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Abstract

The International Planning Competition (IPC) in 2020 was
the first one for a long time to host tracks on Hierarchical
Task Network (HTN) planning. HYPERTENSION, the winner
of the tack on totally-ordered problems, comes with an in-
teresting technique: it stores parts of the decomposition path
in the state to mark expanded tasks and forces its depth first
search to leave recursive structures in the hierarchy. This can
be seen as a form of loop detection (LD) – a technique that is
not very common in HTN planning. This might be due to the
spirit of encoding enough advice in the model to find plans
(so that loop detection is simply not necessary), or because
it becomes a computationally hard task in the general (i.e.
partially-ordered) setting. We integrated several approximate
and exact techniques for LD into the progression search of the
HTN planner PANDA. We test our techniques on the bench-
mark set of the IPC 2020. Both in the partial ordered and total
ordered track, PANDA with LD performs better than the re-
spective winner of the competition.

Introduction
The International Planning Competition (IPC) in 2020 was
the first for a long time to host tracks on Hierarchical
Task Network (HTN) planning (Erol, Hendler, and Nau
1996; Bercher, Alford, and Höller 2019): one for the full
formalism, and one where decomposition methods need
to be totally-ordered (TO) HTN planning. HYPERTEN-
SION (Magnaguagno, Meneguzzi, and de Silva 2021), the
winner of the TO track, comes with an interesting technique:
it memorizes some of the applied decompositions in newly
added state features. Based on this book-keeping, HYPER-
TENSION forces its depth first search to leave recursive de-
composition structures that otherwise may lead to infinite
loops by forbidding decompositions of tasks that occur a
second time during the decomposition process. This can be
seen as a limited form of loop detection (LD). It is limited
since it can only detect loops in a single decomposition path.
A detection is impossible if two different paths lead to iso-
morphic task networks. Further, the specific technique used
by HYPERTENSION renders its search incomplete (though
this seems not to be a problem on the IPC benchmark set) as
it does not consider changes in the original state variables.
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LD is not commonly used in HTN planning. This might
be due to the spirit of encoding enough advice into the
model to find plans (making LD unnecessary), or because
it becomes a hard to solve task in the general, i.e. partially-
ordered (PO), setting. For loop detection, it is not sufficient
to only consider states, but one also has to take the tasks
in the current task network and their ordering relations into
account. This makes LD in general as hard as Graph Isomor-
phism (Behnke, Höller, and Biundo 2015).

We investigate the effect of loop detection on the heuris-
tic progression search of the HTN planner PANDA (Höller
et al. 2018, 2019, 2020; Höller, Bercher, and Behnke 2020).
We propose several (exact and approximate) LD techniques
and evaluate them on the benchmark sets of the IPC 2020.
Our techniques increase the performance of PANDA in both
tracks. In the PO setting, the base PANDA already solves
more instances than the IPC’s winner, but loop detection fur-
ther increases coverage and IPC score. In the TO setting, the
base PANDA performs worse than the runner-up of the IPC
and better than the winner when using loop detection.

Formal Framework
We use the HTN formalism introduced by Geier and
Bercher (2011). In HTN planning, we have two types of
tasks. Let A be the set of actions (primitive tasks) and C
the set of abstract (also called compound tasks). The envi-
ronment is described using a set of propositional state sym-
bols F . A state s is defined by a subset of F that holds in
it (i.e. s ∈ 2F ). Propositions not in s are supposed to be
false. The functions prec, add , and del map actions to their
preconditions, add-, and delete-effects. All are defined as
f : A→ 2F . An action a is applicable in a state s if and only
if prec(a) ⊆ s. The state s′ resulting from the application of
a is defined as s′ = γ(a, s) = (s \ del(a)) ∪ add(a). A se-
quence of actions a1a2 . . . an is applicable in a state s0 if for
1 ≤ i ≤ n, ai is applicable in si−1 with si = γ(ai, si−1).

Tasks are maintained in Task Networks (TNs), which are
partially-ordered multi-sets of tasks. A TN is defined by a
triple (T , α,≺), where T is a set of task identifiers, α a
function mapping the task ids to tasks α : T → A ∪ C,
and ≺ a partial order on T . Abstract tasks are decomposed
using a set of decomposition methods M . A method is a pair
(c, tn) where c is an abstract task that defines which task
can be decomposed by the method, and tn a TN defining
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its subtasks. When a method is applied to an abstract task c
in a TN, c is deleted from the network, the subtasks of the
method are added, and inherit the ordering relations of cwith
respect to other task in the network. A method m = (c, tn)
decomposes a TN tn1 = (T1,≺1, α1) including a task t ∈
T1 with α1(t) = c into a TN tn2 defined as follows. Let
tn ′ = (T ′,≺′, α′) be a TN that is equal to tn but using ids
not contained in the decomposed network (i.e. T1∩T ′ = ∅).

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D = {(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

When tn1 can be decomposed into tn2 by using 0 or more
(sequential) method applications, we write tn1 →∗ tn2.

An HTN planning problem is defined as P = (F, C, A,
M, s0, tnI , prec, add , del). The two elements s0 and tnI

define the initial state (i.e. s0 ∈ 2F ) and the initial TN. A
solution to the problem is a TN tn = (T , α,≺) with:
• tnI →∗ tn , i.e. it can be obtained by decomposing the

initial task network.
• ∀t ∈ T : α(t) ∈ A, i.e. all tasks are primitive.
• There is a sequence ti1ti2 . . . tin of all task identifiers

in T that satisfies the ordering relation ≺ such that
α(ti1)α(ti2) . . . α(tin) is applicable in s0.
An HTN planning problem is called totally-ordered if and

only if the ordering relations of the subtasks of all methods
and in tnI are total, i.e. the orderings are linear paths.

There are mainly two search techniques in HTN planning.
In progression search, only tasks of a TN without predeces-
sors in the ordering relation are processed, i.e., decomposed
in case of abstract tasks, or applied, in case of primitive
tasks. Other systems are closer to the definition given above:
search nodes contain a TN and a set of causal links and
(additional) ordering relations. These systems search flaw-
based like POCL planners in classical planning.

Loop Detection in HTN Planning
As given before, our aim is to combine LD with heuristic
progression search. Here, search nodes are stored in a fringe
during search. We additionally use a visited list V to keep
track of already seen nodes. Before adding a node to the
fringe, we check whether it has been seen before, i.e. is in
V , and if so discard it. In progression search, a search node
is a pair (s, tn) of a state s and a task network tn . For test-
ing whether (s, tn) ∈ V , we have to compare states and
TNs. We divide V into buckets V[s] s.t. all visited nodes with
state s are in V[s]. Access to the buckets is done via bit-wise
XOR hashing on 64-bit unsigned integers followed by an ex-
act comparison. We then have to decide for a given TN tn
whether tn ∈ V [s]. Since TNs differ in their ids, we have to
check whether there is a TN in V[s] that is isomorphic to tn .
Definition 1. Two TNs tn1 = (T1,≺1, α1) and tn2 =
(T2,≺2, α2) are isomorphic if and only if there is a bijec-
tive function f : T1 → T2 such that ∀t, t′ ∈ T1 : (t, t′) ∈
≺1 ⇔ (f(t), f(t′)) ∈ ≺2 and α1(t) = α2(f(t)).

The Task Network Isomorphism Problem is to decide
whether two given TNs are isomorphic.

This is only the simplest and weakest definition. It could
be extend to dominance, where the solutions that can be
reached from one TNs are a strict superset of the other TNs.
Consider two TNs that (1) are equal despite the ordering re-
lations and (2) the ordering relations of one TN is a subset of
that of the others. We can safely prune the more constrained
one as any solution is still reachable through the other one.
Determining even this simple type of ordering dominance is
NP-complete (Behnke, Höller, and Biundo 2015). We have
thus not looked into dominance pruning. Even the strict
isomorphism problem is already as hard as Graph Isomor-
phism (GI) (Behnke, Höller, and Biundo 2015). Further-
more, we do not only have to do the comparison between
two TNs, but check for a given TN tn1 whether there exists
a TN tn2 in V[s] such that tn1 and tn2 are isomorphic.

Given these difficulties, it is worthwhile to investigate
(a) common special cases and (b) approximations for TN
isomorphism. We consider only overapproximations, i.e.,
techniques that always identify isomorphism, but may also
state that two TNs are isomorphic when they in fact are not.
Using such a LD leads to an incomplete search, but can pay
off in practice – provided the problem remains solvable.

We first discuss techniques for TOHTN planning and
come to PO afterwards. Each section starts with the exact
isomorphism test and gives approximations afterwards. All
presented approximations render the search incomplete, i.e.
only the exact tests result in a complete overall planner.
However, in our evaluation we also include combinations
of the presented techniques. They first use the approximate
test and perform the exact one when nodes are identified as
identical by the approximation. This works well in practice
(especially in the PO setting, where the exact test is costly)
and does not render the search incomplete.

Total Order HTN Planning
Exact Isomorphism For TOHTN planning, the TN of ev-
ery search node is a sequence of tasks S = 〈t1, . . . , tn〉.
Given such a sequence S, we have to check whether V[s]
contains S. Currently, we use the set from the C++ Stan-
dard Template Library. This way, exactly testing whether
S ∈ V [s] takes O(|S| · log |V [s]|) time. By using a trie
we could obtain O(|A ∪ C| · |S|), which can be reduced
by hashing and/or a balanced tree per node of the trie to
O(log |A ∪ C| · log |S|).

Task Hash With a growing number of search nodes, even
this logarithmic test can become too expensive. To miti-
gate the issue, we have added a hashing step before test-
ing whether S ∈ V [s], i.e. we again divide V[s] into hash
buckets and test only the bucket into which S falls. Such a
hashing function can also be used as an (over-)approximate
isomorphism test, if we consider two TNs isomorphic if their
hash is equal. Our first hashing method is called taskhash. It
discards all ordering information from the TNs and com-
putes a hash value that only incorporates information on
which task is how often in a given TN. Let N = C ∪ A.
Further, let t2n : N → {0, . . . , |N | − 1} be a function
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that maps each task to a number between 0 and the total
number of tasks in the particular HTN problem minus one.
Let count : TN × N → N0 with count((T ,≺, α), n) =
|{t ∈ T | α(t) = n}| be a function counting the occurrences
of the task n in a given TN and pnr : N0 → P a function
that maps a number n to the nth prime number. Lastly, let pl
be a large prime number small enough to prevent overflows.
We compute taskhash as follows:

function taskhash(tn)
hash = 0
for n ∈ N and 0 ≤ j < count(tn, n) do

hash = (hash + pnr(j|N |+ t2n(n))) mod pl

return hash

Relaxation and soundness. The only information left is how
many instances of which task are in the network. Any order-
ing information is discarded. This method returns the same
hash for two isomorphic networks as they contain the same
multiset of tasks. It might return the same hash for two nodes
that are not isomorphic, but differ in their ordering relations.
Runtime. Our implementation incrementally tracks which
tasks are in a TN and uses a list of predefined prime num-
bers. This makes it computable in linear time (with respect
to the size of the TN). Once calculated, we only need to
compare numbers, which can be done in constant time.

Partial Order HTN Planning
Exact Isomorphism For general HTNs, we eventually
have to check the isomorphism of directed vertex-labeled
graphs, which is GI-complete (Behnke, Höller, and Biundo
2015). We check this using exhaustive search for a bijec-
tion. We only try to match nodes in both TNs that do not
have any unmatched predecessors. We group the next nodes
to be matched into buckets of nodes labeled with the same
task and process all currently matchable nodes at once.

There is an often occurring structure in HTN planning,
which we can exploit. Often only the initial task network tnI

is partially-ordered while the task networks in all methods
are totally-ordered. Further, tnI is often totally unordered,
i.e. it does not contain any ordering constraints. We call such
problems parallel-sequences problems. Although this struc-
ture is rather restrictive, solving parallel-sequences prob-
lems is already undecidable (Erol, Hendler, and Nau 1996),
i.e. it already carries the core difficulty of HTN planning.

In parallel-sequences problems, any derivable task net-
work tn1, i.e. tnI →∗ tn1, has a very specific structure:
it consists of a set of sequences of tasks which are fully par-
allel, i.e. there are no ordering constraints between them.
We can represent such TNs as a set of sequences of tasks
S = {〈t11 . . . t

n1
1 〉, . . . , 〈t1m . . . tnm

m 〉}. We can obtain a nor-
mal form of S by sorting these sequences lexicographically.
We then use the same techniques as for totally-ordered prob-
lems – with the sole difference that we consider a sequence
of sequences of tasks instead of one sequence.
Relaxation and soundness. Both variants of exact isomor-
phism checking do not make any relaxation and are sound.

Runtime. Checking isomorphism of general TNs can have
up to an exponential runtime in the size of the TNs. Also,
we have to test every TN under consideration separately as
there is no criterion on which e.g. a binary search could be
performed. For parallel-sequences problems we achieve the
same runtime as for totally-ordered problems.

Task Hash As for TO problems, we use taskhash to speed-
up or to approximate the exact isomorphism test.

Task Layers Since taskhash performs a very strong ap-
proximation (it ignores all ordering constraints), we present
an approximation that takes ordering at least partially into
account. We divide the tasks in a given TN into layers ac-
cording to their ordering relations. The first layer contains
tasks without predecessors in the ordering relations, the sec-
ond layer those tasks that are ordered behind the tasks in the
first layer, and so on. Let tn = (T ,≺, α) be a TN. Starting
with i = 0 the layers are defined as follows:

Ti = {t ∈ T | ¬∃t′ ∈ (T \
⋃
j<i

Tj) with (t′, t) ∈ ≺}
Li = {α(t) | t ∈ Ti}

We calculate the Li sets for each TN and return a match
when all layers are identical. Lis are stored as balanced tree.
Relaxation and soundness. We lose information on the exact
ordering between the tasks in a given layer and the ones in
the preceding and succeeding layers. We might also lose in-
formation on the exact number of instances of a task (when
they are in the same layer). Since isomorphic TNs only dif-
fer in their ids, but not in α and the ordering relations used
here, it will correctly return equality for isomorphic TNs, but
might also return it for TNs that are not isomorphic. Con-
sider e.g. tn1 where a is ordered before b and c before d,
and tn2 where a is ordered before d and c before b.
Runtime. PANDA stores TNs as directed graph, so layers
can be calculated in linear time. For comparing two TNs, all
layers are compared, which can also be done in linear time
(with respect to the size of the TNs). Overall access takes
O(|tn|+ |L| · log |V [s]|).

Ordering Relations The last approximation considers or-
dering relations locally. Let tn = (T ,≺, α) be a TN. We
compute the following:

OR = {(α(t), α(t′)) | (t, t′) ∈ ≺}

We return a match when it is equal for two TNs.
Relaxation and soundness. This technique cannot distin-
guish multiple instances of the same task. For isomorphic
TNs, it returns the same result since they only differ in their
id set. It may, however, also return the same result when the
TNs differ: consider a TN with a chain a before b and b be-
fore c, and a single extra task b. The result will be the same
as for a before b, and the second instance of b before c.
Runtime. Given the TN representation of PANDA, the set
can be computed in linear time in |tn|. Using balanced trees
we get O(|tn|+ |OR| · log |V [s]|) overall.
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Assembly Hier. (30) 30 30 30 30 30 30 6 30 3 7 7 7 5 30 11 6 2 0 1 0.00 30.62 2.91
Barman-BDI (20) 17 16 16 20 20 20 19 16 20 15 15 15 17 13 20 13 11 20 0 0.01 82.44 1.16
BW GTOHP (30) 28 29 29 28 29 29 25 23 16 25 25 25 23 29 29 24 16 13 1 0.00 2.94 2.34
BW HPDDL (30) 28 28 28 25 25 25 6 21 30 14 14 14 1 0 0 0 0 0 0 0.00 99.99 1.65
Childsnack (30) 23 23 23 21 21 21 23 24 30 20 20 20 28 23 21 19 21 22 0 0.01 32.39 0.44
Depots (30) 22 22 22 27 27 27 28 24 24 24 24 24 24 22 27 24 23 22 0 0.06 28.50 4.79
Elevator L (147) 146 147 147 146 147 147 147 147 147 147 147 146 147 2 2 2 2 11 2 0.00 98.62 0.56
Entertainment (12) 12 12 12 12 12 12 12 12 8 12 12 12 4 12 12 12 4 0 1 0.00 14.42 18.50
Factories (20) 9 9 8 7 7 7 8 5 3 5 5 5 4 1 0 0 0 0 1 0.00 95.13 1.54
Freecell L (60) 18 16 15 19 19 16 10 0 0 0 0 0 12 0 0 0 0 0 0 0.25 63.00 0.05
Hiking (30) 25 25 25 25 25 25 22 23 25 20 20 20 23 24 23 7 17 0 0 0.00 87.32 0.25
Logistics L (80) 48 48 48 49 49 48 80 49 22 79 79 75 45 0 1 1 0 0 0 0.00 100.00 1.40
Minecraft Pl. (20) 4 4 4 4 4 4 4 1 5 1 1 4 1 4 4 1 1 3 0 0.00 0.00 0.04
Minecraft Reg. (59) 43 43 43 43 43 44 40 41 58 41 41 41 37 44 43 41 23 35 0 29.33 4.88 2.88
Monroe FO (20) 18 20 20 18 20 20 20 0 20 14 13 12 20 20 20 13 20 7 0 1.19 9.32 0.08
Monroe PO (20) 8 10 10 12 12 12 20 0 0 9 9 8 20 11 12 9 1 0 0 0.44 25.68 0.13
Multiarm BW (74) 72 74 74 27 27 27 19 74 8 17 17 17 4 29 4 3 0 1 0 0.00 62.63 1.02
Robot (20) 20 20 20 20 20 20 11 20 20 19 19 19 11 1 2 1 6 0 1 0.00 95.00 15.15
Rover (30) 26 26 26 22 21 21 24 9 30 18 18 18 23 27 22 18 30 30 6 0.01 3.11 0.74
Satellite (20) 20 20 20 17 17 17 20 10 20 12 12 12 15 20 17 12 20 0 7 0.00 0.00 0.62
Snake (20) 20 20 20 20 20 20 20 15 20 20 20 20 20 20 18 19 20 7 2 0.00 3.10 0.23
Towers (20) 13 13 13 13 13 13 8 10 16 13 13 13 9 13 13 13 15 11 2 0.00 0.00 5.47
Transport (40) 32 25 25 30 21 21 40 34 40 19 19 24 34 24 20 19 34 1 18 37.70 36.13 5.39
Woodworking (30) 28 27 27 28 29 29 28 30 7 19 19 19 30 17 19 17 6 3 4 0.91 61.66 17.46
Instances: 892 710 707 705 663 658 655 640 618 572 570 569 567 560 386 340 274 272 186 46 3.35 57.33 2.63
Normal. Coverage 18.8 18.8 18.8 18.2 18.1 18.1 17.0 15.1 15.7 14.3 15.7 14.6 14.3 14.9 12.7 10.1 10.1 6.1 1.6
IPC Score 15.0 15.0 15.0 14.4 14.4 14.4 13.7 11.9 15.0 10.3 10.3 10.3 12.5 11.0 10.1 7.4 7.6 4.9 0.9

Table 1: Coverage Table – Total Order Track.

G
A

*
FF

th
+g

i

G
A

*
FF

th

G
A

*
FF

oh

G
A

*
FF

oh
+g

i

G
A

*
A

dd
th

+g
i

G
A

*
FF

G
A

*
A

dd
th

G
A

*
A

dd
oh

+g
i

G
A

*
A

dd
oh

G
A

*
L

M
-C

ut
th

G
A

*
A

dd

G
A

*
L

M
-C

ut
th

+g
i

PA
N

D
A

S
A

T

G
A

*
L

M
-C

ut
oh

+g
i

G
A

*
L

M
-C

ut

G
A

*
L

M
-C

ut
oh

S
IA

D
E

X

P
Y

H
IP

O
P

fa
ls

e
po

si
tiv

es
G

A
*

FF
th

%
du

pl
ic

at
es

G
A

*
FF

%
tim

e
fo

rL
D

G
A

*
FF

th

Barman (20) 3 4 2 2 3 1 3 2 2 2 1 2 8 1 1 1 20 0 50.47 40.43 2.51
Monroe FO (25) 24 24 24 24 25 24 24 25 25 17 25 15 0 15 16 15 8 0 2.77 6.64 0.10
Monroe PO (25) 19 20 19 18 18 18 19 18 18 14 18 14 0 14 13 13 2 0 0.47 19.86 0.11
PCP (17) 14 6 14 14 14 14 6 14 14 7 14 14 13 14 14 14 0 0 54.02 0.09 20.26
Rover (20) 11 12 11 11 7 10 10 7 7 9 6 7 16 6 7 6 14 2 19.13 56.04 4.58
Satellite (25) 25 25 25 25 24 25 24 24 24 25 24 23 25 23 23 23 25 6 6.17 11.57 49.03
Transport (40) 12 16 12 12 8 11 15 6 7 17 4 15 23 15 13 15 1 3 46.12 47.46 7.54
UM-Translog (22) 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 21 0.00 0.56 86.73
Woodworking (30) 12 13 12 12 14 9 11 14 12 12 11 12 17 11 10 10 3 6 25.88 27.51 15.47
Instances: 224 142 142 141 140 135 134 134 132 131 125 125 124 124 121 119 119 95 38 23.07 25.08 19.60
Normal. Coverage 5.9 5.7 5.9 5.9 5.7 5.6 5.4 5.6 5.5 5.0 5.3 5.1 5.1 5.0 5.0 4.9 4.2 1.6
IPC Score 4.9 4.5 4.9 4.8 4.6 4.6 4.3 4.5 4.5 3.8 4.3 4.1 3.1 4.1 4.0 4.0 4.0 1.2

Table 2: Coverage Table – Partial Order Track.
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Empirical Evaluation
We implemented our techniques in the PANDA sys-
tem (Höller et al. 2021)1 and combined it with PANDA’s
progression search and Relaxed Composition (RC) heuris-
tics (Höller et al. 2018) that internally use classical heuris-
tics to guide the HTN search. We use the Add (Bonet and
Geffner 2001), FF (Hoffmann and Nebel 2001) and LM-
Cut (Helmert and Domshlak 2009) heuristics. The search is
based on a ground model, which is different to several sys-
tems from the IPC that do not ground the model. We use the
grounding procedure presented by Behnke et al. (2020).

We tested against PANDA without our techniques
and against the participants of the IPC 2020, i.e., HY-
PERTENSION (Magnaguagno, Meneguzzi, and de Silva
2021), LILOTANE (Schreiber 2021a,b), SIADEX (Fernandez-
Olivares, Vellido, and Castillo 2021), PDDL4J (Pellier and
Fiorino 2021), PYHIPOP (Lesire and Albore 2021). We fur-
ther included the TOAD system (Höller 2021), and PAN-
DASAT in its current TO (Behnke, Höller, and Biundo 2018;
Behnke 2021) and PO versions (Behnke, Höller, and Biundo
2019). We have updated the IPC planners to their newest ver-
sions, some of which fixed bugs in the original planners. We
used the IPC 2020 benchmark set.

Experiments ran on Xeon Gold 6242 CPUs using 1 core,
8 GB of memory, and 30 minutes time limit.

In the following, we compare coverage and give certain
metrics for our techniques like time needed for loop detec-
tion or percentage of duplicate search nodes. A more exten-
sive evaluation can be found in a technical report (Höller and
Behnke 2021). For the TO track, greedy best first (GBFS)
worked best for PANDA, while in the PO track, weighted A∗
had the highest coverage. We only report these for PANDA.

Table 1 shows the results for the totally-ordered track. It
first gives the absolute coverage of the systems. Configura-
tions marked with a th use the taskhash test, those marked
with s use only the exact test for totally-ordered problems,
those marked with th+s first hash with taskhash and then use
the exact test on all TNs in the hash bucket.

All GBFS configurations except for those using LM-
Cut have a higher coverage than the other systems, while
the GBFS LM-Cut configurations are placed between the
IPC 2020 winner HYPERTENSION and the runner-up
LILOTANE. The best configurations use the RC-Add heuris-
tic, followed by RC-FF and RC-LM-Cut. The configurations
not using LD have lower coverage than the IPC systems. The
best of our configurations beats the respective PANDA base-
line by 84% for RC-Add, 95% for RC-FF, and 108% for
RC-LM-Cut. For the best configuration, the table gives on
the right the number of false hits of the taskhash function,
i.e., the number of nodes identified as visited by taskhash
that in fact where no duplicates. There are mainly two do-
mains where this happens. Averaged over all algorithms and
heuristics we have 3.33% false hits. This is also relatively
stable over search algorithms and heuristics. The second ad-
ditional column shows the following: based on search with-
out duplicate pruning we calculated the percentage of vis-
ited nodes that would have been pruned when using it. Here

1The source code is available at panda.hierarchical-task.net

the results differ widely: between 0% (in the Satellite and
Towers domains) and 100% (after rounding; in the Logistics
domain) of the search nodes are duplicates. In the median
instance 87.56% of search nodes are duplicates. The last col-
umn gives the percentage of time spend for LD using GBFS
RC-Add with only taskhash.

Table 2 summarizes the results for the PO track. Configu-
rations marked with th only use the taskhash function, those
marked oh use the taskhash followed by Task Layers and
Ordering Relations (denoted ordering hashes). Computing
both of the latter two functions together does not signifi-
cantly increase the computational effort compared to com-
puting one of them, so we decided to always use their com-
bination. When +gi follows, the exact test is performed in
case of a hash collision. We applied the special handling for
parallel-sequences instances whenever possible. These are
all instances except for the 50 instances of the two Monroe
domains and one instance of UM-Translog.

In the PO track, PANDA has a higher coverage than the
IPC systems also without our techniques. However, they in-
crease the coverage (though less significant than in the TO
setting, between 5% and 8%). The configurations using the
FF heuristic perform best. The number of false positive hits
of the taskhash function is much higher than in the TO set-
ting. When we look at the specific domains, we see that the
approximate taskhash function loses coverage in a single
domain (both compared to the exact calculation and to the
basic PANDA configuration): PCP. It encodes Post Corre-
spondence Problem, where the relaxation of the ordering re-
lations seems to be especially harmful. In the other domains,
it performs at least as good as the other methods.

Conclusion
We have introduced several techniques for loop detection in
HTN planning. The problem boils down to deciding whether
two TNs are isomorphic. We introduced exact and approxi-
mate techniques that overapproximate isomorphism, which
might lead to an incomplete search but works very well
in practice. We integrated our techniques into the heuristic
progression search of the PANDA framework and evaluated
them on the benchmark sets of the IPC 2020. They pay off
in both the partially-ordered and the totally-ordered setting
(though the gain in performance is much higher in the latter).

Our techniques are directly applicable in systems using a
ground progression search. For POCL-like algorithms, the
basic task in LD is still the comparison of task networks,
so our techniques might be helpful. However, search nodes
additionally include causal links. When these links shall be
taken into account, this imposes further complexity and the
adaptation of our techniques is not a straightforward task.
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Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In Proceedings of the 28th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 114–122. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2019.
On Guiding Search in HTN Planning with Classical Plan-
ning Heuristics. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI), 6171–
6175. IJCAI.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN Planning as Heuristic Progression Search. Journal of
Artificial Intelligence Research 67: 835–880.
Lesire, C.; and Albore, A. 2021. PYHIPOP – Hierarchical
Partial-Order Planner. In 10th International Planning Com-
petition: Planner and Domain Abstracts (IPC).
Magnaguagno, M. C.; Meneguzzi, F.; and de Silva, L. 2021.
HyperTensioN – A three-stage compiler for planning. In
10th International Planning Competition: Planner and Do-
main Abstracts (IPC).
Pellier, D.; and Fiorino, H. 2021. Totally and Partially Or-
dered Hierarchical Planners in PDDL4J Library. In 10th
International Planning Competition: Planner and Domain
Abstracts (IPC).
Schreiber, D. 2021a. Lifted Logic for Task Networks: TO-
HTN Planner Lilotane in the IPC 2020. In 10th Inter-
national Planning Competition: Planner and Domain Ab-
stracts (IPC).
Schreiber, D. 2021b. Lilotane: A Lifted SAT-based Ap-
proach to Hierarchical Planning. Journal of Artificial In-
telligence Research 70: 1117–1181.

173


