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Abstract

There have been several approaches to use techniques from
classical planning in HTN planning. While a direct transla-
tion is in general not possible due to the different expressive-
ness, there have been translations of bounded HTN problems
and approaches to use classical heuristics in HTN search pro-
cedures. In this paper, we introduce a different approach. We
exploit methods from the field of Computational Linguistics
introduced to approximate Context-Free Languages by Finite
Automata. We use them to approximate the decomposition
structure of Totally Ordered (TO) HTN planning problems by
classical problems. The resulting problem can then be solved
using standard classical planning systems. A subset of TO-
HTN problems can be translated exactly, i.e., without chang-
ing the set of solutions. For problems where an approxima-
tion is necessary, we use an overapproximation, i.e., the set of
solutions to the classical problem is a superset of that of the
HTN problem. We then use plan verification to check whether
a solution is valid and thus obtain a sound and complete over-
all approach. The resulting system outperforms the state of
the art on the IPC 2020 benchmark set in terms of coverage.

1 Introduction
Classical planning problems consist of a propositional envi-
ronment model and a set of actions specifying how to change
it. Actions come with preconditions that need to be satisfied
to apply them, and effects describing the change caused by
the application – implicitly defining a state transition sys-
tem. Planners need to find an action sequence transforming
a given initial state into one where certain goal properties
hold. Hierarchical Task Network (HTN) (Erol, Hendler, and
Nau 1996; Bercher, Alford, and Höller 2019) planning ad-
ditionally specifies a grammar-like decomposition structure:
abstract tasks cannot be applied directly, but need to be de-
composed into other tasks using decomposition methods un-
til only actions are left. To solve the problem, an initial task
needs to be decomposed in an applicable action sequence.

The motivations to use HTN planning are manifold:
While classical planning problems can express structures
equal to regular languages, HTN planning can express up to
context-sensitive languages (Höller et al. 2014, 2016). Fur-
ther, some problems can be modeled in a more intuitive way
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using the hierarchy (Goldman 2009), and the hierarchy has
also been used to enable communication on different levels
of abstraction (Behnke et al. 2020a; Köhn et al. 2020), or to
add search control to the model (Nau et al. 2003).

For models without (sufficient) search control, planning
systems need to use sophisticated search techniques to find a
solution. While such techniques are well-studied in classical
planning, there is not much work in HTN planning, making
it appealing to use classical techniques in HTN planning.
The family of Relaxed Composition heuristics can apply
classical heuristics directly to guide the search in HTN plan-
ning (Höller et al. 2018b, 2019, 2020b). Other techniques
have been extended, e.g. propositional encodings for SAT-
based planners (Behnke, Höller, and Biundo 2018, 2019;
Schreiber et al. 2019), or IP encodings for heuristics (Höller,
Bercher, and Behnke 2020). Alford et al. (2009; 2016) intro-
duced translations from HTN problems into classical prob-
lems by adding a new part to the state of the problem repre-
senting the decomposition process. Due to the higher expres-
siveness, this is only possible for bounded HTN problems.

In this paper, we present a novel translation of HTN plan-
ning problems to classical problems for Totally Ordered
(TO) HTN planning, where tasks in decomposition meth-
ods are totally ordered. In this subclass, methods are equiva-
lent to rules of a context-free grammar (CFG). Our approach
is based on techniques to approximate CFGs by Finite Au-
tomata (FA) (Nederhof 2000a,b). We use them to construct
a FA that accepts those sequences of actions that may re-
sult from the decomposition process. We then create a clas-
sical problem that includes the state translation system of
the original HTN problem and the FA. This problem can be
solved using standard classical planners. For a subclass of
TOHTN problems, this can be done without changing the
set of solutions. For the rest we use an overapproximation
of the solution set and verify solutions found by the classical
planner. Both variants result in a sound and complete overall
approach, though our current implementation1 is incomplete
due to technical reasons. Our evaluation on the 2020 Interna-
tional Planning Competition (IPC) benchmarks shows that
the majority of instances can be translated exactly. Our sys-
tem outperforms the IPC participants and several systems
from the literature in terms of coverage.

1Source code is available online toad.hierarchical-task.net
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2 Formal Framework
We use the formalism by Geier and Bercher (2011) in a vari-
ant tailored to TOHTN (Behnke, Höller, and Biundo 2018).

A classical problem is a tuple p = (L,A, s0, g, δ). L is a
finite set of propositional state features. A state s is defined
as the set of those state features that hold in it, i.e. s ∈ 2L.
s0 is the initial state of the problem, g ∈ 2L is the goal
condition. A state s is a goal state if and only if g ⊆ s.A is a
finite set of actions. They are mapped to their preconditions,
add effects and delete effects by the functions given in δ =
(prec, add , del), {prec, add , del} : A → 2L. An action a
is applicable in a state s if and only if prec(a) ⊆ s. The
state s′ resulting from the application of a in s is defined
as s′ = γ(a, s) = (s \ del(a)) ∪ add(a). A sequence of
actions a1, a2, . . . , an is applicable in a state s1 if and only
if ai is applicable in si with si = γ(ai−1, si−1) for i ≤
2 ≤ n + 1. We denote sn+1 the state the application results
in. A solution to a problem is a sequence of actions that is
applicable in s0 and results in a goal state.

An HTN problem is a tuple p = (L, C, A, M, s0, cI , g,
δ), where L, A, s0, g and δ are defined as before. In the con-
text of HTN planning, actions are also called primitive tasks.
We use these terms synonymously. C is a finite set of ab-
stract (or compound) tasks with C ∩A = ∅. Tasks are main-
tained in task networks. In Totally Ordered HTN planning, a
task network is just a sequence of tasks. Let T = C ∪ A. A
task network is an element out of T ∗ (where ∗ is the Kleene
operator). Abstract tasks are decomposed using (decompo-
sition) methods. A method maps an abstract task to a task
network. The setM contains all methods, i.e.M ⊆ C×T ∗.
A method (c, ϕ) is applicable to the abstract task c. When it
is applied to a task network ω cω′ with ϕ, ω, ω′ ∈ T ∗ and
c ∈ C, the resulting task network is defined as ω ϕω′. We
write tn →∗ tn ′ to denote that tn can be decomposed into
tn ′ by 0 or more method applications.
cI is the initial task. A solution to a TOHTN planning

problem is a task network ω with
1. cI →∗ ω, i.e., it can be reached by decomposing cI ,
2. ω ∈ A∗, i.e., all tasks are primitive,
3. ω is applicable in s0. It results in a goal state2.

3 Translating TOHTN to Classical Problems
The definition of HTN solutions maps the problem to a
(maybe infinite) set of action sequences, the solutions.
This is just like a formal grammar defines a formal lan-
guage (Höller et al. 2014). The set of actions forms the set of
terminal symbols over which the language is defined. As has
already been observed before (Höller et al. 2014), the lan-
guage formed by the solutions to the overall problem can be
seen as the intersection of two other languages, one defined
by the decomposition hierarchy, i.e., by the abstract tasks
and methods, and one defined by the state transition system
defined by the preconditions and effects of the actions:

LH = {ω ∈ A∗ | cI →∗ ω}
LC = {ω ∈ A∗ | ω appl. in s0 and results in a goal state.}

2In HTN planning, the goal definition is usually empty.
Whether or not there is one does not matter for our approach.

The first language imposes constraints introduced by solu-
tion criterion 1 and 2, the second one those imposed by so-
lution criterion 3. Action sequences that are included in both
languages are in the set of solutions3. The basic idea of our
approach is to construct a FA that accepts a superset of LH

and encode it on top of the actions that already define LC .
An overview is given in Figure 1. We first only consider

the language LH , i.e., we ignore the state and preconditions
and effects of actions and consider the decomposition struc-
ture to be a CFG (the respective edge is marked with (a) in
the figure). Though the decomposition rules syntactically re-
semble exactly a CFG, this does not mean that the encoded
language is actually context-free, it might be regular. We
check a sufficient condition that holds if the grammar de-
scribes a regular language (b), which is described in detail
in Section 3.1. If it does not, we change the model using a
method introduced by Nederhof (2000b) in a way such that
(1) it becomes a regular language and (2) the described lan-
guage is a superset of LH (c) (Section 3.3). Whether or not it
is an approximation – we now have a CFG describing a reg-
ular language, which we encode into a FA (d) (Section 3.2)
using a method introduced by Nederhof (2000a). The labels
of the FA are actions from the HTN domain.

So far, the FA encodes LH (with or without approxima-
tion). Now we need to intersect it with LC . We do this im-
plicitly by encoding a classical problem that holds one ac-
tion for each transition of the FA (f) (Section 3.4). Each in-
troduced action has preconditions and effects encoding the
state change in the FA as well as its original ones. The re-
sulting classical problem is solved using a classical planner.
When we did no approximation, any plan returned by the
planner is also a solution to the HTN problem. When we
did an approximation, the set of solutions to the classical
problem is a superset of the one of the HTN problem and
we cannot directly return a solution. Instead, we first verify
plans found by the classical planner to ensure that they are
also plans for the HTN problem. Since we overapproximate
the set of solutions, our approach is complete (though our
implementation is not, we will discuss this in Section 5).

Let p = (L, C, A, M, s0, cI , g, δ) be an HTN planning
problem. The languageLH is defined by the elementsGH =
(C,A,M, cI) that syntactically form a CFG with the non-
terminal symbols C, the terminal symbolsA, the production
rules M , and the start symbol cI . Its semantics – defined by
the HTN solution criteria 1 and 2 – are also equivalent to the
derivation rules of formal grammars. We apply the following
transformation to a FA accepting LH on this grammar.

3.1 Problem Analysis
We now describe a criterion introduced by Nederhof (2000a)
that we use to decide if we need to approximate the HTN
problem or not. He gives the following definition (p. 19):

Definition 1 (Self-embedding grammars). A CFG GH =
(C,A,M, cI) is self-embedding when there is some ca ∈ T
such that ca →∗ αcaβ with α 6= ε and β 6= ε.

3The languages are defined with respect to a given HTN prob-
lem p. However, in the following it will be clear from the context
to which problem we refer to and we will just write LH and LC .
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Figure 1: Overview of the approach.

When a CFG is not self-embedding, it describes a regular
language (Nederhof 2000a, p. 19) and we can directly apply
the translation to the FA. Intuitively, this is because a re-
cursive cycle in the decomposition structure then only adds
symbols to the left, or to the right.

Nederhof (2000a, p. 19) introduces the following test on
whether a CFG is self-embedding. Let GH = (C,A,M, cI)
be a CFG, N̄ = {ca ∈ C | ∃α, β : ca →∗ αcaβ} the set
of recursive symbols, and N = {N1, N2, . . . , Nk} a parti-
tion of the recursive symbols such that ca, cb ∈ N̄ are in
the same partition if and only if ∃α1, β1, α2, β2 : ca →∗
α1cbβ1 ∧ cb →∗ α2caβ2. I.e., we calculate the strongly con-
nected components of the grammar.

Definition 2. SomeNi ∈ N is left generating (we will write
lg(Ni)) if and only if ∃(ca, αcbβ) ∈M such that ca, cb ∈ Ni

and α 6= ε, it is right generating (rg(Ni)) if and only if
∃(ca, αcbβ) ∈M , ca, cb ∈ Ni and β 6= ε.

Definition 3 (Left/right recursive, cyclic). Some Ni ∈ N is
left recursive if and only if ¬lg(Ni) and rg(Ni). It is right
recursive if and only if lg(Ni) and ¬rg(Ni). It is cyclic if
and only if ¬lg(Ni) and ¬rg(Ni).

Definition 4 (Self recursive). SomeNi ∈ N is self recursive
if and only if lg(Ni) and rg(Ni).

When there is some Ni that is self recursive, this is
a necessary and sufficient condition for GH to be self-
embedding (Nederhof 2000a, p. 20). For self-embedding
problems, the test identifies which rules need to be modi-
fied, namely those causing GH to be self-embedding.

We first introduce the exact translation of non-self-
embedding models and the approximation afterwards.

3.2 Non-Self-Embedding Problems
Let F = (Q,Σ,∆, qI , qF ) be a FA with the set of states
Q, the set of terminal symbols Σ, the set of transition rules
∆ ⊆ Q × Σ × Q, the initial state qI , and the set of final
states qF . We translate GH = (C,A,M, cI) of non-self-
embedding HTN problems to a FA using the algorithm of
Nederhof (2000a, Figure 2). It is given in Figure 2, with only
minor adaptations in the notation. It is initially called with
the initial task cI . From an abstract point of view, it goes
down the hierarchy, collecting all possible sequences of ac-
tions that may result from decomposition.

It gets three arguments: two states of the FA q0 and q1,
and a sequence of tasks α ∈ T ∗. Intuitively, α is a sequence
of tasks that may come between the two states.

When α is empty, an ε-transition from q0 to q1 is added to
the FA (line 2). When it is a single action, a new transition q0
to q1 labeled with α is added (line 3). When α is a sequence

1 procedure make fa(q0, α, q1)
2 if α = ε then ∆ = ∆ ∪ {(q0, ε, q1)}
3 else if α = a, a ∈ A then ∆ = ∆ ∪ {(q0, a, q1)}
4 else if α = xβ, x ∈ T , β ∈ T ∗, |β| > 0 then
5 q = fresh state
6 make fa(q0, x, q)
7 make fa(q, β, q1)
8 else
9 ca = α /* α is abstr. task */

10 if ∃i : ca ∈ Ni then
11 for cb ∈ Ni do qcb = fresh state
12 if recursive(Ni) = left then
13 for (cc, x1 . . . xm) ∈M s.t. cc ∈ Ni

∧ x1, . . . , xm 6∈ Ni do
14 make fa(q0, x1 . . . xm, qcc)
15 for (cc, cdx1 . . . xm) ∈M s.t.

cc, cd ∈ Ni ∧ x1, . . . , xm 6∈ Ni do
16 make fa(qcd , x1 . . . xm, qcc)
17 ∆ = ∆ ∪ {(qca , ε, q1)}
18 else
19 for (cc, x1 . . . xm) ∈M s.t.

cc ∈ Ni ∧ x1, . . . , xm 6∈ Ni do
20 make fa(qcc , x1 . . . xm, q1)
21 for (cc, x1 . . . xmcd) ∈M s.t.

cc, cd ∈ Ni ∧ x1, . . . , xm 6∈ Ni do
22 make fa(qcc , x1 . . . xm, qcd)
23 ∆ = ∆ ∪ {(q0, ε, qca)}

24 else
25 for (ca, β) ∈M do
26 make fa(q0, β, q1)

Figure 2: Algorithm by Nederhof (2000a, Figure 2) to trans-
form non-self-embedding CFGs to a FA.

of at least 2 tasks, a new state q is created as intermediate
state and the algorithm is recursively called: once with q0
and q and α’s first symbol and once with q and q1 and the
rest of α (line 4-7). When none of these cases applies, α
consists of a single abstract task ca. Such a task may be re-
cursive and thus be part of some Ni (line 10-23) or not (line
24-26). In the latter case, the next tasks to come are those
from the methods to decompose ca. For each such method
the algorithm is called. When ca is part of some Ni, there
are two cases: the Ni might be left recursive or right recur-
sive. First, a new state is created for each task that is part
of Ni (line 11). In the left recursive case, the recursion is
through the left most task, the tasks added last are executed
first. The rules leaving the recursion are added in line 13-14.
Recursive methods result in transitions between the newly
introduced states (line 15-16). From the task ca that formed

161



n move-c1-c2, move-c1-c3,...

F

drop-p1, drop-p2,...

S

pickup-p1, pickup-p2,...

move-c1-c2, move-c1-c3,...

Figure 3: Transport FA.

F lay-p0-p1, lay-p0-p2, ...

S

wait

lay-p0-p1, lay-p0-p2, ...

Figure 4: Roadie Robot FA.

our α, an ε-transition goes to the state q1. The right recursive
case is analog, now starting with the recursive methods (line
21-22), and ending with the ones leaving Ni (line 19-20).
Example 1. Consider a transport domain with the follow-
ing set of methods. Tasks starting with a capital letter are
abstract, tasks starting with a non-capital letter are primi-
tive. The initial task is D (deliver a package).

M = {(D , (MovetoP ,L,MovetoD , U))}
∪ {(MovetoP , (move-c1 -c2 ,MovetoP)) | c1, c2 ∈ C}
∪ {(MovetoD , (MovetoD ,move-c1 -c2 )) | c1, c2 ∈ C}
∪ {(MovetoP , ∅), (MovetoD , ∅)}
∪ {(L, (pickup-p)), (U, (drop-p)) | p ∈ P}

D is decomposed (line 1) into tasks to move to the pack-
age, load it, move to the destination, and to unload it there.
The two abstract move tasks are recursive (line 2 and 3).
We made one rule left, and one right generating (just to
show that this has no effect on the FA). One recursion of
an abstract move task leads to a single move action (e.g.
move-a-b), followed (or preceded) by the abstract task. The
resulting FA is shown in Figure 3 (ε-transitions have been
removed). LH contains words that start with a (possibly
empty) series of move actions. Be aware that this does not
mean that there is a single move action that is actually ap-
plicable in the road network. Then, a package is picked up,
followed by another series of move actions and a drop.

Unfortunately, Nederhof (2000a) does not give an analy-
sis of the FA’s size, so we do this in the following. We are
interested in the number of transitions, because they lead to
actions in our final model. We start with non-recursive prob-
lems and discuss recursion afterwards. We construct a graph
that describes the paths that the recursive calls of make fa
follow. Its root is the initial task cI . For every method (c, φ)
applicable to cI , we add a new node labeled x and an arc
(c, x) for every x ∈ φ. Now we do the same for all x, and
further continue the process until all task nodes without out-
going edges are primitive.

For each method, make fa adds states and transition
rules. When a method has n subtasks, it builds n subau-
tomata and connects them (via lines 6-7), so the method it-
self adds n transitions to the size of the subautomata. The
leafs of the graph are actions that add only a single tran-
sition. Let ms be the number of subtasks for the method
with the most subtasks (max size). Let h be the height of
the tree, and mm the maximum number of methods for a

1. Add new non-terminals a↑b a
↓
b a
←
b a→b with a, b ∈ Ni

2. Add the following methods with a, b, c, d, e ∈ Ni

(a, a↑b) (1)

(a↑b , a
←
c x1 . . . xmc

↓
b), ∀(c, x1 . . . xm) ∈M (2)

(a↓b , c
→
a x1 . . . xme

↑
b), ∀(d, αcx1 . . . xmeβ) ∈M (3)

(a↓b , b
→
a ) (4)

(a←b , x1 . . . xmc
←
b ), ∀(a, x1 . . . xmcβ) ∈M (5)

(a←a , ε) (6)
(a→b , c

→
b x1 . . . xm), ∀(a, αcx1 . . . xm) ∈M (7)

(a→a , ε) (8)

3. Remove (a, α) from M

Figure 5: Transformation of self-embedding Nis proposed
by Nederhof (2000b, p. 9). a-e denote tasks part of Ni, all
xis are not part of Ni, α and β are sequences of tasks (that
might or might not be part of Ni).

task (max methods). The size of the FA is then bounded by
(ms×mm)h. Now consider a recursive grammar. For a task
inside some Ni, the algorithm adds one state for each task
in Ni, and processes each method that decomposes a task in
Ni. Methods leaving Ni (lines 13-19) cause the transitions
for n subautomata for a task further down in the graph to
be added, where n is the size of the method. Methods lead-
ing to recursion cause such n − 1 subautomata to be added
between two new states representing Ni. Be aware that (by
construction of N̄ ) the outgoing edges cannot lead to paths
that, again, reach the same Ni. One additional transition is
added when entering Ni. Let mNi be the maximum number
of methods decomposing tasks from the same Ni. We end
up with a size bound of (ms2 ×mm×mNi)

h and it holds:
Proposition 1. The size of the FA might be exponential in
the size of the grammar.

We see later in Sec. 6 that it is much smaller in practice.

3.3 Self-Embedding Problems
When GH is self-embedding, we compile it using the over-
approximation proposed by Nederhof (2000b, p. 9). The re-
sult is a new grammar G′H that is not self-embedding with
L(GH) ⊆ L(G′H), where L(G) is the language defined by
the grammar G. For each Ni that is self recursive, the algo-
rithm given in Figure 5 is applied. It disconnects the gener-
ation of the problematic parts of the rules into independent
processes. Be aware that the αs and βs in line 3, 5, and 7 are
not contained in the new rules. Therefore the parts between
the symbols out of Ni can be generated separately.
Example 2. Consider the Roadie Robot domain. A robot has
to lay cables on a stage for a concert. Then, it waits until the
concert is over, and re-collects the cables in the exact reverse
order to avoid knots. The resulting solution set only includes
palindromes (and thus is context-free).

The method set of such a model could be as follows:M =
{(LC , (lay-pi -pj ,LC , lay-pj -pi)) | pi, pj ∈ waypoints} ∪
{(LC , (wait))}. In the FA resulting from approximation and
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translation (Fig. 4), the lay actions can be applied before
and after the wait action without affecting each other.

Again, we give an analysis of the resulting size. The vari-
ables a-e are universally quantified over the tasks in the Ni.
However, some of the symbols are bound by the method
set we are changing. The overall increase in grammar size
is bounded by rule 3. Consider the pattern for the changed
method, (d, αcx1 . . . xmeβ). The right-hand side of it might
match several times for one method. When there are k sym-
bols from Ni, it matches k − 1 times. Further, the vari-
ables a and b are universally quantified over the symbols
in Ni. Let |N | be the number of partitions, mn the maxi-
mum size of the Ni sets, and mm the maximum number of
methods for a task in Ni. Then, the blowup is bounded by
|N | ×mn2 ×mm × (k − 1) and the following holds:

Proposition 2. The size of the new grammar is polynomial
in the size of the original grammar.

3.4 Translating FA to Classical Problems
We now have a FA defining sequences of actions that might
be the result of the decomposition process. Next we define
a classical problem such that its set of solutions contains a
plan if and only if (1) it is accepted by the automaton, (2) it
is applicable using the preconditions and effects defined in
the original HTN problem p, and (3) the application results
in a goal state from p.

Let p = (L, C, A, M, s0, cI , g, δ) with δ =
(prec, add , del) be the original HTN planning problem and
F = (Q,Σ,∆, qI , qF ) be the automaton constructed before.

We define the classical planning problem p′ = (L′, A′,
s′0, g

′, δ′) with δ′ = (prec′, add ′, del ′) as follows4:

L′ = L ∪Q, s′0 = s0 ∪ {qI}, g′ = g ∪ qF
A′ = {aqq′ | (q, a, q

′) ∈ ∆}

For the new actions aqq′ ∈ A′, we define preconditions and
effects as prec′(a) = prec(a) ∪ {q}, add ′(a) = add(a) ∪
{q′} and del ′(a) = del(a) ∪ {q}.

Theorem 1. Every sequence a1q1q1′ , a2q2q2′ , . . . , an
qn
qn′ of ac-

tions that is a solution to p′ is accepted by F .

Proof. The set of states featuresQ from F forms a subset of
L′. In s′0, exactly one of these state features holds: the initial
state of the automaton. Every action has the form aqq′ , due
to the newly introduced preconditions and effects, we know
that in each (reachable) state of the problem, exactly one of
the state features out of Q holds. An action aqq′ is contained
if and only if (q, a, q′) ∈ ∆. Since a1q1q1′ is the first action we
know that q1 = qI and that (q1, a1, q1′) ∈ ∆. Since a2q2q2′

is applicable afterwards, we know that q1′ = q2 and that
(q2, a2, q2′) ∈ ∆ and so on. Finally, since qF is part of the
state-based goal, we know that qn′ = qF and thus that the
automaton accepts the sequence5.

4Wlog, we assume that L ∩Q = ∅.
5Note that the automaton has by construction a single final state.

Theorem 2. For any sequence π′ = a1q1q1′ , a2q2q2′ , . . . , an
qn
qn′

that is a solution to p′, the sequence π = a1, a2, . . . , an in
the problem p is applicable and reaches a goal state.

Proof. By construction L′ = Q∪L and Q∩L = ∅, i.e., the
state features can be separated into two disjunctive sets such
that one is equal to the state features of the original problem.

For the initial states of p and p′, it holds that s′0 \Q = s0.
For each action, it holds that prec′(aiqiqi′) \ Q = prec(ai).
Therefore, when a1q1q1′ is applicable in s′0, a1 is in s0. All
(add- and delete-) effects added to the original ones in the
definition are from Q, i.e., add ′(aiqiqi′) \ Q = add(ai), and
del ′(aiqiqi′) \Q = del(ai). Therefore, for 1 ≤ i ≤ n, it holds
that when s′i is the intermediate state after executing action
i in π′, si \Q is the one in π and thus prec(ai+1) ⊆ si. The
same holds for the goal condition.

3.5 Properties of the Overall Approach
When using a sound classical planner that eventually returns
all possible solutions for the generated problem, the follow-
ing properties hold for the overall approach.

Theorem 3 (Soundness). The approach is sound.

Proof. When we apply plan verification, we trivially know
that a returned plan is valid. However, for problems that are
not self-embedding, the approach is also sound without ver-
ification. Let FA be an automaton resulting from the transla-
tion of a non-self-embedding problem. From Theorem 1 we
know that the solution we return is accepted by the FA, i.e.,
it fulfills solution criteria 1 and 2 from the HTN definition.
From Theorem 2, we know that it fulfills criteria 3. I.e., it
fulfills all solution criteria of the HTN definition.

Theorem 4 (Completeness). The approach is complete.

Proof. Let p be an HTN planning problem and p′ a
classical problem constructed as given above. Let π =
(a1, a2, . . . , an) be an arbitrary fixed solution to p. We need
to show that π is a solution to p′.

We know that π is applicable and leads to a goal state in
p. Since the new actions in p′ are copies of those in p with
respect to all state features apart from Q, we know that it is
applicable and leads to a goal in p′ when ignoring Q. What
we need to show is that it is also applicable and goal-leading
with respect to the preconditions and actions from Q.

Let L′H be the language accepted by the constructed FA,
whether or not it is an approximation, we know that L′H ⊇
LH (Nederhof 2000a,b). I.e., π is accepted by the automaton
and there is a sequence of FA states (qI , q1, q2 . . . , qn−1, qF )
such that {(qI , a1, q1), (q1, a2, q2), . . . , (qn−1, an, qF )} ∈
∆. Then by construction, the action sequences π′ =
(a1qIq1 , a2q1q2 , . . . , an

qn−1
qF ) is applicable in p′, which results

in the finite state of the FA.

4 Discussion and Related Work
We have been asked by the reviewers to discuss whether it is
interesting to compare our work with approaches to integrate
control knowledge into classical models (see e.g. Baier,
Fritz, and McIlraith (2007) or Chrpa and Barták (2016)).
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Though there are systems (like SHOP2, Nau et al. (2003))
that exploit HTN models just in this way with great suc-
cess, this is not our view on HTN planning. As given in
the introduction, the motivations to use HTN planning are
manifold and adding advice is just one of them. What in-
sights would we gain when we beat a classical planner or
other approaches to add control knowledge with our system?
Whether or not we are able to encode helpful advice. HTN
planning adds a second means of introducing constraints on
the set of solutions to a planning problem. Like the state in
classical planning, this can be used to encode physics or ad-
vice. This view is also reflected in the benchmark sets of the
2020 IPC: they are diverse and include e.g. domains learned
from classical domains, domains created as HTN models
without advice in mind (e.g. Assembly or Entertainment),
and even undecidable problems (PCP). We want our system
to be domain-independent: it shall find a solution for a given
model – with or without advice. Therefore this is the focus
of both the discussion of related work and the evaluation.

Alford et al. (2009; 2016) introduced a translation from
HTN problems to classical problems. They also consider
partially ordered HTN planning, but we only discuss their
closer related TO encoding. They simulate a HTN progres-
sion search in the state of the classical problem. In progres-
sion search, only tasks without predecessors in the current
task network are processed. In the TO setting, there is always
a single first (primitive or abstract) task. When it is primitive,
it is either applicable or not, and thus can be applied and
removed, or the entire task network cannot be refined any-
more. When it is abstract, it is replaced by other tasks. Al-
ford et al. model the tasks to process as a stack that is stored
the classical problem’s state. The top-most task is the first
task of the task network. When it is decomposed, the new
tasks are put on top and the stack size increases. When an
action is applied, it decreases. The goal is to reach an empty
stack. The approach is similar to parsing using a pushdown
automaton, so it is quite different from ours. Other than in
our encoding, the hierarchical structures like abstract tasks
and methods are still present in the classical problem. In our
approach, they are blended into the action set.

A second major difference is how the approaches over-
come the smaller expressiveness of classical planning: Al-
ford et al. bound the maximum size of task networks during
search, while we use an overapproximation in combination
with plan verification, so that we do not need to plan more
than once (as necessary in a bound-based approach). There
are some interesting connections between the property of
tail-recursiveness introduced by Alford et al. to determine
upper bounds for a certain subclass of problems and (non)
self-embedding used here. However, a detailed discussion is
out of scope for this paper.

5 Implementation
We use the 2020 IPC’s input language HDDL (Höller
et al. 2020a) and ground the models using the PANDA
grounder (Behnke et al. 2020b). We then apply our transla-
tion. The classical problem is solved using Fast Downward
(FD) (Helmert 2006). We found that simple configurations
worked well and included two of them in the evaluation: one

domain #inst ¬rec ¬self embedding s.e. ukn
l rec r rec both

Assembly Hierarchical 30 - - 30 - - -
Barman BDI 20 20 - - - - -
Blocksworld (GTOHP) 30 1 - - - 27 2
Blocksworld (HPDDL) 30 - - 30 - - -
Childsnack 30 26 - - - - 4
Depots 30 20 - - - 10 -
Elevator (L) 147 - - 147 - - -
Entertainment 12 5 4 - 3 - -
Factories 20 - - 20 - - -
Freecell (L) 60 - - - - 60 -
Hiking 30 - - - 26 - 4
Logistics (L) 80 - - 80 - - -
Minecraft Player 20 - - 4 - - 16
Minecraft Regular 59 44 - - - - 15
Monroe (FO) 20 - - - - 20 -
Monroe (PO) 20 - - - - 20 -
Multiarm Blocksworld 74 - - 74 - - -
Robot 20 - - 20 - - -
Rover (GTOHP) 30 2 - - - 28 -
Satellite (GTOHP) 20 - - - - 20 -
Snake 20 - - 20 - - -
Towers 20 - - 20 - - -
Transport 40 - 40 - - - -
Woodworking 30 30 - - - - -

892 148 44 445 29 185 41

Table 1: Properties of the IPC 2020 benchmark set.

using greedy best first search (GBFS) in combination with
the FF heuristic (Hoffmann and Nebel 2001) and preferred
operators, and one that does Enforced Hill Climbing (EHC)
with FF and preferred operators and (in case of failure)
GBFS afterwards. We verify our plans using the compilation
by Höller et al. (2018a). The verification problem is thereby
compiled into a new HTN problem solved by an HTN plan-
ner, we used PANDA (Höller et al. 2018b). We verified all
generated solutions and included grounding and verification
in the overall runtime. Though this is not necessarily for
the exact translation, verification rebuilds the decomposition
steps applied to reach the solution, these might be interest-
ing for some users, e.g. for plan explanation (Behnke et al.
2020a). We named our system TOAD (Totally Ordered HTN
Approximation using DFA).

Though our approach is complete, our current implemen-
tation is not. The main problem is that FD uses graph search.
For models translated using the approximation, we need a
classical planner that will eventually return every solution
to the problem (including certain loops that will not appear
when using graph search). In FD, this cannot be realized
easily. In our current implementation, FD only generates a
single plan. When verification fails, we count the instance
as unsolved. A complete implementation could e.g. be real-
ized using Top-k planners (see e.g. Speck, Mattmüller, and
Nebel (2020)). However, the incompleteness is not a prob-
lem on the 2020 IPC benchmark set. We have found exactly
one instance where verification failed. This means that re-
cursive loops change the state of the original HTN problem,
such that the graph search does not prune the node.
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Figure 6: Comparison of the sizes of the HTN model and FA.
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Assembly Hier. 30 30 30 25 3 5 30 3 11 5 4 6 2 2 0 1 1.00 0.83 0.10 0.17 1.00 0.44 0.08 0.12
Barman BDI 20 16 15 12 20 16 13 4 20 0 4 13 11 4 20 0 0.80 0.60 1.00 0.80 0.56 0.37 1.00 0.74
BW (GTOHP) 30 23 22 21 16 21 29 29 29 21 25 24 16 21 13 1 0.77 0.70 0.53 0.70 0.55 0.35 0.43 0.61
BW (HPDDL) 30 21 21 25 30 1 0 1 0 0 1 0 0 1 0 0 0.70 0.83 1.00 0.03 0.57 0.61 0.89 0.02
Childsnack 30 24 23 20 30 29 23 23 21 14 20 19 21 0 22 0 0.80 0.67 1.00 0.97 0.66 0.29 1.00 0.87
Depots 30 24 24 22 24 24 22 22 27 23 19 24 23 17 22 0 0.80 0.73 0.80 0.80 0.73 0.44 0.76 0.73
Elevator (L) 147 147 147 117 147 147 2 7 2 73 7 2 2 7 11 2 1.00 0.80 1.00 1.00 0.58 0.34 1.00 0.79
Entertainment 12 12 12 4 0 5 12 12 12 12 12 12 5 9 0 1 1.00 0.33 0.00 0.42 0.86 0.12 0.00 0.14
Factories 20 5 5 6 3 4 1 1 0 5 1 0 0 1 0 1 0.25 0.30 0.15 0.20 0.20 0.19 0.14 0.19
Freecell (L) 60 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.05
Hiking 30 23 23 24 25 22 24 23 23 17 12 7 17 1 0 0 0.77 0.80 0.83 0.73 0.53 0.45 0.83 0.60
Logistics (L) 80 49 50 52 22 43 0 4 1 26 4 1 0 4 0 0 0.61 0.65 0.28 0.54 0.49 0.32 0.26 0.32
Minecraft Pl. 20 1 1 4 5 1 4 1 4 0 0 1 1 0 3 0 0.05 0.20 0.25 0.05 0.02 0.04 0.25 0.03
Minecraft Reg. 59 41 41 55 57 30 44 44 43 22 43 41 23 40 35 0 0.69 0.93 0.97 0.51 0.52 0.54 0.87 0.34
Monroe (FO) 20 0 0 0 0 20 20 20 20 2 20 13 20 11 7 0 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.78
Monroe (PO) 20 0 0 0 0 20 11 12 12 2 12 9 1 7 0 0 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.73
Multiarm BW 74 74 74 74 8 4 29 43 4 0 5 3 0 4 1 0 1.00 1.00 0.11 0.05 0.77 0.63 0.11 0.03
Robot 20 20 20 20 20 11 1 9 2 0 8 1 6 8 0 1 1.00 1.00 1.00 0.55 0.95 0.84 0.96 0.52
Rover 30 9 9 11 30 21 27 26 22 9 12 18 27 7 30 6 0.30 0.37 1.00 0.70 0.25 0.23 0.92 0.54
Satellite 20 10 10 7 20 15 20 20 17 10 14 12 20 9 0 7 0.50 0.35 1.00 0.75 0.38 0.20 1.00 0.58
Snake 20 15 15 20 20 17 20 20 18 14 20 19 20 17 7 2 0.75 1.00 1.00 0.85 0.42 0.61 1.00 0.74
Towers 20 10 10 17 17 10 13 13 13 0 13 13 14 13 11 2 0.50 0.85 0.85 0.50 0.37 0.59 0.78 0.39
Transport 40 34 34 24 40 35 24 26 20 29 23 19 33 16 1 18 0.85 0.60 1.00 0.88 0.72 0.50 1.00 0.76
Woodworking 30 30 30 7 7 30 17 18 19 17 18 17 6 17 3 4 1.00 0.23 0.23 1.00 0.76 0.19 0.23 0.98

892 618 616 567 544 540 386 381 340 301 297 274 268 216 186 46 15.14 13.78 14.10 14.34 11.89 8.29 13.51 11.60

Table 2: Three performance metrics for the planning systems. It starts with the absolute number of solved instances on the left.
Since the domains do not have the same number of instances, we then included the percentage of solved instances per domain
for selected systems. Last, their IPC score is given that combines coverage as well as the time needed to find the solutions.
Please be aware that we fixed the ordering of the systems based on their absolute coverage. PANDAP can be combined with
arbitrary classical heuristics, we used Add (Bonet and Geffner 2001), FF (Hoffmann and Nebel 2001), and LM-Cut (Helmert
and Domshlak 2009). Configurations labeled with G use GBFS, those marked GA use Greedy A∗ with weight 2.
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Figure 8: Solved instances (on the y axis) relative to the run-
time in seconds (on the x axis, please be aware the log scale).

6 Evaluation
Analysis of the IPC 2020 Benchmark Set We first ana-
lyze the benchmark set of the IPC 2020 track on TOHTN
planning with respect to the given properties. The results are
given in Table 1. For each domain, it gives the total num-
ber of instances, followed by the number of instances that
are non-recursive, (recursive but) non-self-embedding, and
self-embedding. Since we test this properties on the ground
model there are some instances where we do not know the
properties (given in the last column) because grounding was
not able given the memory limit. 147 problems from the
benchmark set are non-recursive, from the recursive ones,
517 are not self-embedding. We can apply the exact trans-
lation to both of these classes, i.e. to 74% of the bench-
mark set. Most recursive but non-self-embedding problems
are right recursive but there are also left recursive instances
and those that are both left and right recursive (which is fine
as long as there is not a single Ni that is both).

Wide parts of the benchmark set does not make use of
the higher expressiveness of TOHTN planning compared to
classical planning, they can as well be modeled with classi-
cal formalisms without changing the set of solutions.

Properties of the Generated Models Next we have a look
at the properties of the generated models. Figure 6 compares
the sizes of the HTN model and the FA. Our approach re-
places the original tasks and methods with a set of actions,
one action for each transition of the FA is introduced. There-
fore we compare these numbers. Though we also add a huge
number of state features representing FAs states, these are
represented in a single SAS+ variable on the FD side. Each
dot in the figure compares one instance. The lower diagonal
line marks the border where the sizes are equal. The upper

line the border where the FA is quadratic in the size of the
HTN. It can be seen that most translations are of similar size
compared to the input model. The green dots represent ap-
proximate models. These models tend to be bigger, while
there is no real difference between the non-recursive (red)
and the non-self-embedding (black) problems.

Figure 7 gives problem sizes relative to FD’s search time.
When comparing problems solved after a certain time, it can
be seen that the non-recursive and approximated problems
tend to be bigger than the recursive non-self-embedding
problems. When doing the same plot with the HTN model’s
size on the y axis, the self-embedding problems tend to be
on par with the non-self-embedding ones. I.e., (1) the non-
recursive problems tend to be simpler to solve, and (2) the
approximation makes them bigger, but not harder to solve.

Comparison to State of the Art Next we compare our
system to other planners: the participants of the 2020 IPC:
HYPERTENSION (Magnaguagno, Meneguzzi, and de Silva
2021), LILOTANE (Schreiber 2021), SIADEX (Fernandez-
Olivares, Vellido, and Castillo 2021), PDDL4J (Pellier and
Fiorino 2021), and PYHIPOP (Lesire and Albore 2021);
PANDAP (Höller et al. 2018b) and PANDASAT (Behnke,
Höller, and Biundo 2018) from the PANDA framework; and
2STRIPS (Alford et al. 2016).

Table 2 shows three performance metrics, first the abso-
lute coverage. Since the domains have a different number of
instances, we included (for selected systems) the percent-
age of solved problems per domain. Last, it includes the
IPC score. TOAD reaches the highest coverage, followed by
2STRIPS and the IPC systems (in the same order as in the
IPC). Our system solves 51 instances more than 2STRIPS,
and 74 more instances than the best IPC planner. When we
consider the percentage of solved problems, our systems still
beat the others. However, the second best system is now
LILOTANE (the runner up from the IPC), followed by HY-
PERTENSION (the winner of the IPC), and 2STRIPS.

When we look at the IPC score, we see that our system is
on the second place, beaten by HYPERTENSION. The reason
for this can be seen in Figure 8. It shows the accumulated
number of solved instances (on the y axis) over time (on the
x axis). HYPERTENSION solves a majority of its instances
within the first second, and nearly all of them in the first 10
seconds. Our system needs approximately 100 seconds to
overtake HYPERTENSION. This decreases the IPC score of
our system. The given behavior of HYPERTENSION is not
surprising given that it uses a lifted depth first search.

7 Conclusion
We presented a new approach to solve TOHTN problems by
translating them to classical planning problems. Instead of
bounding the problems like existing translations to classical
problems or SAT, we overapproximate the set of solutions
and verify solutions afterwards. However, for the vast major-
ity of problems in the 2020 IPC benchmark set, we can even
use an exact translation. Our empirical evaluation shows that
our translation combined with the FD planning system out-
performs the planners from the 2020 IPC as well as several
other HTN planners in terms of coverage.
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