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Abstract

Classical planning tasks are usually modeled in the PDDL
which is a schematic language based on first-order logic. Nev-
ertheless, most of the current planners turn this first-order
representation into a propositional one via the grounding pro-
cess. It is well known that the grounding process may cause
an exponential blowup. Therefore it is important to detect
which grounded atoms are redundant in a sense that they are
not necessary for finding a plan and therefore the grounding
process does not need to generate them. This is usually done
by a relaxed reachability analysis, which can be improved
by employing structural symmetries. Symmetries are bijec-
tive self-maps preserving the structure of the PDDL task. In
this paper, we introduce a new method which is based on self-
maps preserving the structure but which need not be bijective.
We call these maps PDDL endomorphisms and we show that
they can be used for pruning of redundant objects even if they
appear in a reachable atom. We formulate the computation
of endomorphisms as a constraint satisfaction problem (CSP)
that can be solved by an off-the-shelf CSP solver.

Introduction
Classical planning tasks are usually modeled in the stan-
dard PDDL language based on first-order logic (McDermott
2000). Nevertheless, a vast majority of planners do not work
with this first-order (lifted) representation but with a simpler
one based on propositional logic (i.e., grounded represen-
tation); usually either STRIPS (Fikes and Nilsson 1971) or
SAS+ (Bäckström and Nebel 1995). In order to translate the
PDDL representation into a propositional one, one has to
go through the so-called grounding process where the first-
order action schemata are translated into propositional ones
by substituting all possible combinations of objects for the
variables. This may result in an exponentially larger repre-
sentation than the original PDDL representation.

There are, however, some approaches addressing this
problem. The most commonly used one employs a relaxed
reachability analysis and grounds only those atoms which
possibly occur in a reachable state (Hoffmann and Nebel
2001; Helmert 2009). The reachability analysis can be fur-
ther improved by the detection of unreachable actions and
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actions leading to dead-end states (Fišer 2020). Another ap-
proach utilizes structural symmetries (Röger, Sievers, and
Katz 2018; Sievers et al. 2019) to ground the planning task
only partially, because the rest of the grounded atoms and
actions can be generated by the symmetries. Furthermore,
Gnad et al. (2019) applied machine learning techniques to
learn which actions are more likely to be a part of a plan,
resulting in only partially grounded planning task (without
a guarantee that the grounded part contains a plan from the
original planning task).

Although the reachability analysis can greatly reduce the
number of grounded atoms, its output still might be quite
large. Consider for instance a planning task involving a
large map consisting of some locations and their connec-
tions where all the locations are reachable but only a small
part of the map is actually needed in order to construct a
plan. In this case, the reachability analysis cannot prune the
irrelevant part of the map. Here, we develop a method which
is able to overcome this limitation to some extent.

PDDL tasks are defined over a set of objects B serving as
values to be substituted for the variables during the ground-
ing process. We introduce a novel notion of PDDL endomor-
phism which will serve as a basis for a new pruning method
that, given a PDDL task P, produces a reduced PDDL task
P′ which has a possibly smaller set of objects B′ ⊆ B, but
preserves at least one (optimal) plan from P. The resulting
reduced task can be solved by any planner accepting inputs
formulated in PDDL. In this work, we focus mainly on the
theoretical analysis that will hopefully help us better under-
stand the underlying structures of PDDL planning tasks.

Now, we informally explain and illustrate on an exam-
ple which redundant objects our method aims to find. Con-
sider a logistic task where we have a map of cities connected
by roads, a fleet of trucks and we are supposed to transport
packages to their destinations. The map is usually modeled
by a symmetric binary relation road (or its equivalent) cap-
turing which cities are directly connected (possibly enriched
by costs). Thus the map can be viewed as a graph whose ver-
tices are cities and edges represent the roads (see Figure 1).

Assume we are supposed to move packages from the city
c0 to c3 and all our trucks are located in c0. To solve the
task, it clearly suffices to use the path from c0 to c3 via c2.
Thus the city c1 is in this sense redundant. In case of optimal
planning, we have to further ensure that the path via c2 is
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Figure 1: A simple graph representing the road connection
among cities.

cheaper than the path via c1. Whether we can really safely
remove the city c1 from our PDDL task depends on other
relations and actions in the task.

In order to find out if we can prune c1, our method utilizes
the following tools. First, it leverages structure-preserving
maps called homomorphisms of first-order structures (see
Hodges 1997, Chapter 1). In fact, it is well known that
such homomorphisms preserve all positive existential for-
mulas (e.g. Hodges 1997). As states are sets of grounded
atoms, they can be viewed as relational first-order structures
having the same universe B. Our method searches for a suit-
able map σ : B → B (we call it a PDDL endomorphism)
allowing us to replace states and actions in a plan π involv-
ing the city c1 by another states and actions not involving c1.
Thus we obtain an alternative plan π′ such that σ then acts as
homomorphism between the original states and the replaced
ones. Moreover, the actions in the new plan π′ contain only
objects in the image of σ, i.e., σ(B) = {σ(b) | b ∈ B}. Thus
all the objects in B \ σ(B) are redundant and can be pruned.

As homomorphisms preserve only positive existential for-
mulas, they cannot properly treat delete effects in actions
as delete effects involve implicitly negation. In order to
overcome this problem, our method applies lifted mutex
groups which are first-order invariants allowing to over-
approximate the set of reachable states. There are meth-
ods how to compute them from the PDDL formulation of
a task (Helmert 2009; Fišer 2020). Using the lifted mutex
groups, we can identify a subset of objects on which σ has
to act as the identity map. Fixing these objects ensures σ to
be a homomorphism between states of π and π′.

To find a suitable map σ, we formulate a constraint sat-
isfaction problem (CSP) which can be solved by an off-the-
shelf CSP solver. More precisely, the solutions to our CSP
give us possible maps σ preserving plans. Clearly, among
them, we are interested in those whose image is the smallest
possible. In that case, we can prune the largest amount of
objects.

PDDL Planning Tasks
We consider the normalized non-numeric, non-temporal
PDDL tasks without conditional effects and negative pre-
conditions, and with all formulas being conjunctions of
atoms (represented as sets of atoms). We also split effects of
PDDL actions into add effects (positive literals) and delete
effects (negative literals) directly in the definition below to
simplify the presentation. In contrast to the normalization of
PDDL tasks described by Helmert (2009), we do not sup-
port axioms (derived predicates) and we keep and utilize
PDDL types. Although we disregard conditional effects in

the theory for sake of simplicity, our implementation sup-
ports them.

Given a set S, we denote a tuple 〈s1, . . . , sn〉 of elements
from S shortly by ~s. The i-th component of ~s is denoted
si ∈ S and |~s| stands for the length of ~s. For an indexed
family of sets Si by a set of indexes I their Cartesian product
is denoted by

∏
i∈I Si.

Definition 1. Let B be a non-empty set of objects. A type τ
is a subset of B. A type hierarchy T over B is a non-empty
set of types such that B ∈ T and for every pair of types
τi, τj ∈ T it holds that τi ⊆ τj or τi ⊇ τj or τi ∩ τj = ∅.
A type τi is said to be minimal if it has no subtype, i.e., for
every type tj ∈ T either τi ⊆ τj or τi ∩ τj = ∅. We further
assume that the union of all minimal types equals B.

Note that the minimal types form a partition of the set B
since they are disjoint and cover it. Although the condition
on the union of minimal types is not explicitly enforced by
the PDDL standard, it is always possible to extend the type
hierarchy so that it satisfies this condition: For each non-
minimal type τ , take all its elements which do not belong
to any of its subtypes and create a new minimal type from
these elements.

Definition 2. A normalized PDDL task is a tuple P =
〈B, T ,V,P,A, ψI , ψG〉 where B is a non-empty set of ob-
jects, T is a type hierarchy over B and V is a denumerable
set of variable symbols, each variable v ∈ V has a type
τvar(v) ∈ T .
P is a set of predicate symbols, each predicate p ∈ P has

arity ar(p) ∈ N and an associated type τpred(p, i) ∈ T for
every i ∈ {1, ..., ar(p)}. An atom is of the form p(~t), where
~t = 〈t1, . . . , tn〉, p ∈ P is a predicate symbol, n = ar(p) is
the arity of p, and each ti is either an object b ∈ τpred(p, i),
or a variable v ∈ V with τvar(v) ⊆ τpred(p, i). A ground
atom is an atom without variables. For an atom p(~t) and a
tuple of variables ~x we also use the notation p(~x) to express
that variables occurring in p(~t) are among those in ~x. Given
an atom p(~x), where ~x is a tuple of variables, and a tuple
of objects~b ∈

∏|~x|
i=1 τvar(xi), p(~b) denotes the ground atom

resulting from p(~x) by substituting~b for ~x.
An action schema a(~x) ∈ A is a tuple a =

〈prea(~x), adda(~x), dela(~x)〉 where prea(~x), adda(~x) and
dela(~x) are sets of atoms, called preconditions, add effects,
and delete effects, respectively, and ~x is a tuple of variables
occurring in any atom in a(~x). If we substitute a tuple of
objects ~b ∈

∏|~x|
i=1 τvar(xi) for ~x, we create a ground ac-

tion (or shortly just an action). The resulting ground action
is denoted by a(~b).

To simplify the formulation of our results, we further as-
sume that the action schemata do not contain objects, i.e.,
they contain only variables. Without any loss of generality,
we can remove all objects from the action schemata: For an
object b ∈ B occurring in an action schema we introduce a
type τb = {b} ∈ T and refine the type hierarchy T so that it
satisfies all the necessary conditions from Definition 1. Fur-
ther, we introduce a fresh variable vb of type τb and replace
all occurrences of b in the action schema by vb. Let a(~x) be
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B

locatable loc = {c0, c1, c2, c3} num = {0, 1, 2}

veh = {a, b} pkg = {p0, p1}

Figure 2: The type hierarchy of the transportation domain.

an action schema, a(~b) a corresponding ground action and
p(~c) ∈ prea(

~b) ∪ adda(~b) ∪ dela(~b) a ground atom. The
above assumption allows us to infer that all elements in ~c
occur in~b.

A set of ground atoms s is called a state. The sets ψI and
ψG are states, called initial state and goal, respectively. A
state s is a goal state if s ⊇ ψG.

A ground action a(~b) is applicable in a state s if
prea(

~b) ⊆ s. The resulting state of applying an applicable
action a(~b) in a state s is the state a(~b)JsK = (s \ dela(~b)) ∪
adda(~b).

A sequence of ground actions π = 〈a1(~b1), . . . , an(~bn)〉
is applicable in a state s0 if there are states s1, . . . , sn such
that ai(~bi) is applicable in si−1 and si = ai(~bi)Jsi−1K
for i ∈ {1, . . . , n}. The resulting state of this applica-
tion is πJs0K = sn. The sequence π is called a plan iff
π[ψI ] ⊇ ψG. In case of optimal planning, we assume that
for each action schema a(~x) there is a cost function ca as-
signing a cost ca(~b) to the ground action a(~b). It allows to
define a cost of the plan π as

∑n
i=1 cai(

~bi). A plan with a
minimum cost is called optimal.

A state s is reachable if there exists an action sequence π
such that πJψIK = s.

Note that a state s can be viewed as a first-order structure
whose universe is B and every predicate symbol p ∈ P is
interpreted by the relation

R(p, s) = {~b ∈
ar(p)∏
i=1

τpred(p, i) | p(~b) ∈ s}.

There are two kinds of predicate symbols. The static ones
and dynamic ones. A static predicate p is interpreted in all
reachable states by the same relation (i.e., it occurs neither
in add effects nor delete effects of any action). Thus its fixed
interpretation is given by the initial state ψI . The remaining
predicates are dynamic, i.e., those whose interpretation may
change by the application of an action.
Example 3. Now we introduce a running example al-
lowing us to illustrate defined concepts throughout the
paper. Consider a task in the logistics domain whose
type hierarchy is depicted in Figure 2. The task has two
static binary predicates: road(x: loc, y: loc) represents the
connectivity between locations and pred(x: num, y: num)
represents ordering of vehicles’ capacities. The inter-
pretation of road is depicted in Figure 1, i.e., it is
{〈c0, c1〉, 〈c1, c0〉, 〈c0, c2〉, 〈c2, c0〉, . . .}. The interpretation
of pred is {〈0, 1〉, 〈1, 2〉}. Furthermore, the task has three
dynamic predicates: at(v: locatable, x: loc) describes

the location of a vehicle or package, in(p: pkg, v: veh)
is true if the package p is loaded in the vehicle v, and
cap(v: veh, n: num) represents the current free capacity of
the vehicle v. Apart from the interpretations of static pred-
icates, the initial state ψI contains also atoms at(a, c0),
at(b, c3), at(p0, c0), at(p1, c3), cap(a, 2), cap(b, 2). The
goal is defined by ψG = {at(p0, c3), at(p1, c0)}. So the
package p0 is in c0 and p1 in c3. The goal is to interchange
their locations.

There are three action schemata drive(~u), pick(~v) and
drop(~v) defined as follows:

~u = 〈v: veh, x, y: loc〉
predrive(~u) = {at(v, x), road(x, y)},
adddrive(~u) = {at(v, y)},
deldrive(~u) = {at(v, x)},
~v = 〈v: veh, x: loc, p: pkg, n1, n2: num〉
prepick(~v) = {at(v, x), at(p, x), pred(n1, n2), cap(v, n2)},
addpick(~v) = {in(p, v), cap(v, n1)},
delpick(~v) = {at(p, x), cap(v, n2)},
predrop(~v) = {at(v, x), in(p, v), pred(n1, n2), cap(v, n1)},
adddrop(~v) = {at(p, x), cap(v, n2)},
deldrop(~v) = {in(p, v), cap(v, n1)}.

We can overapproximate which combinations of ground
atoms might appear in a reachable state by employing lifted
mutex groups (Helmert 2009; Fišer 2020). We extend our
notational conventions. Given two tuples of variables ~x and
~y, we denote their concatenation ~x, ~y. Then we use the no-
tation p(~x, ~y) for an atom with predicate p whose variables
are among ~x, ~y.

Definition 4. A set of atoms µ(~x, ~y) =
{p1(~x, ~y), . . . , pn(~x, ~y)} with two tuples of distinguished
variables, fixed variables ~x and counted variables ~y, is
said to be a lifted mutex group if for each reachable state
s and each tuple ~b ∈

∏|~x|
i=1 τvar(xi) there is at most one

j ∈ {1, . . . , n} and at most one tuple ~c ∈
∏|~y|
i=1 τvar(yi)

such that pj(~b,~c) ∈ s.
Example 5. In our running example, there are three lifted
mutex groupsM = {µ1, µ2, µ3}:

µ1(v: veh, x: loc) = {at(v, x)}
µ2(v: veh, n: num) = {cap(v, n)}

µ3(p: pkg, v: veh, x: loc) = {at(p, x), in(p, v)},

where the first variable in each µi is fixed and the remaining
ones are counted. So, it follows from µ1 that for each (fixed)
vehicle v there is at most one location x so that at(v, x)
holds in a reachable state. And similarly from µ2, it follows
that each vehicle has assigned at most one capacity. Lastly,
µ3 says that for each (fixed) package p there is at most one
object z ∈ loc ∪ veh such that either at(p, z), or in(p, z)
holds.

There are methods for the inference of lifted mutex groups
from the PDDL formulation (see Helmert 2009; Fišer 2020).
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We denote a set of inferred lifted mutex groups byM. Simi-
larly to action schemata, we assume that no object occurs in
any atom from any lifted mutex group inM.

Definition 6. A substitution ξ : V → V is a map respecting
types, i.e., τvar(ξ(v)) ⊆ τvar(v) for any v ∈ V .

Clearly, lifted mutex groups are closed under sub-
stitutions, i.e., if µ(~u,~v) is a lifted mutex group then
µ(ξ(~u), ξ(~v)) is a lifted mutex group as well.

PDDL Endomorphisms
In this section, we introduce a novel notion of PDDL endo-
morphism, and we show how to use PDDL endomorphisms
to infer redundant objects, i.e., objects that are not necessary
for solving the planning task.

Definition 7. A set of objects Z ⊆ B is called redundant
if there is an (optimal) plan π = 〈a1(~b1), . . . , an(~bn)〉 such
that none of the elements from Z occurs in π.

Given a map σ : B → B, we will extend it element-
wise to tuples, i.e., if ~b = 〈b1, . . . , bn〉 then σ(~b) =
〈σ(b1), . . . , σ(bn)〉. In order to decrease the amount of
parenthesis in mathematical expressions, we adopt the com-
mon convention of removing parenthesis in σ(~b), i.e., writ-
ing σ~b instead. Further, we extend σ on states by σ(s) =

{p(σ~b) | p(~b) ∈ s}. Similarly, we extend σ on sets of ob-
jects, in particular σ(B) = {σ(b) | b ∈ B} denotes the
image of σ on all objects.

Before we define PDDL endomorphisms, we define
homomorphisms between states. Since states are in fact
first-order structures, we define homomorphisms between
states as the usual homomorphisms of first-order struc-
tures (Hodges 1997, Chapter 1). More precisely, a map
σ : B → B is a state homomorphism from a state s to t
if σ(s) ⊆ t (i.e., p(~b) ∈ s implies p(σ~b) ∈ t). We denote
this fact by σ : s → t. A state homomorphism σ : s → t is
called state endomorphism on s if s = t. Moreover, the
state endomorphism σ is called state automorphism on s if
σ(s) = s, (i.e., it can only permute atoms in s).

Definition 8. A map σ : B → B is called a PDDL endo-
morphism if the following conditions are satisfied:

(P1) σ preserves types, i.e., σ(τ) ⊆ τ for all types τ ∈ T ,
(P2) σ is a state endomorphism on ψI ,
(P3) σ is a state automorphism on ψG,
(P4) for all reachable states s, t and each ground action a(~b)

if σ : s → t and s′ = a(~b)JsK then σ : s′ → t′ for
t′ = a(σ~b)JtK.

(P5) for the optimal planning, we further assume that
ca(σ~b) ≤ ca(~b) for all ground actions a(~b).

The condition (P4) states that whenever we have reach-
able states s, t such that σ is a state homomorphism from
s to t and a ground action a(~b) is applicable in s, then the
ground action a(σ~b) is applicable in t and σ remains a state
homomorphism after applications of a(~b) and a(σ~b) as de-
picted in Figure 3 (a).

s s′

t t′

a(~b)

σ σ

a(σ~b)

(a)

ψI s1 . . . sn

ψI t1 . . . tn

a1(~b1)

σ σ

a2(~b2) an(~bn)

σ

a1(σ~b1) a2(σ~b2)

(b)

an(σ~bn)

Figure 3: (a) the condition (P4), (b) the plan preservation

Now we show that PDDL endomorphisms preserve (opti-
mal) plans.
Theorem 9. Let σ be a PDDL endomorphism. If π =

〈a1(~b1), . . . , an(~bn)〉 is an (optimal) plan, then π′ =

〈a1(σ~b1), . . . , an(σ~bn)〉 is an (optimal) plan as well.

Proof. Let π = 〈a1(~b1), . . . , an(~bn)〉 be an (optimal) plan
and σ a PDDL endomorphism. Consider the diagram de-
picted at Figure 3 (b). In the upper row there is the plan
π starting in the initial state ψI leading to a goal state
sn ⊇ ψG. By (P2) σ : ψI → ψI is a state endomorphism.
Thus we can apply (P4) to show that σ : s1 → t1 is a state
homomorphism, where t1 = a(σ~b1)JψIK. Applying (P4) re-
peatedly, we finally get that σ : sn → tn. As σ is a state au-
tomorphism on ψG, we have ψG = σ(ψG) ⊆ σ(sn) ⊆ tn.
Consequently, π′ is a plan. In case π is optimal, the condi-
tion (P5) ensures that the cost of π′ is less than or equal to
the cost of π. As π is optimal, the cost of π′ has to be equal
to the cost of π.

Informally, Theorem 9 shows that PDDL endomorphisms
embed plans into the same PDDL planning task. So, it easily
follows that the objects that do not belong to the image of
σ are redundant, i.e., we can safely remove them from the
planning task.
Corollary 10. Let σ be a PDDL endomorphism. If there is
an (optimal) plan π then there is an (optimal) plan whose
actions are grounded by tuples of objects from σ(B). In par-
ticular, if σ(B) ( B then objects not belonging to σ(B) are
redundant.

Inference of PDDL Endomorphisms
The condition (P4) is not particularly useful for the infer-
ence of PDDL endomorphisms in practice, because in order
to use it, we would need to know the whole state space in
the first place. In this section, we replace the condition (P4)
with another condition that can be evaluated directly on the
PDDL representation if we also utilize additional informa-
tion about reachable states provided by lifted mutex groups.

Before we state the new condition, note that the condition
(P4) requires that a(σ~b) is applicable in t given a(~b) is ap-
plicable in s and σ : s→ t (see Figure 3 (b) again). This fol-
lows immediately since the homomorphisms preserve posi-
tive existential formulas, in particular conjunctions of atoms.
The preconditions prea(~b) ⊆ s can be viewed as a conjunc-
tion of atoms, therefore we get prea(σ~b) ⊆ t as shown in
the following lemma.
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Lemma 11. Let σ : s → t be a state homomorphism, a(~x)
an action schema and ~b a tuple of objects such that the
ground action a(~b) is applicable in s. Then a(σ~b) is appli-
cable in t.

Proof. Let prea(~x) = {p1(~x), . . . , pn(~x)}. Note
that σ(prea(

~b)) = prea(σ
~b). Indeed, σ(prea(

~b)) =

σ({p1(~b), . . . , pn(~b)}) = {p1(σ~b), . . . , pn(σ~b)} =

prea(σ
~b). Since prea(

~b) ⊆ s and σ : s → t, we obtain
prea(σ

~b) = σ(prea(
~b)) ⊆ σ(s) ⊆ t.

The second part of the condition (P4) is more delicate. It
states that σ remains homomorphism after the parallel ap-
plication of a(~b) and a(σ~b), i.e., σ maps s′ = a(~b)JsK to
t′ = a(σ~b)JtK. It is easy to see that the homomorphism
is preserved on monotonic tasks, and what makes planning
tasks non-monotonic are non-empty delete effects. More
precisely, to preserve the homomorphism σ, we need to
make sure that, if a(~b) preserves an atom p(~b) from s to s′,
then a(σ~b) preserves its homomorphic image p(σ~b) from t
to t′.

Now we are ready to state the new condition (P4’) that can
replace (P4) and after that, we show how to use lifted mutex
groups to efficiently evaluate this condition on the PDDL
task:

(P4’) For each ground action a(~b) and each reachable state s,
if a(~b) is applicable in s and there exist p(~d) ∈ dela(~b)

and p(~c) ∈ s such that ~c 6= ~d, then σ~c 6= σ~d.

Lemma 12. Let σ : B → B be a map on objects satisfying
(P1–P3). If σ satisfies (P4’), then σ satisfies (P4).

Proof. Suppose that s, t are reachable states such that
σ : s → t and a(~b) is applicable in s. Let s′ = a(~b)JsK.
By Lemma 11 we know that a(σ~b) is applicable in t. So it
remains to prove that σ is a state homomorphism from s′ to
t′ = a(σ~b)JtK, i.e., we have to check that p(~c) ∈ s′ implies
p(σ~c) ∈ t′.

Let p(~c) be a ground atom belonging to s′. We distinguish
two cases. First, p(~c) ∈ adda(~b). It follows that p(σ~c) ∈
adda(σ~b). Consequently, p(σ~c) ∈ t′.

Second, suppose p(~c) 6∈ adda(~b). In this case, we must
have p(~c) ∈ s and p(~c) 6∈ dela(~b). As σ : s → t, it follows
that p(σ~c) ∈ t. To finish the proof, we have to show that
p(σ~c) 6∈ dela(σ~b) because it implies p(σ~c) ∈ t′. Suppose
for the sake of contradiction p(σ~c) ∈ dela(σ~b). It follows
that there has to be a tuple ~d such that p(~d) ∈ dela(~b) and
σ~d = σ~c. Moreover, ~d 6= ~c because p(~c) 6∈ dela(~b). Thus by
(P4’) we get σ~d 6= σ~c (a contradiction).

In order to find a computable condition implying (P4’),
we identify a set of objects that have to be fixed by the map-
ping σ in a sense that σ(b) = b for every such object b ∈ B.
We fix those objects for which we cannot ensure that (P4’)
holds using lifted mutex groups. The reason we need lifted
mutex groups is that they can tell us which atoms cannot

appear together in any reachable state. Consequently, this
allows us to say which objects do not need to be fixed.
Definition 13. Let µ(~u,~v) be a lifted mutex group with
fixed and counted variables ~u and ~v, respectively. An atom
p(~u,~v) ∈ µ(~u,~v) covers another atom p(~x, ~y) if there is a
substitution ξ such that ξ(~u) = ~x and ξ(~v) = ~y. The vari-
ables ~x are then called fixed and ~y counted.

Let M denote a set of lifted mutex groups. We say that
M covers an atom p(~x, ~y) if there exists a mutex group
µ(~u,~v) ∈ M and an atom p(~u,~v) ∈ µ(~u,~v) that covers
p(~x, ~y).

Note that if M covers an atom p(~x), the covering atom
from a mutex group inM does not need to be unique. Only
when a covering atom is selected, one can split variables ~x
into fixed ones and counted ones since different covering
atoms can induce different splittings for ~x.
Example 14. Continuing with our running example, note
that all delete effects of the action schemata drive, pick,
and drop are covered by exactly one atom from the mutex
groups µ1, µ2, µ3. The delete effect at(v, x) of the action
schema drive is covered by the atom from µ1 with the iden-
tity substitution. Thus v is a fixed variable and x is counted.

Consider the delete effects of the action schema pick, i.e.,
delpick(~v) = {at(p, x), cap(v, n2)}. The first delete effect
is covered by the first atom in µ3 with the identity substitu-
tion. The second one is covered by the atom from µ2 with
the substitution v 7→ v and n 7→ n2. So p, v are fixed vari-
ables and x, n2 are counted. Covering of the delete effects
of drop is analogous.

Observe that for a covered atom p(~x, ~y) with fixed vari-
ables ~x and counted variables ~y it holds that whenever
atoms p(~b,~c) and p(~b, ~d) for ~b ∈

∏|~x|
i=1 τvar(xi) and ~c, ~d ∈∏|~y|

i=1 τvar(yi) belong to a reachable state, then ~c = ~d. In
other words, we cannot have two different atoms p(~b,~c) and
p(~b, ~d) simultaneously in a reachable state. This property of
lifted mutex groups is necessary for identifying which ob-
jects do not need to be fixed. The remaining objects specified
in the following definition are fixed.
Definition 15. Given a set of lifted mutex groupsM and an
action schema a(~x) ∈ A, let:
• Xdel

a denote the set of variables appearing in all p(~x) ∈
dela(~x)\prea(~x); it contains variables from delete effects
that do not have their matching atoms in the precondition.
In other words, these are delete effects for which we can-
not be sure that they actually delete an atom;

• Xncov
a,M denote the set of variables appearing in all p(~x) ∈

dela(~x) not covered byM;
• Xcov

a,M denote the set of fixed variables appearing in all
p(~x) ∈ dela(~x) covered byM. We assume here that for
each such p(~x) a covering atom was selected so that the
tuple of fixed variables occurring in ~x is uniquely deter-
mined. In our experiments, we implemented this selection
naively without striving to find the best possible choice.

XM =
⋃
a′∈A(X

del
a′ ∪ Xncov

a′,M ∪ Xcov
a′,M) denotes a set of

identity variables for the set of lifted mutex groupsM, and
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FM =
⋃
x∈XM

τvar(x) denotes a set of identity objects
for the set of lifted mutex groupsM.

Fixing objects in FM helps us to ensure that the follow-
ing situation cannot occur. Let s be a state containing an
atom p(~c) and let a(~b) be an action applicable in s preserv-
ing p(~c) and deleting an atom p(~d) (thus ~c 6= ~d) not nec-
essarily contained in s. If σ : s → t maps both ~c, ~d to the
same tuple σ~c = σ~d, then p(σ~c) = p(σ~d) is not preserved
by a(σ~b) because p(σ~d) is a delete effect of a(σ~b). Conse-
quently, σ would not be a state homomorphism from a(~b)JsK
to a(σ~b)JtK because p(~c) ∈ a(~b)JsK and p(σ~c) 6∈ a(σ~b)JtK.

To ensure that this situation cannot happen, we either en-
force σ~c 6= σ~d by fixing suitable objects or apply the mutex
groups M to infer that p(~c) and p(~d) cannot occur simul-
taneously in s. To exclude the cases when the delete effect
p(~d) 6∈ s, the variables Xdel

a are included among the iden-
tity variables. Further, to apply the mutex groups, we need
the delete effect p(~d) to be covered. Therefore the variables
Xncov
a,M belong to the set of identity variables. Finally, ~c and

~d may differ only on counted variables for the inference via
M to be applicable. That is why the setXcov

a,M is introduced.

Example 16. Consider our running example again. All its
actions satisfy dela(~x) ⊆ prea(~x). Hence Xdel

a = ∅ for
each of them. As all delete effects are covered by mutex
groupsM = {µ1, µ2, µ3}, we have Xncov

a,M = ∅ as well. Fi-
nally, the delete effect at(v, x) of the action schema drive
is covered by the atom from µ1 with v fixed and x counted.
Thus Xcov

drive,M = {v}. Similarly, the fixed variables occur-
ring in the delete effects of pick for the covering described
in Example 14 are p and v. Hence Xcov

pick,M = {p, v}. Anal-
ogously, we have Xcov

drop,M = {p, v}. Consequently, the set
of identity variables XM = {p, v} and FM = pkg ∪ veh.
Based on the delete effects, we look for a map σ : B → B
which behaves on pkg∪ veh as identity. Thus we can detect
redundant objects only in loc ∪ num.

Before we finally get to the main result of this section
stated in Theorem 19, where we show how to use lifted mu-
tex groups to verify that a given mapping σ is, in fact, a
PDDL endomorphism, we need to show that we can sepa-
rate tuples of objects using minimal types.
Definition 17. Given two different objects b, c ∈ B, we say
that b and c are separable by types if there exist disjoint
types τ, τ ′ ∈ T such that b ∈ τ and c ∈ τ ′.

Given two tuples of objects ~b,~c ∈ Bk of the same size k,
we say that ~b and ~c are separable by types if there exists
i ∈ {1, . . . , k} such that bi and ci are separable by types.
Lemma 18. Let σ : B → B be a PDDL endomorphisms and
let ~b,~c ∈ Bk be tuples of objects such that ~b 6= ~c. Then the
following hold:

1. If~b,~c are separable by types, then σ~b 6= σ~c.
2. If ~b,~c are not separable by types, then for every i ∈
{1, . . . , k} there exists a minimal type τi ∈ T such that
bi, ci ∈ τi.

Proof. 1. If ~b,~c are separable by types, then there is i such
that bi, ci are separable by types, i.e., there are disjoint types
τ, τ ′ such that bi ∈ τ and ci ∈ τ ′. Since σ preserves all types
(P1), it follows that σ(bi) 6= σ(ci) and hence σ~b 6= σ~c.

2. By the assumption, we have that bi, ci are not separable
by types for every i. As minimal types cover all the objects,
bi belongs to a minimal type τi. Similarly, ci ∈ τ ′i for a
minimal type τ ′i . If τi 6= τ ′i then τi ∩ τ ′i = ∅ and bi, ci would
be separable by types. Thus we must have τi = τ ′i .

Now we are ready to state the main result.
Theorem 19. Let M denote a set of lifted mutex groups,
and let σ : B → B denote a map such that σ(b) = b for
all identity objects b ∈ FM. If σ satisfies (P1–P3), then σ
satisfy (P4).

Proof. It follows from Lemma 12 that it is enough to
prove that σ satisfies (P4’). Assume that a(~b) is applica-
ble in a reachable state s and p(~d) ∈ dela(~b). This means
that there has to be an action schema a(~x) such that ~b ∈∏|~x|
i=1 τvar(xi). Moreover, there must be a tuple of variables

~y such that p(~y) ∈ dela(~x) and ~d ∈
∏|~y|
i=1 τvar(yi). Further,

suppose that p(~c) ∈ s for some ~c and ~c 6= ~d. Now we need
to show that σ~c 6= σ~d.

By Lemma 18, if ~c, ~d are separable by types, then σ~c 6=
σ~d and we are done. Next suppose that ~c, ~d are not separa-
ble by types. By Lemma 18, for all i ∈ {1, . . . , |~y|}, ci, di
belong to the same minimal type. Thus ~c ∈

∏|~y|
i=1 τvar(yi).

There are several cases. If p(~y) 6∈ prea(~x) then all variables
in ~y belongs toXdel

a ⊆ XM. Similarly, if p(~y) is not covered
by M then all variables from ~y belong to Xncov

a,M ⊆ XM.
Consequently, we have σ~d = ~d 6= ~c = σ~c. Thus we can sup-
pose now that p(~y) is covered by M and p(~y) ∈ prea(~x).
Hence the variables ~y can be split into fixed variables and
counted variables.

Since ~c 6= ~d, there must be i such that ci 6= di. If at least
one such i corresponds to a fixed variable yi ∈ XM then
σ(ci) = ci 6= di = σ(di). Thus σ~c 6= σ~d.

Finally assume that ~c and ~d differ only in components cor-
responding to counted variables. Since p(~y) ∈ prea(~x), we
have p(~d) ∈ prea(

~b) ⊆ s. Thus both p(~c) and p(~d) belong
to s. However, this contradicts the fact that p(~y) is covered
by an atom from a lifted mutex group.

Example 20. Using Theorem 19, we can finish our run-
ning example. We know from Example 16 that our endo-
morphism σ : B → B has to fix all the objects in pkg∪ veh.
Since σ has to preserve types, we have σ(loc) ⊆ loc and
analogously for num. There is a non-identity endomorphism
on the graph represented by the relation road which maps
c1 to c2. On the other hand, there is no non-identity endo-
morphism on the three-element chain represented by the in-
terpretation of pred.1 Altogether, consider a map σ : B → B

1Note that if we change, for instance, the interpretation of pred
to {〈0, 1〉, 〈0, 2〉}, then there would be an endomorphism mapping
1 to 2 and fixing 0, 2.
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such that σ(c1) = c2 and σ(x) = x for x 6= c1. This map
clearly satisfies (P1). It satisfies (P2) because σ preserves the
interpretation of road. Further, it satisfies (P3) as c1 do not
occur in ψG. Finally, it fixes elements from FM. Hence it is
a PDDL endomorphism by Theorem 19. So, c1 is a redun-
dant object, and can be safely removed from the planning
task.

CSP Formulation
In this section, we will formulate a constraint satisfaction
problem whose solutions will be endomorphisms of PDDL
tasks. First, we recall the Constraint Satisfaction Problem
(CSP) (for details see, e.g., Russell and Norvig 2010, Chap-
ter 6). Suppose we are given a set of variables X , a finite
domain D where the variables can take values, and a set of
constraints C. The problem is whether there exists an assign-
ment h : X → D of values D to variables X that satisfies
all the constraints. Each constraint C ∈ C is specified as a
pair C = 〈 ~X,R〉 where ~X is a tuple of variables from X
of length n, and R is an n-ary relation on D. The assign-
ment h satisfies the constraint C = 〈 ~X,R〉 if h( ~X) ∈ R.
CSPs are often formulated in such a way that each variable
X ∈ X has its domain of allowed values DX ⊆ D. Note
that each such restriction can be equivalently expressed as a
unary constraint 〈X,DX〉.

LetM denote an inferred set of lifted mutex groups, XM
the corresponding set of identity variables, and FM the set
of identity objects. For each object b ∈ B introduce a vari-
able Xb. The domain of Xb is B. Given a tuple ~b of ob-
jects, we denote the tuple of corresponding variables ~X~b.
Further, we introduce the following constraints correspond-
ing to Theorem 19:

(C1) for each type τ ∈ T and each object b ∈ τ the con-
straint Cb,τ = 〈Xb, τ〉,

(C2) for each grounded atom p(~b) in ψI the constraint
Cp(~b) = 〈 ~X~b, {~b

′ | p(~b′) ∈ ψI}〉,

(C3) for each b ∈ B occurring in ψG the constraint Gb =
〈Xb, {b}〉,

(C4) for each b ∈ FM the constraint Fb = 〈Xb, {b}〉,
A solution to the above CSP is a mapping of variables to
values in B satisfying all the constraints (C1–C4). As there
is a 1-1 correspondence between the CSP variables and ob-
jects, the solution is, in fact, a self-map σ on B. Moreover,
the constraints (C1–C3) ensure that (P1–P3) holds. Finally,
σ(b) = b for any b ∈ FM is ensured by (C4).

For the optimal planning, we further need constraints for
the costs of actions forcing σ to satisfy (P5). Consider an ac-
tion schema a(~x). In our experiments on the IPC domains,
we had to deal with two cases. First, the cost of all in-
stances of a(~x) have the same cost, i.e., ca(~b) = ca(σ~b)
holds for any σ : B → B. Thus there is no need to intro-
duce a constraint in this case. Second, the actual cost of a
ground action a(~b) is encoded in the initial state as a “val-
ued” static k-ary predicate, i.e., a set of k-ary ground atoms
together with their costs is provided in the initial state. For

instance, there is a valued binary predicate road-length in
the transportation domain encoding a distance between con-
nected locations. Let ψcost

I be the set of ground atoms of
valued predicates in the initial state. We call the elements of
ψcost
I “valued” ground atoms. For two valued ground atoms

q(~b), q(~c) ∈ ψcost
I with the same predicate symbol q we

write q(~b) ≤ q(~c) if the cost associated with q(~b) is less
than or equal to the cost of q(~c). In order to satisfy (P5),
we have to preserve the valued predicates in the initial state
which can be done by the following constraints:

(C5) for each valued ground atom q(~b) ∈ ψcost
I we introduce

the constraint

Cq(~b) = 〈 ~X~b, {~b
′ | q(~b′) ≤ q(~b), q(~b′) ∈ ψcost

I }〉.

Related Work
PDDL endomorphisms naturally induce endomorphisms
of facts and operators on the ground level through the
grounding process. For example in our running exam-
ple, a PDDL edomorphism mapping the location c1 to
c2 induces the ground endomorphism that maps the fact
at(p0, c1) to at(p0, c2), the operator drive(a, c1, c0) to
drive(a, c2, c0), and so on for all other facts and operators
where c1 and c2 appear. In our previous work (Horčı́k and
Fišer 2021), we introduced endomorphisms on the ground
level (STRIPS and FDR) and discussed the relation to struc-
tural symmetries (e.g., Pochter, Zohar, and Rosenschein
2011; Shleyfman et al. 2015), hm heuristics (Haslum and
Geffner 2000; Alcázar and Torralba 2015), operator mutexes
(Fišer, Torralba, and Shleyfman 2019), and dominance prun-
ing (Torralba and Hoffmann 2015) there.

On the lifted level, there is a connection between PDDL
endomorphisms and structural symmetries (Röger, Sievers,
and Katz 2018; Sievers et al. 2019). In fact, any bijective
PDDL endomorphism (i.e., a PDDL automorphism) is a
structural symmetry. Nevertheless, the structural symmetries
as defined by Röger, Sievers, and Katz (2018) and Sievers
et al. (2019) are more general than PDDL automorphisms
as we define them, because they allow to permute not only
objects, but also predicate symbols and action schemata. On
the other hand, unlike structural symmetries, PDDL endo-
morphisms allow us to find redundant objects, because they
are not restricted to permutations of objects.

Experiments
The inference of PDDL endomorphisms and pruning of re-
dundant objects was implemented2 in C and experimentally
evaluated on a cluster of computing nodes with Intel Xeon
Scalable Gold 6146 processors and 8 GB memory limit per
task. We used all planning domains from International Plan-
ning Competitions (IPCs) from 1998 to 2018 that are typed
(54 domains in the optimal track, and 51 domains in the sat-
isficing track). For the domains from the optimal track, we
computed PDDL endomorphisms preserving optimal plans,
i.e., costs of actions were considered, and for the satisficing
track, we disregarded costs.

2Repository https://gitlab.com/danfis/cpddl, branch icaps21-
lifted-endomorphism
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domain #ps %obj %op %fact
agricola18 (20) 20 1.15 0.00 0.00
airport04 (50) 50 4.00 0.00 0.00
caldera18 (20) 20 15.15 0.00 0.00
citycar14 (20) 5 7.76 0.00 0.00
data-network18 (20) 10 4.12 0.00 0.00
parcprinter08 (30) 10 7.05 0.00 0.00
parcprinter11 (20) 6 7.28 0.00 0.00
pipesworld-notankage04 (50) 5 6.58 0.00 0.00
pipesworld-tankage04 (50) 11 2.88 0.00 0.00
woodworking08 (30) 1 3.23 0.00 0.00
childsnack14 (20) 2 2.91 2.16 2.78
rovers06 (40) 33 3.84 11.32 6.43
satellite02 (20) 17 7.61 20.40 11.48
tpp06 (30) 1 2.22 13.44 0.42
transport08 (30) 13 3.51 6.22 5.31
transport11 (20) 11 4.65 9.28 7.63
transport14 (20) 15 5.44 8.59 7.44
visitall11 (20) 8 15.57 21.28 16.71
visitall14 (20) 6 11.38 13.33 11.51
overall from above (530) 244 5.83 5.33 3.61
overall from op-pruned (220) 106 5.99 12.26 8.31

Table 1: Pruning on the domains from the optimal track. #ps:
the number of tasks with detected non-trivial PDDL endo-
morphisms; %obj: an average percentage of removed ob-
jects in tasks with non-trivial PDDL endomorphisms; %op:
an average percentage of removed operators after grounding;
%fact: an average percentage of removed facts after ground-
ing; overall from above: sum for #ps and averages over all
tasks above for the rest; overall from op-pruned: considers
only tasks where at least one operator was pruned.

For the inference of lifted mutex groups we used the al-
gorithm proposed by Fišer (2020). We removed all atoms
containing only fixed variables from all lifted mutex groups.
Consequently, we used all remaining non-empty mutex
groups for covering atoms in delete effects. We can prepro-
cess lifted mutex groups in this way, because every subset
of a mutex group is also a mutex group and removing atoms
from lifted mutex groups clearly generate subsets.

For solving CSPs, we used CP Optimizer from IBM
ILOG CPLEX Optimization Studio v12.9. This solver con-
tains an objective function that returns the number of dif-
ferent values assigned to a specified set of variables. We use
the minimization of such objective function over object vari-
ables to obtain optimal solutions.

The CSP formulation was solved optimally for all tested
tasks. The computation took less than 50 seconds for each
task, but less than 1 second in all domains except for no-
mystery11 (the median over all tasks was 5 milliseconds,
and the average was 126 milliseconds). We were able to find
non-trivial PDDL endomorphisms in 19 domains from the
optimal track, and in 16 domains from the satisficing track.

Table 1 and Table 2 report average percentage of pruned
objects for optimal and satisficing track, respectively. The
tables also show an average percentage of pruned STRIPS
operators and facts in a sense that reducing the number of
objects in the PDDL representation led to a smaller number
of operators and facts after grounding using relaxed reacha-
bility (Helmert 2009).

domain #ps %obj %op %fact
agricola18 (20) 20 1.01 0.00 0.00
airport04 (50) 50 4.00 0.00 0.00
caldera18 (18) 18 12.72 0.00 0.00
citycar14 (20) 2 3.52 0.00 0.00
data-network18 (20) 11 3.08 0.00 0.00
parcprinter11 (20) 4 5.72 0.00 0.00
pipesworld-notankage04 (50) 5 6.58 0.00 0.00
pipesworld-tankage04 (50) 11 2.88 0.00 0.00
woodworking08 (30) 1 11.54 0.00 0.00
woodworking11 (20) 5 10.42 0.00 0.00
rovers06 (40) 33 3.84 11.32 6.43
satellite02 (20) 17 7.61 20.40 11.48
tpp06 (30) 1 2.22 13.44 0.42
transport08 (30) 25 6.56 11.05 9.59
transport11 (20) 19 6.51 8.77 8.32
transport14 (20) 18 5.47 6.75 6.57
overall from above (458) 240 5.36 5.41 3.85
overall from op-pruned (160) 113 5.70 11.49 8.17

Table 2: As Table 1, but for the satisficing track.

The tables are split so that the top part lists domains where
objects were pruned, but the pruning did not reflect on the
number of operators or facts after grounding. In the domains
agricola18, airport04, caldera18, and parcprinter08/11, we
found constant objects that are not used at all in the corre-
sponding tasks. In the rest of the domains, the pruned ob-
jects are used in the initial state, but the relaxed reachability
is already able to prune all other atoms containing the same
object. Although this type of pruning is not particularly use-
ful for the planners using ground representations, we think it
could, at some point, be useful in lifted planning (e.g., Rid-
der 2014; Corrêa et al. 2020), or it can help in a process of
designing models for real-world problems.

The bottom parts of the tables show domains where prun-
ing of objects led to pruning of operators and facts, i.e., the
PDDL endomorphism proved to be stronger than simple re-
laxed reachability. In childsnack14 that models making and
serving sandwiches, the endomorphism recognized that one
of the serving tables is not necessary for solving the task. In
satellite02 that models collecting images with satellites, we
found instruments used by satellites and directions where
satellites should be pointed to that were not necessary. In the
rest of the domains, the endomorphisms were able to prune
unnecessary parts of maps of locations defined using static
predicates.

Furthermore, we tested whether the pruning of operators
and facts positively impacts the performance of ground plan-
ners running with 8 GB memory limit and 30 minutes time
limit. For optimal planning, we used the heuristic search
planner Fast Downward (Helmert 2006) with A? and the
LM-Cut (lmc) heuristic (Helmert and Domshlak 2009); the
merge-and-shrink (ms) heuristic with SCC-DFP merge strat-
egy and non-greedy bisimulation shrink strategy (Helmert
et al. 2014; Sievers, Wehrle, and Helmert 2016); the po-
tential (pot) heuristic enhanced with disambiguations and
optimized for all syntactic states with added constraint for
the initial state (Seipp, Pommerening, and Helmert 2015;
Fišer, Horčı́k, and Komenda 2020); and the Scorpion plan-
ner (Seipp 2018; Seipp and Helmert 2018) that performed
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Figure 4: Number of expansions before the last f layer
for tasks solved both with (E) and without (B) pruning us-
ing PDDL endomorphisms where at least one operator was
pruned.

very well in the last IPC 2018; and the symbolic planner
SymbA? (Torralba et al. 2017) used as a baseline in IPC
2018. All of these planners were run without the h2 pruning
(Alcázar and Torralba 2015) as a preprocessing step.

For satisficing planner, we used LAMA planner (Richter
and Westphal 2010) used as a baseline planner for IPC 2018,
and Mercury planner (Domshlak, Hoffmann, and Katz 2015)
employing red-black planning techniques.

Unfortunately, the number of solved tasks remained the
same except for two more tasks solved by Scorpion in satel-
lite02, and one more task solved by SymbA? in transport11.
Regarding the cost of the first found plans for the satisfic-
ing planners in the pruned domains, LAMA found cheaper
plans in 28 tasks, but more expensive in 17 tasks in the trans-
port08/11/14 domains. Mercury found 22 cheaper, and 18
more expensive plans also in transport08/11/14. The num-
ber of expanded states also is not significantly affected by
the pruning as can be seen in Figure 4. So, it seems that the
pruning with PDDL endomorphisms is not particularly ben-
eficial for grounded planning techniques on IPC domains.

To test the impact of pruning on lifted planning, we eval-
uated the lifted planner introduced by Corrêa et al. (2020)
also with 8 GB memory limit and 30 minutes time limit. We
tested two variants of a search: a simple breath-first search
(denoted by bfs) and a greedy best-first search with goal-
count heuristic (Fikes and Nilsson 1971) (denoted by gbfs).
We did not modify the planner, but instead the tasks were
pruned first and new reduced domain and problem PDDL
files were generated as inputs for the planner.

Since we were not able to find any non-trivial PDDL en-
domorphisms in the hard-to-ground domains used by Corrêa
et al.,3 we used the domains from the satisficing track of
IPC where we found some redundant objects. As for the
ground planners, the resulting coverage was almost identi-
cal. The bfs variant with pruning solved one more task in
pipesworld-tankage04, and gbfs with pruning solved one
more task in sattelite02 and one more in transport11. The
number of expanded states (Figure 5) was reduced in only a
small fraction of tasks. However, we think this picture can

3Organic synthesis domains designed by Russell Viirre and
coverted into PDDL by Hadi Qovaizi (https://www.cs.ryerson.ca/
∼mes/publications); large Pipesworld-tankage domain based on the
one introduced in IPC 2004 (Hoffmann et al. 2006); and Genome
edit distance domains introduced by Haslum (2011).
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Figure 5: As in Figure 4 but for the lifted planner.

change in the future when we will have available a wider
range of hard-to-ground domains.

Conclusion
In this paper, we started a formal study of plans preserv-
ing maps between PDDL tasks. We introduced a notion of
a PDDL endomorphism as a self-map on the set of objects
which preserves (optimal) plans. We applied this notion and
developed a method allowing to prune redundant objects
from PDDL tasks. We experimentally tested this method
on the tasks from the IPC domains. It turned out that our
method is able to detect a moderate amount of redundant ob-
jects in roughly one-third of the considered domains. How-
ever, the pruning of redundant objects did not significantly
affect the performance of planners working on the proposi-
tional level.

The main goal of this work was to introduce a novel tool
for analyzing planning tasks on the lifted level. We believe
that the theory behind PDDL endomorphisms can encourage
further research in lifted planning. For example, lifted mu-
tex groups are usually inferred to be grounded and used for
the translation to finite domain representation (e.g., Helmert
2009; Fišer 2020). Here, we utilized lifted mutex groups di-
rectly on the lifted level, and it is clear that having avail-
able a richer mutex structure could only improve our results.
Moreover, there are also other types of lifted invariants (e.g.,
Rintanen 2017) that should be investigated in connection to
PDDL endomorphisms, because they could provide a differ-
ent type of useful information about reachable states.

Another line of work that could spawn from this work
is a generalization to PDDL homomorphisms. Although we
investigated only endomorphisms, the definition can be eas-
ily modified so that we obtain PDDL homomorphisms, i.e.,
maps between PDDL tasks preserving plans. We might for
instance define abstractions of PDDL tasks which are again
PDDL tasks. This could possibly lead to a strong admis-
sible heuristic for lifted planning, as abstraction heuristics
currently belong to the strongest heuristics for the grounded
planning.
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