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Abstract

In planning problems, it is often challenging to fully model
the desired specifications. In particular, in human-robot in-
teraction, such difficulty may arise due to human’s prefer-
ences that are either private or complex to model. Conse-
quently, the resulting objective function can only partially
capture the specifications and optimizing that may lead to
poor performance with respect to the true specifications. Mo-
tivated by this challenge, we formulate a problem, called di-
verse stochastic planning, that aims to generate a set of rep-
resentative — small and diverse — behaviors that are near-
optimal with respect to the known objective. In particular, the
problem aims to compute a set of diverse and near-optimal
policies for systems modeled by a Markov decision process.
We cast the problem as a constrained nonlinear optimization
for which we propose a solution relying on the Frank-Wolfe
method. We then prove that the proposed solution converges
to a stationary point and demonstrate its efficacy in several
planning problems.

Introduction
Solution diversity has value in numerous planning applica-
tions, including collaborative systems, reinforcement learn-
ing, and preference-based planning. In human groups and,
more generally, animal groups, the so-called notion of be-
havioral diversity leads to the group members’ heteroge-
neous behavior (Balch et al. 1997). This heterogeneity en-
sures that the members learn complementary skills, thus im-
proving the group’s overall performance. An agent learn-
ing a task in an unknown environment may benefit from in-
ducing diversity in its decisions to explore the environment
more efficiently. In planning with unknown preferences, one
can use diversity to construct a set of behaviors that are suit-
able for different preferences.

Algorithms that use notions of diversity to address one
or more of these applications are known as quality diver-
sity (QD) algorithms (Pugh, Soros, and Stanley 2016). A
key component of QD algorithms is a way to summarize
the important properties of different solutions. This descrip-
tion, known as a behavior characterization, is used to define
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diversity-based metrics (Doncieux and Mouret 2013). With-
out proper behavior characterization, solutions with trivial
differences can have high values of diversity as measured by
the resulting metric.

Our work is motivated by planning in settings where, in
addition to a known objective, there exist some unknown
objectives. The unknown objectives may represent a hu-
man user or designer’s preference, which is either private
or complex to model. In these settings, we propose a QD-
based approach to construct a “representative” — small and
diverse — set of near-optimal policies with respect to the
known objective and then present that to the human to select
from according to their unknown objectives. This approach
allows the human to have the ultimate control over the be-
havior, without requiring prior knowledge of the human’s
preferences.

Formally, we consider the multi-objective optimization
problem of returning a set of feasible policies for an infi-
nite horizon Markov decision process (MDP) that is both
near-optimal and diverse. We define the optimality of a set of
policies as the sum of each policy’s expected average reward
in the set. Diversity captures the representativeness of a set
of policies. We characterize the behavior of policies using
their state-action occupancy measures and quantify diversity
by the sum of pairwise divergences between the state-action
occupancy measures of the policies in the set.

A key element of our approach is the behavior character-
ization of policies using their state-action occupancy mea-
sures. This characterization is domain-independent and fully
encapsulates the dynamics of a given policy. We use this
characterization to define the diversity of a set of policies
through the pairwise Jensen-Shannon divergences between
the occupancy measures. We then define the objective as a
linear combination of the sum of the policies’ rewards and
their diversity. By utilizing the dual of the average cost lin-
ear program, we recast our formulation as a constrained opti-
mization problem. We then show that, due to the constraints’
linearity, the problem can be solved efficiently using the
Frank-Wolfe algorithm. We also prove that the algorithm is
guaranteed to converge to a stationary point. Furthermore, in
a series of simulations, we evaluate the proposed algorithm’s
performance and show its efficacy.
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Related Work
Research on the development of QD algorithms has occurred
within two different communities. In the field of optimiza-
tion, perspectives on evolution as a process that finds dis-
tinct niches for different species have motivated the use of
diversity. Simultaneously, there has been significant interest
in the use of diversity to provide high-quality solutions for
unknown objectives within the planning community.

In the optimization community, recent interest in QD al-
gorithms has been driven by the success of the Novelty
Search algorithm (Lehman and Stanley 2008). The original
Novelty Search algorithm eschews the use of notions of so-
lution quality entirely; its sole goal is to find a set of solu-
tions that are diverse with respect to some distance measure.
Surprisingly, this approach is able to find solutions with bet-
ter performance on difficult tasks, such as maze navigation,
than algorithms relying on an objective function. This result
has led to considerable interest in the development of new
QD algorithms to address tasks that were previously con-
sidered to be too difficult. For an overview, see the work of
Pugh, Soros, and Stanley (2016).

The type of behavior characterization used in these
works varies and can be domain-dependent. For example,
in navigation problems, diversity can be defined using Eu-
clidean distances between points visited. Another approach,
used by the popular MAP elites algorithm, is to assume
that a domain-dependent behavior characterization is given
(Mouret and Clune 2015). A promising area of research is
the development of new approaches to behavior characteri-
zation (Gaier, Asteroth, and Mouret 2020).

The success of the Novelty Search and MAP elites al-
gorithms has inspired the use of diversity in reinforcement
learning, with the hope that diversity can help avoid poor
local minima. Different methods of behavior characteriza-
tion for policies have been used, including methods based
on sequences of actions (Jackson and Daley 2019), state tra-
jectories (Eysenbach et al. 2018), or diversity through deter-
minants of actions in states (Parker-Holder et al. 2020). Sim-
ilarly to our work, Parker-Holder et al. consider an explicit
tradeoff between the quality and diversity of the policies.
However, our approach differs in that we leverage knowl-
edge of the system dynamics to characterize policies in a
way that includes information about both the states visited
and the policy actions, and to develop a solution algorithm
with guaranteed convergence to a local minimum.

Behavior characterization has also been a key focus of
QD-based work in the planning community. For example,
in an approach similar to MAP elites, Myers and Lee (1999)
and Myers (2006) assume that there is a meta-description
of the planning domain. They then define an approach that
obtains solutions that are diverse with respect to the meta-
description. Another approach to behavior characterization
is through the use of domain landmarks, which are disjunc-
tive sets of propositions that plans must satisfy, such as a set
of states that a trajectory must reach before the goal state
(Hoffmann and Nebel 2001). If the set of landmarks can be
computed, a greedy algorithm can be used to iteratively se-
lect landmarks from the set and find a plan that satisfies the
landmark (e.g., reaches a certain state) (Bryce 2014). Be-

havior characterization based on the plan actions, as in the
RL community, is also a common technique (Coman and
Munoz-Avila 2011; Nguyen et al. 2012; Katz and Sohrabi
2020).

The way behavioral characterization and diversity metrics
are incorporated into planning algorithms varies. In some
cases, the problem is formulated as maximizing the diversity
of the set of solutions (Coman and Munoz-Avila 2011; He-
brard et al. 2005), or as finding a set of solutions that satisfy
a diversity threshold (Nguyen et al. 2012; Srivastava et al.
2007; Hebrard et al. 2005). In other cases, like our work,
there exists both an unknown objective and a known objec-
tive, and the problem is formulated in terms of a tradeoff
between the diversity of the solution set and the optimal-
ity of each of the candidate solutions (Coman and Munoz-
Avila 2011; Katz and Sohrabi 2020; Petit and Trapp 2015).
Our work is distinct from these approaches because we de-
velop a new method for behavior characterization and con-
sider a stochastic setting modeled as an MDP. In addition,
unlike many QD-based planning algorithms, our approach
does not rely on greedy strategies. While greedy algorithms
have near-optimality guarantees in some settings, such as
when the problem is submodular (Bach 2013), in general
no such guarantee exists.

Problem Formulation
We now overview the required background related to
Markov decision processes, occupancy measures, and di-
vergence metrics. We then present the main problem as a
nonlinear optimization problem over the space of occupancy
measures.

Preliminaries
We consider systems whose behavior is modeled by a
Markov decision process (MDP). An MDP is a tuple M =
(S,A, P,R), where S is a finite set of states, A is a finite
set of actions, P : S × A × S → [0, 1] is a probabilis-
tic transition function such that for all s ∈ S and a ∈ A,∑
s′∈S P (s′|s, a) = 1, and R : S ×A× S → R is a reward

function.
A stationary stochastic policy π on an MDP is a mapping

from the state space to a probability distribution over the
actions, formally defined as π : S × A → [0, 1]. Here we
consider only stationary stochastic policies and denote the
set of all such policies as Πss.

We focus on the class of problems defined over MDPs that
aim to maximize the long-run average reward. The long-run
average reward of a policy π is

Eτ∼π

[
lim
T→∞

1

T

T∑
t=1

r(st, at)

]
, (1)

where the expectation is over all possible trajectory realiza-
tions from policy π, and st and at are time-indexed states
and actions according to a trajectory τ . We assume that the
MDP satisfies the weak accessibility (WA) condition (Bert-
sekas 1995).

The occupancy measure of a policy, ρπ(., .), is defined as
the distribution induced by the execution of that policy over
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the state-action pairs, asymptotically, i.e.,

ρπ(s, a) = lim
T→∞

1

T

T∑
t=1

Pr(st = s, at = a|π). (2)

The long run behavior of a stationary stochastic policy can
be represented using its corresponding occupancy measure.
An optimal stationary stochastic policy is a policy that max-
imizes the long-run average reward. It has been shown that
under the WA condition, an optimal policy π∗ can be ob-
tained by solving the Bellman equation, which can be refor-
mulated as the dual form of a linear program (see Section
4.5 in Volume II of (Bertsekas 1995)),

max
ρ
〈ρ, r〉

subject to∑
a∈A

ρ(s, a) =
∑
s′∈S

∑
a′∈A

P (s|s′, a′)ρ(s′, a′)

for all s ∈ S,∑
s∈S

∑
a∈A

ρ(s, a) = 1,

ρ(s, a) ≥ 0 for all s ∈ S, a ∈ A

(3)

over occupancy measures ρ, where 〈ρ, r〉 denotes the inner
product in the space of S ×A, i.e.,

〈ρ, r〉 =
∑
s∈S

∑
a∈A

ρ(s, a)r(s, a).

In particular, an optimal policy π∗ corresponding to the so-
lution ρ∗ from solving the above linear program can be com-
puted by defining

π∗(s, a) =
ρ∗(s, a)∑

a′∈A ρ
∗(s, a′)

, (4)

for all non-transient states, i.e., all states s ∈ S such that∑
a′∈A ρ

∗(s, a′) 6= 0. We note that the optimal policy corre-
sponding to ρ∗ is not uniquely defined as the choice of action
in transient states does not affect the long-run behavior.

In our problem context, we seek to find a set of policies
such that each policy in the set is near-optimal, and the set
is representative of the diverse range of near-optimal behav-
iors. Specifically, we aim to find a small set of policies with
cardinality k ∈ N, and we use Πk ∈ Πk

ss to denote a set of
k stationary stochastic policies.

The state-action occupancy measures provide a natural
and domain-independent way to characterize the behavior of
policies and ensure diversity. In particular, by using a pair-
wise metric of the distance between occupancy measures,
we can define a diversity metric for a set of policies. Given
that the occupancy measures are probability distributions, a
natural choice is the Jensen-Shannon divergence (Briët and
Harremoës 2009). The Jensen–Shannon divergence between
two probability distributions p and q is expressed as

JSD(p‖q) =
1

2
KL(p‖m) +

1

2
KL(q‖m), (5)

where m = 1/2(p + q) is the average distribution, and
KL(., .) denotes the Kullback–Leibler divergence. The Kull-
back–Leibler divergence for two probability distributions p
and m, over the same discrete probability space X , is de-
fined as

KL(p‖m) = −
∑
x∈X

p(x) log

(
m(x)

p(x)

)
. (6)

We choose the Jensen-Shannon divergence over other prob-
ability distribution-based measures because it is symmetric
and bounded between zero and one.

Problem Statement
We aim to design an algorithm that can provide a represen-
tative set of polices over an MDP that are near-optimal with
respect to a known reward function. In particular, given the
stated definitions, the objective is to construct k policies that
cumulatively, have high reward and diversity. We define the
cumulative reward of a set of policies Πk as the sum of their
individual accumulated rewards, i.e.,

R(Πk) =
∑
π∈Πk

Eτ∼π

[
lim
T→∞

1

T

T∑
t=1

r(st, at)

]
, (7)

and their cumulative diversity as the sum of the pairwise
Jensen–Shannon divergences between their occupancy mea-
sures, i.e.,

D(Πk) =
∑

πi,πj∈Πk
i<j

JSD(ρπi‖ρπj ). (8)

Therefore, given an MDP M and a parameter k, the goal
is to find a set of policies Πk ∈ Πk

ss with high cumulative
reward R(Πk) and high diversity D(Πk).

Remark 1. It should be noted that one can choose a met-
ric different than the linear combination used here to quan-
tify the cumulative reward. The linear combination has been
widely used in the related literature, partly due to its sim-
plicity. Another important factor that makes this linear com-
bination desirable in this work is the fact that it achieves a
faster convergence rate. Later, we prove that the Lipschitz
constant of the gradient of the objective function inversely
affects the convergence rate. The proposed linear combi-
nation does not contribute to the Lipschitz constant, there-
fore enabling a faster convergence (at least theoretically).
Nonetheless, our proposed approach is amenable to variants
of the quality metric.

Proposed Solution
Our problem statement defines a multi-objective optimiza-
tion problem that aims to maximize a reward-based objec-
tive and a diversity-based objective. A standard method for
tackling multi-objective problems is to linearly combine the
objectives using judiciously chosen weights. To that end, we
first note that the objectives should be independent of the
cardinality of the solution set, i.e., the number of policies
should not affect the quality of the solution. We address this
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point by normalizing the reward term by the number of poli-
cies, k, and the diversity term by the number of unique pol-
icy pairs, k(k − 1)/2. Then, we can define the compound
objective function as a linear combination of the normalized
reward and diversity. The problem of finding Π∗k can thus
be cast as finding a solution to the following optimization
problem:

Π∗k = arg max
Πk∈Πkss

1

k
R(Πk) +

2λ

k(k − 1)
D(Πk), (9)

where λ is the tradeoff parameter that controls the relative
weightings of the reward and diversity. Using the dual of the
linear program for finding an optimal policy, we reformulate
the above problem as

max
ρ1:k

f(ρ1:k)

subject to∑
a∈A

ρi(s, a) =
∑
s′∈S

∑
a′∈A

P (s|s′, a′)ρi(s′, a′)

for all i ∈ [k], s ∈ S,∑
s∈S

∑
a∈A

ρi(s, a) = 1 for all i ∈ [k],

ρi(s, a) ≥ 0 for all i ∈ [k], s ∈ S, a ∈ A,
(10)

where

f(ρ1:k) =
1

k

∑
i∈[k]

〈ρi, r〉+
2λ

k(k − 1)

∑
i,j∈[k]

i<j

JSD(ρi‖ρj),

ρ1:k = {ρ1, ρ2, . . . , ρk} denotes the k occupancy measures
corresponding to the k policies, and [k] = {1, 2, . . . , k}.

The reformulated version is a constrained optimization
problem with linear constraints and a nonlinear (and non-
concave) objective function. In general, this problem does
not have a unique global solution. For instance, any permu-
tation of the k policies in an optimal solution will result in
another optimal solution. Nonetheless, one can seek solution
approaches that at least converge to stationary points.

Projected Gradient Ascent
The first optimization method that we consider is projected
gradient ascent (PGA) (Boyd and Vandenberghe 2004).
PGA iteratively applies a gradient update followed by a pro-
jection step. Let P(ρ̃,M) denote the projection operator
projecting ρ̃ onto the space of feasible occupancy measures
for the MDP M , i.e., it returns the solution to the optimiza-
tion problem

min
ρ
D(ρ, ρ̃)

subject to∑
a∈A

ρ(s, a) =
∑
s′∈S

∑
a′∈A

P (s|s′, a′)ρ(s′, a′)

for all s ∈ S,∑
s∈S

∑
a∈A

ρ(s, a) = 1,

ρ(s, a) ≥ 0 for all s ∈ S, a ∈ A.

(11)

Algorithm 1 Diverse Stochastic Planning with Projected
Gradient Ascent

1: Input: An MDP M = (S,A, P,R), number of policies
k, tradeoff parameter λ, step size ηt, maximum number
of iterations T , convergence tolerance ε

2: Output: Occupancy measures ρT1 , ρ
T
2 , . . . , ρ

T
k

3: Initialize ρ0
1, . . . , ρ

0
k by randomly sampling from ∆M

4: for t = 0, . . . , T do
5: for i = 1, . . . , k do
6: Find ρt+1/2

i ← ρti + ηt∇ρif(ρt1:k)

7: Compute ρt+1
i ← P

(
ρ
t+1/2
i ,M

)
8: end for
9: Find the gradient mapping ht := 1

ηt (ρ
t+1
1:k − ρt1:k)

10: if ht ≤ ε then
11: Return ρt+1

1 , ρt+1
2 , . . . , ρt+1

k
12: end if
13: end for
14: Return ρT1 , ρ

T
2 , . . . , ρ

T
k

We choose the projection metric to be the `2-norm, i.e.,
D(ρ, ρ̃) := ‖ρ− ρ̃‖22. The details of the PGA algorithm are
outlined in Algorithm 1. Let ∆M represent the space of fea-
sible occupancy measures defined by the constraints in (10).
We initialize the occupancy measures by first defining ran-
dom policies for the given MDP, i.e., policies with random
probability distributions over actions in each state. The algo-
rithm terminates once the convergence criteria are met, e.g.,
the gradient mapping (Nesterov 2013) defined as

ht :=
1

ηt
(ρt+1

1:k − ρ
t
1:k)

hits a target threshold or the number of iterations exceeds a
prespecified number.

It is worth noting that the projection step (11) is much
simpler than the original constrained nonlinear optimization
in (10) because it is a convex optimization problem, and
hence, amenable to efficient solutions.

Frank-Wolfe Algorithm
Even though PGA can decouple the projection step for each
policy, it still has to solve a convex optimization problem for
each policy at each iteration. To avoid this complexity, we
propose the use of the Frank-Wolfe (FW) algorithm (Frank
and Wolfe 1956). Every iteration of FW aims to move to-
ward a minimizer of the linear approximation of the original
objective function at the current point. Due to this fact, it has
gained popularity for optimization problems with structured
constraint sets. In particular, the linearity of the constraints
in (10) turns every iteration of FW into a linear optimiza-
tion problem. We implement FW with adaptive step sizes
(Lacoste-Julien 2016) and backtracking line search, as pre-
sented in Algorithm 2. At iteration t, the algorithm finds a
feasible point st within the set of feasible policies, ∆M , that
minimizes the linear approximation of f(ρ1:k) at the current
point. Then, it moves in the direction of st by a step size
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Algorithm 2 Diverse Stochastic Planning with Frank-Wolfe
Algorithm

1: Input: An MDP M = (S,A, P,R), number of policies
k, tradeoff parameter λ, maximum number of iterations
T , convergence tolerance ε

2: Output: Occupancy measures ρT1 , ρ
T
2 , . . . , ρ

T
k

3: Initialize ρ0
1, . . . , ρ

0
k by randomly sampling from ∆M

4: for t = 0, . . . , T do
5: Compute st := arg maxs∈∆〈s,∇ρ1:k

f(ρt1:k)〉
6: Find FW update direction dt := st − ρt1:k
7: Find FW gap gt := 〈dt,∇ρ1:k

f(ρt1:k)〉
8: if gt ≤ ε then
9: Return ρt1, ρ

t
2, . . . , ρ

t
k

10: else
11: Compute γt = arg maxγ∈[0,1] f(ρt1:k + γdt)
12: end if
13: ρt+1

1:k ← ρt1:k + γtdt

14: end for
15: Return ρT1 , ρ

T
2 , . . . , ρ

T
k

γt that is computed using a line search. We efficiently im-
plement the line search using backtracking. The algorithm
terminates once the FW gap defined as

gt := 〈dt,∇ρ1:k
f(ρt1:k)〉

falls below a given tolerance or the number of iterations
reaches a prespecified number T .

Theoretical Guarantees

Next, we prove that by applying PGA and FW on a slightly
revised problem one can establish non-asymptotic conver-
gence rates to a stationary point.

Let ∆M,δ = ∆M ∩ {ρ1:k|ρi ≥ δ, ∀i ∈ [k]} for some
δ > 0 represent a restricted space for occupancy measures.
In the next lemma, we prove that the gradient of the objective
function f(ρ1:k) is Lipschitz continuous over the restricted
space ∆M,δ .

Lemma 1. Let δ ∈ (0, 1). The gradient of the objective
function f(ρ1:k) defined in (10) is L-Lipschitz over ∆M,δ .
That is,

‖∇f(ρ1:k)−∇f(ρ′1:k)‖2 ≤ L‖ρ1:k − ρ′1:k‖2,

∀ ρ1:k, ρ
′
1:k ∈ ∆M,δ, L := λ

1 + δ

4δ2
.

Proof. First, we note that the linear term of f(ρ1:k) does
not contribute to the Lipschitzness. Moreover, the diversity
term has been normalized. Therefore, if we can show that
JSD(ρi‖ρj) has a L′-Lipschitz gradient, then we can con-
clude that f(ρ1:k) has a λL′-Lipschitz gradient. To show that
JSD(ρi‖ρj) has Lipschitz gradient, we start by computing
an entry of its Hessian ∇2JSD(ρi‖ρj). Let x = (s, a) ∈ X
be an arbitrary state-action pair where X = S × A. Then,

we have

JSD(ρi‖ρj) =
1

2

∑
x∈X

ρi(x) log
2ρi(x)

ρi(x) + ρj(x)

+
1

2

∑
x∈X

ρj(x) log
2ρj(x)

ρi(x) + ρj(x)
.

Taking the derivative with respect to an arbitrary x, we ob-
tain

∂JSD(ρi‖ρj)
∂ρi(x)

=
1

2
log

2ρi(x)

ρi(x) + ρj(x)
.

By some straightforward calculation, one can see that the
Hessian is sparse. More specifically, it holds that

∂2JSD(ρi‖ρj)
∂ρi(x)∂ρi(x)

=
ρj(x)

2ρi(x)(ρi(x) + ρj(x))
,

∂2JSD(ρi‖ρj)
∂ρi(x′)∂ρi(x)

= 0,

∂2JSD(ρi‖ρj)
∂ρj(x)∂ρi(x)

= − 1

2(ρi(x) + ρj(x))
,

∂2JSD(ρi‖ρj)
∂ρj(x′)∂ρi(x)

= 0,

where x 6= x′. Therefore, given that only two entries of each
column of the Hessian are nonzero, using the Gershgorin
circle theorem (Horn and Johnson 2012), we can show that

‖∇2JSD(ρi‖ρj)‖2 ≤
∣∣∣ ρj(x)

2ρi(x)(ρi(x) + ρj(x))

∣∣∣
+
∣∣∣− 1

2(ρi(x) + ρj(x))

∣∣∣
≤ 1

4δ2
+

1

4δ
=

1 + δ

4δ2
.

Hence,∇JSD(ρi‖ρj) is (1 + δ)/(4δ2)-Lipschitz and conse-
quently,∇f(ρ1:k) is λ(1 + δ)/(4δ2)-Lipschitz. �

The following two theorems establish that since the gra-
dient is Lipschitz, both PGA and FW are guaranteed to con-
verge to a stationary point.
Theorem 1 (Based on Theorem 6.5 in (Lan 2020)). De-
fine the minimal gradient mapping of the PGA algorithm
as ‖h̃‖2 := min0≤t≤T ‖ht‖2 encountered by the iterates
during the algorithm until the T th iteration. Suppose that
the stepsizes {ηt} in the PGA scheme are chosen such that
0 < ηt < 2/L, where L is the Lipschitz constant of the
gradient of f(ρ1:k) on ∆M,δ . Then it holds that

‖h̃‖2 ≤

√
f∗δ − f(ρ0

1:k)∑T
t=0 η

t(1− Lηt/2)
, (12)

where f∗δ denotes the optimal solution of (10) over the re-
stricted domain. In particular, If ηt = 1/L, then

‖h̃‖2 ≤

√
2L(f∗δ − f(ρ0

1:k))

T + 1
. (13)
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(a) (b)

Figure 1: Example realizations of the (a) four-room and (b)
nine-room grid worlds. Obstacles and walls are black, the
initial state is red, and the goal state is purple.

Theorem 2 (Based on Theorem 1 in (Lacoste-Julien 2016)).
Define the minimal FW gap as ‖g̃‖2 := min0≤t≤T ‖gt‖2 en-
countered by the iterates during the algorithm until the T th

iteration. Consider running the FW algorithm with the adap-
tive stepsize strategy specified in Line 11 of Algorithm 2.
Then, it holds that

‖g̃‖2 ≤
max{2(f∗δ − f(ρ0

1:k)), diam(∆M,δ)
2L}√

T + 1
, (14)

where diam(∆M,δ) is the diameter of ∆M,δ , L is the Lips-
chitz constant of the gradient of f(ρ1:k), and f∗δ denotes the
optimal solution of (10) over the restricted domain.

Experiments and Results
We evaluate the performance of the proposed approach in a
series of navigation problems as detailed next.

Grid World Design
The grid worlds are two-dimensional nineteen-by-nineteen
rectangular grids. The state of the agent is its current posi-
tion. The agent receives a large reward for reaching a defined
goal state, after which it transitions back to an initial state.
In all states other than the goal, the agent has five choices
of actions that correspond to moving down, left, up, right, or
stopping and staying in the same place. The ‘stop’ action is
deterministic; for all other actions, the probability of transi-
tioning to the desired successor state is given by a ‘correct
transition’ hyper-parameter, denoted α. If the transition is
not successful, the agent will transition to another neighbor-
ing state randomly. The environment is filled with obstacles
and reaching an obstacle state results in a large penalty. We
note that this design could represent, for example, the envi-
ronment of a robot vacuum or guard robot.

We define two different grid world types. In the first,
which we refer to as the four-room grid world, the envi-
ronment consists of four eight-by-eight rooms arranged in
a two-by-two grid. There is a reward of -200 for reaching
states with walls and obstacles, a reward of 400 for reaching
the goal, and a reward of -4 in all other states to shape the
agent behavior. In the second grid world, there are nine to-
tal five-by-five rooms arranged in a three-by-three grid. We
refer to this setup as the nine-room grid world. In this setup,
there is a reward of -40 for reaching walls and obstacles, a

Opt. Alg. Reward/policy Diversity Runtime (s)
PGA -39.02 0.34 1488.76
FW 13.24 0.50 26.90

Figure 2: Performance of PGA and FW on the four-room
grid world with λ = 8, k = 2, and α = .95. Results are
averaged over ten trials.

reward of 200 for reaching the goal, and a reward of -1.2 in
all other states. Both environments have walls separating ad-
jacent rooms with a single door, represented by a hole in the
wall, linking the rooms. There is a single additional obstacle
placed within each room. In both worlds, the initial state is
located in the top left room, and the goal state is located in
the bottom right room.

To evaluate the robustness of our proposed approach, we
test the performance over a range of trials. In each trial, the
location of the agent and the goal state within their respec-
tive rooms, the locations of the doors in each wall, and the
locations of the obstacles within the rooms are randomized.
Figure 1 shows a single trial grid world for both the four-
and nine-room setups.

Frank-Wolfe and Projected Gradient Ascent

Here we compare the performance of the FW and PGA op-
timization algorithms. We terminate PGA when the maxi-
mum iteration number is reached or when the difference in
norms between consecutive solutions falls below a tolerance
threshold of .01. We use Sequential Least Squares Program-
ming (Nocedal and Wright 2006) to solve the projection step
for each iteration.. The Sequential Least Squares Program-
ming algorithm terminates after ten iterations or when a sta-
tionarity condition is met. We implement the FW algorithm
with a shrinkage factor of γ = .5 for the backtracking line
search. The FW algorithm terminates when the Frank-Wolfe
gap falls below a tolerance of .001 or when the maximum
iteration number is reached. We set the maximum iteration
number for both approaches as T = 30. The approaches
were implemented in Python 3.8.8 on a Dell XPS 13 9370
computer with 16 GB of RAM and 1.6 GHz processors. To
run these experiments see the code in the following reposi-
tory: https://github.com/Evan1578/MDPdiversity.

We evaluate performance using the four-room grid world
with the correct transition parameter α = .95, the number
of policies in the return set k = 2, and the tradeoff parame-
ter λ = 8. Figure 2 shows the average performance over ten
trials. FW is clearly superior to PGA in both performance
and computational efficiency. This is because PGA involves
solving a constrained least-squares optimization problem for
each policy at each iteration to project the policies back onto
the feasible space. Even small errors in the projection can
considerably deteriorate the near-optimality and diversity of
the policies. In contrast, FW only requires a linear program
to be solved at each iteration. The solution to the linear pro-
gram lies in the feasible space by construction and thus there
are no issues with stability. We use FW as the optimization
algorithm in the subsequent experiments.
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(a) (b)

Figure 3: The reward and diversity of the policies found as a function of the tradeoff parameter for ten nine-room grid-world
trials with α = .95 and k = 6. (a) Mean and standard deviation of the average reward per policy. The reward for the optimal
policy is displayed in grey. (b) Mean and standard deviation of the average pairwise diversity.

(a)

(b)

Figure 4: Sample state-occupancy maps from a nine-room grid-world trial with k = 8, α = .95, and two different tradeoff pa-
rameter values. Obstacles and walls are black, the initial state is red, the goal state is purple, and the state-occupancy probability
is blue. (a) The tradeoff parameter is two. (b) The tradeoff parameter is eight.

Role of the Tradeoff Parameter

The tradeoff parameter plays a crucial role in ensuring a
proper balance between the near-optimality of the candidate
solutions and the diversity of the set of solutions. Testing
the performance as a function of the tradeoff parameter pro-
vides important insights into the performance and properties
of our proposed approach. Here we evaluate the performance
for a range of tradeoff parameters using the nine-room grid
world. We fix the correct transition parameter as α = .95,
and set the number of policies in the return set as k = 6.
This k value is the number of unique door combinations the

agent can take to reach the goal without cycling or other un-
desirable behavior.

Figure 3 shows the average reward per policy and the av-
erage pairwise diversity over ten trials. As expected, the pair-
wise diversity shows a marked increase as a function of the
tradeoff parameter. The average reward decreases slightly as
the tradeoff parameter increases until it begins to fall sharply
around λ = 8. This is the point where it becomes optimal in
some trials to find policies that do not reach the goal but have
maximal diversity. Up to this point, our approach is still able
to find increasingly diverse near-optimal solutions.
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Figure 5: The reward and diversity of the policies found, and the computational efficiency of the optimization, as a function
of the size of the return set for ten nine-room grid-world trials with α = .95 and λ = 8. (a) Mean and standard deviation of
the average reward per policy. The reward for the optimal policy is displayed in grey. (b) Mean and standard deviation of the
average pairwise diversity. (c) Average runtime, in minutes, of the optimization.

This behavior can also be observed in Figure 4, which
shows sample state-occupancy maps for a small range of
lambda values and a single trial. The state-occupancy mea-
sure is the long-run expected probability of being in a given
state s, i.e., ρ(s) =

∑
a∈A ρ(s, a). With λ = 2, our ap-

proach finds several policies with nearly identical behavior.
With λ = 8, the algorithm finds policies that utilize in-
creasingly diverse strategies to reach the goal and traverse
through many of the doors and rooms in the grid world.
Note, however, that even with λ = 8, policies one and three
and policies four and six have relatively similar behavior as
they utilize the same door combinations to reach the goal.
This can be explained by the fact that our approach finds
only a local minimum in the loss landscape, and by the fact
that even with high values of λ the configuration of the doors
and obstacles can limit the number of meaningfully distinct
near-optimal policies.

Finding More Policies

We show how varying the desired number of policies in
the return set affects performance using the nine-room grid
world. Here we set the value of the tradeoff parameter λ = 8
based on the results in the previous section and again set the
correct transition parameter α = .95. Figure 5 shows the av-
erage reward per policy, the average pairwise diversity of the
policies, and the average runtime of the FW algorithm as a
function of the size of the return set. It can be observed that
the runtime of the optimization algorithm increases linearly
with the size of the return set. Further, there is a marked
decrease in the average pairwise diversity as the size of the
return set grows. This provides further evidence that the en-
vironment provides a natural limit on the number of mean-
ingfully diverse policies that can be obtained. Please see the
extended version of this manuscript (Ghasemi et al. 2020)
for a more detailed investigation of the effect of the size of
the return set on performance, as well as an examination of
the role of the correct transition parameter.

Conclusion and Future Work
In this work, we considered the problem of stochastic plan-
ning in situations where the objective function is known to
be only partially specified. In this setting, we proposed gen-
erating a representative set of near-optimal policies with re-
spect to the known objective. To that end, we formulated
a nonlinear optimization problem that finds a small set of
near-optimal and diverse policies. We showed that it is pos-
sible to efficiently solve the optimization problem using
the Frank-Wolfe method and proved non-asymptotic con-
vergence rates. We then compared the performance of the
Frank-Wolfe method with projected gradient ascent and in-
vestigated the role of the hyperparameters using a series of
navigation problems.

Our results show that the choice of the tradeoff parame-
ter and the size of the return set play an important role in
the performance of our approach. As the tradeoff param-
eter and the size of the return set increase, our approach
is able to find increasing numbers of meaningfully distinct
near-optimal policies up to a limit that is related to the struc-
ture of the environment. An interesting future extension of
our approach would be investigating the utility of these near-
optimal diverse strategies in generating effective collabora-
tion between groups of autonomous agents.
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