiments.

In our implementation, the landmark heuristics compute
a new landmark graph for every evaluated state and not just
once as a preprocessing as the BJOLP planner (Domshlak
et al. 2011) or LAMA (Richter and Westphal 2010) do. This
is due to an observation of Büchner (2020), who shows that
there are some instances where the landmark graph for the
initial state is cyclic, but there are many more instances with
cyclic landmark graphs for states that are encountered dur-
ing search. Computing the landmark graph just once and
keeping track of open landmarks is likely much better suited
to maximize planner performance in terms of coverage. We
leave this interesting research question for future work and
recompute landmarks in every state as it allows a better anal-
ysis of the impact of our cyclic landmark heuristics, which
is the focus of this evaluation.

Heuristic Accuracy This decision is supported by look-
ing at two metrics that allow to compare the accuracy of
our heuristics: the heuristic values in the initial state and the
number of expansions before the last f -layer. For all con-
sidered landmark generators, there are less than 30 solved
instances where hcycle(s0) > hLM(s0), but more than
100 solved instances where less states are expanded with
hcycle than with hLM for LMRHW and LMBJOLP. The pic-
ture is even more pronounced when looking at hstrong :
for LMRHW and LMBJOLP, we observe 33 solved instances
where hstrong(s0) > hLM(s0) and 154 solved instances

70

100 102 104

100

102

104

uns.

uns.

hLM

h
c
y
c
le

100 102 104

100

102

104

uns.

uns.

hLM

h
st
ro

n
g

100 102 104

100

102

104

uns.

uns.

hcycle

h
st
ro

n
g

L
M

h
1

L
M

R
H

W
L

M
B

JO
L

P

Figure 3: Number of expansions before the last f -layer for hLM, hcycle and hstrong in combination with different landmark
generators and ORACLE cycle detection. Only instances where the numbers differ are displayed.

JOHNSON ORACLE

hLM hcycle hstrong hcycle hstrong

LMRHW 644 630 643 657 665
LMh1

652 653 651 659 659
LMh2

377 383 383 383 383
LMBJOLP 619 611 622 631 639

Table 1: Coverage for different combinations of landmark
generator, heuristic and cycle detection method.

where less expansions are required to compute an optimal
plan with hstrong and LMRHW.

Figure 3 compares the number of expansions before the
last f -layer for all three pair-wise heuristic combinations.
Note that only instances where these numbers differ are dis-
played, i.e., even though many data points appear to be on
the diagonal, they are actually slightly below it. We can see
that there are a few instances where the number of expan-
sions drops by more than an order of magnitude. Most im-
portantly, though, we see that there are both many instances
where considering orderings has the potential to strengthen
the heuristic and where considering the type of the cycles
yields additional information on top of that.

Heuristic in Search We have observed a gain in heuristic
accuracy in a significant number of instances, but the com-
putation of hcycle and hstrong is also more expensive than
the computation of hLM: in combination with JOHNSON, an
LP has to be solved that contains all constraints of the MHS
LP plus one additional constraint for every elementary cycle
in the landmark graph. And ORACLE starts by computing
the same LP as hLM, but it has to do so multiple times with
a (slowly) growing number of constraints until all cycles are
covered. The question here is if the improved heuristic guid-
ance outweighs the more expensive heuristic computations.

Table 1 shows coverage results for different combina-
tions of landmark generator (LMRHW, LMh1

, LMh2

and

LMBJOLP), heuristic (hLM, hcycle and hstrong), and, in
the case of hcycle and hstrong , cycle detection method
(JOHNSON and ORACLE). Comparing the coverage of the
hLM baseline to the coverage of the best performing hcycle
configuration shows an increase in coverage of 13 and 12 in-
stances for the LMRHW and LMBJOLP landmark generators,
respectively, and of 6 and 7 instances for the two versions
of LMhm

. In the case of LMRHW and LMBJOLP, taking the
type of cycles into account pays off even more, with a total
coverage increase of 21 and 20 instances compared to hLM.
For all landmark generators and both for hcycle and hstrong
there is at least one configuration that significantly outper-
forms the hLM baseline, and it is particularly encouraging
that the combination of ORACLE and hstrong consistently
performs best for all considered landmark generators.

Cycle Detection Detecting cycles with the ORACLE
method always solves at least as many instances as the other-
wise identical configuration with JOHNSON. Even worse, we
observe a negative impact in comparison to the hLM baseline
in some cases where JOHNSON is used to generate cycles.
This decrease in coverage is mostly caused by domains with
a large number of cycles (in particular PEGSOL, SPIDER and
SOKOBAN). Figure 4 shows that the average number of cycle
constraints explicitly added to the LP is consistently much
higher for JOHNSON than it is for ORACLE. While this is
not surprising – after all, JOHNSON adds all cycles at once
whereas ORACLE only adds cycles as long as necessary –
the difference is large: over all instances that are solved by
both cycle detection methods in combination with hcycle and
LMRHW, JOHNSON adds 10.85 cycles on average and ORA-
CLE only 0.19 cycles – a factor of more than 50 on average,
that goes up to more than 5000 in the worst case.

The ORACLE approach trades solving a single large LP
with solving several smaller LPs consecutively. Solving n
LPs with the implicit hitting set approach does usually not
mean that it takes n times as long, though. This is because
the solver uses the solution of the previous iteration as a
starting point for the current LP, which is often already very
close to an optimal solution for the current problem. Over all

71

10−1 100 101 102 103

10−1

100

101

102

103

0 uns.
0

uns.

JOHNSON

O
R

A
C

L
E

L
M

h
1

L
M

R
H

W
L

M
B

JO
L

P

Figure 4: Average number of cycle constraints per evaluated
state for JOHNSON and ORACLE.

instances, it never takes more than 7.32 iterations on average
until an optimal solution that covers all cycles is computed.

This clearly shows that generating all cycles is not a viable
option in many instances, and that our ORACLE approach
generates cycle constraints that cover all cycles within only
a few iterations.

Landmark Generators We can also observe that the
choice of landmark generators affects the results in Ta-
ble 1 significantly. Looking at the relative change compared
to the hLM baseline for each landmark generator reveals
that LMRHW and LMBJOLP on the one hand and the two
LMhm

versions on the other behave similarly: for the for-
mer, performance decreases with hcycle and is comparable
with hstrong if JOHNSON is used, and performance improves
with hcycle and even more so with hstrong in combination
with ORACLE. For both LMh1

and LMh2

, there is moder-
ate improvement when hcycle is used (for LMh2

with both
cycle detection methods, for LMh1

only for ORACLE), and
hstrong does not outperform hcycle .

As LMBJOLP combines the LMh1

and LMRHW landmarks,
one would have expected that it also combines properties
from both, but it looks like a weaker version of LMRHW

instead. We were surprised to see that the landmarks of
LMBJOLP are almost always very similar (and often identi-
cal) to the landmarks of either LMh1

or LMRHW, depending
on which is the larger set. This implies that the smaller set of
LMh1

and LMRHW landmarks is often a subset of the larger
one. As orderings are derived from the set of landmarks,
this also holds for the set of orderings. Since LMRHW gener-
ates more landmarks than LMh1

in the vast majority of the
instances, LMBJOLP performs similar to but slightly worse
than LMRHW as it essentially computes the same thing but
requires additional effort (the computation of LMh1

land-
marks) to get there.

A closer look at the orderings reveals one difference be-
tween LMRHW and LMh1

that explains why considering
weak orderings is beneficial for LMRHW but not for LMh1

:

while the total number of orderings is similar for both land-
mark generators, LMRHW finds much more strong order-
ings and LMh1

finds much more weak ones. It turns out
that this trade-off is no coincidence. In fact, most of the
weak orderings from LMh1

are actually found to be strong
by LMRHW, which means that LMh1

essentially under-
evaluates the impact of these strong orderings. As a con-
sequence, the strengthening promoted by hstrong has little
impact when using LMhm

, in contrast to LMRHW.
Finally, we would like to emphasize that no landmark gen-

erator considered here is tailored to our needs. Our results
show that all landmark generators produce similar sets of
landmarks; Richter and Westphal (2010) regard cyclic de-
pendencies between landmarks as undesirable and actively
steer away from them, and they discard disjunctive land-
marks without estimating what is lost; and the technique of
Hoffmann, Porteous, and Sebastia (2004) is the only gen-
eration technique for the weak orderings that are essential
for cycles in the landmark graph. We conjecture that land-
mark generators that actively pursue the generation of di-
verse landmarks, weak orderings and cycles will help to
close the gap to the results of Paul and Helmert (2016) and
Paul et al. (2017) who report close to perfect heuristic values
in their domain-specific cyclic landmark heuristics.

Conclusions

We introduce two novel operator-counting heuristics hcycle
and hstrong which generalize the cycle-covering heuris-
tic (Paul and Helmert 2016; Paul et al. 2017) to domain-
independent planning. Theoretically, we show that hcycle
dominates the MHS landmark heuristic hLM and that hstrong
dominates hcycle . The dominance comes from additional
operator-counting constraints that are derived from cycles
in the landmark graph which imply that some landmark has
to be achieved at least twice.

To avoid the computation of all elementary cycles in the
landmark graph, we propose ORACLE, an implicit hitting
set method that generates a typically small set of cycles un-
til all cycle constraints are provably satisfied. We show ex-
perimentally on benchmarks from the International Planning
Competitions that cycles occur frequently in practice, that
our heuristics provide improved guidance and that coverage
increases for both heuristics if combined with ORACLE.

Haslum, Slaney, and Thiébaux (2012) compute a min-
imal subset of all delete-relaxation landmarks that allows
to compute h+. Their algorithm is, like our cycle gener-
ation approach, based on the implicit hitting set method.
Our approach is not concerned with the generation of land-
marks and hence treats the landmark and cycle generation as
two separate entities: one where all landmarks are computed
and another where orderings are added iteratively. In future
work, we plan to entwine both parts to an algorithm that gen-
erates both cycles and landmarks iteratively and stops when
the heuristic value can no longer increase. This might not
only enable a strong heuristic, but will also help us under-
stand cyclic dependencies in the delete relaxation.

72

Acknowledgments
We have received funding for this work from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment no. 817639). Moreover, this research was partially sup-
ported by TAILOR, a project funded by the EU Horizon
2020 research and innovation programme under grant agree-
ment no. 952215.

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11(4): 625–
655.

Bonet, B. 2013. An Admissible Heuristic for SAS+ Plan-
ning Obtained from the State Equation. In Proc. IJCAI 2013,
2268–2274.

Bonet, B.; and Helmert, M. 2010. Strengthening Landmark
Heuristics via Hitting Sets. In Proc. ECAI 2010, 329–334.

Büchner, C. 2020. Generalization of Cycle-Covering
Heuristics. Master’s thesis, University of Basel.

Büchner, C.; Keller, T.; and Helmert, M. 2021. Code,
benchmarks and experiment data for the ICAPS 2021 paper
“Exploiting Cyclic Dependencies in Landmark Heuristics”.
https://doi.org/10.5281/zenodo.4604735.

Chandrasekaran, K.; Karp, R.; Moreno-Centeno, E.; and
Vempala, S. 2011. Algorithms for Implicit Hitting Set Prob-
lems. In Proc. SODA 2011, 614–629.

Domshlak, C.; Helmert, M.; Karpas, E.; Keyder, E.; Richter,
S.; Röger, G.; Seipp, J.; and Westphal, M. 2011. BJOLP:
The Big Joint Optimal Landmarks Planner. In IPC 2011
planner abstracts, 91–95.

Floyd, R. 1962. Algorithm 97: Shortest path. Communica-
tions of the ACM 5(6): 345.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2): 100–107.

Haslum, P.; Slaney, J.; and Thiébaux, S. 2012. Minimal
Landmarks for Optimal Delete-Free Planning. In Proc.
ICAPS 2012, 353–357.

Helmert, M. 2006. The Fast Downward Planning System.
JAIR 26: 191–246.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. JAIR 14:
253–302.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. JAIR 22: 215–278.

Johnson, D. 1975. Finding all the Elementary Circuits of a
Directed Graph. SICOMP 4(1): 77–84.

Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. In Miller, R. E.; and Thatcher, J. W., eds., Complexity
of Computer Computations, 85–103. Plenum Press.

Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Planning
with Landmarks. In Proc. IJCAI 2009, 1728–1733.
Katz, M.; and Domshlak, C. 2008. Optimal Additive Com-
position of Abstraction-based Admissible Heuristics. In
Proc. ICAPS 2008, 174–181.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
Complete Landmarks for And/Or Graphs. In Proc. ECAI
2010, 335–340.
Paul, G.; and Helmert, M. 2016. Optimal Solitaire Game
Solutions using A∗ Search and Deadlock Analysis. In Proc.
SoCS 2016, 135–136.
Paul, G.; Röger, G.; Keller, T.; and Helmert, M. 2017. Op-
timal Solutions to Large Logistics Planning Domain Prob-
lems. In Proc. SoCS 2017, 73–81.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning. In
Proc. IJCAI 2013, 2357–2364.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based Heuristics for Cost-optimal Planning. In
Proc. ICAPS 2014, 226–234.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
Extraction, Ordering, and Usage of Landmarks in Planning.
In Proc. ECP 2001, 174–182.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks Revisited. In Proc. AAAI 2008, 975–982.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
JAIR 39: 127–177.
Roy, B. 1959. Transitivité et connexité. Comptes rendus de
l’Académie des Sciences 249: 216–218.
Warshall, S. 1962. A Theorem on Boolean Matrices. JACM
9(1): 11–12.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A General Theory of Additive State Space Abstrac-
tions. JAIR 32: 631–662.
Zhu, L.; and Givan, R. 2003. Landmark Extraction via Plan-
ning Graph Propagation. In ICAPS 2003 Doctoral Consor-
tium, 156–160.

73

