
Total Completion Time Minimization for Scheduling with Incompatibility Cliques

Klaus Jansen,1 Alexandra Lassota, 1 Marten Maack, 1 Tytus Pikies 2

1 Department of Computer Science, Faculty Of Engineering, Kiel University, 24098 Kiel, Germany
2 Department of Algorithms and System Modeling, Gdańsk University of Technology, 80-233 Gdańsk, Poland

kj@informatik.uni-kiel.de, ala@informatik.uni-kiel.de, mmaa@informatik.uni-kiel.de, tytpikie@pg.edu.pl

Abstract

This paper considers parallel machine scheduling with in-
compatibilities between jobs. The jobs form a graph equiva-
lent to a collection of disjoint cliques. No two jobs in a clique
are allowed to be assigned to the same machine.
Scheduling with incompatibilities between jobs represents a
well-established line of research in scheduling theory and the
case of disjoint cliques has received increasing attention in
recent years. While the research up to this point has been fo-
cused on the makespan objective, we broaden the scope and
study the classical total completion time criterion. In the set-
ting without incompatibilities, this objective is well-known
to admit polynomial time algorithms even for unrelated ma-
chines via matching techniques. We show that the introduc-
tion of incompatibility cliques results in a richer, more in-
teresting picture. We prove that scheduling on identical ma-
chines remains solvable in polynomial time, while scheduling
on unrelated machines becomes APX-hard. Next, we study
the problem under the paradigm of fixed-parameter tractable
algorithms (FPT). In particular, we consider a problem vari-
ant with assignment restrictions for the cliques rather than
the jobs. We prove that, despite still being APX-hard, it can
be solved in FPT time with respect to the number of cliques.
Moreover, we show that the problem on unrelated machines
can be solved in FPT time for reasonable parameters, in
particular, the parameter combination: maximum processing
time, number of job kinds, and number of machines or max-
imum processing time, number of job kinds, and number of
cliques. The latter results are extensions of known results for
the case without incompatibilities, and can even be further
extended to the case of total weighted completion time. All
of the FPT results make use of n-fold Integer Programs that
recently received great attention by proving their usefulness
for scheduling problems.

Introduction
Consider a task system under difficult conditions like high
electromagnetic radiation, or with an unstable power sup-
ply. Due to the environmental conditions, users prepare tasks
in groups and want the jobs in a given group to be sched-
uled on different processors. That assures that even if a few
processors fail, another processor will be able to execute at
least part of the jobs. Due to the instability, our system even

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

might stop working completely and in this case all jobs that
are done only partially have to be scheduled again. As ob-
served (Bruno, Jr., and Sethi 1974), the sum of completion
times criterion tends to reduce the mean number of unfin-
ished jobs at each moment in the schedule. For this rea-
son, we would like to minimize the sum of completion times
of the jobs respecting the additional reliability requirement
given by the groups. In the following, we discuss the prob-
lems motivated by this scenario more formally.

Problem. In the classical problem of scheduling on par-
allel machines, a set J of n jobs, a set M of m machines,
and a processing time function p are given. The processing
times are of the form p : J → N if the machines are identi-
cal or of the form p : J ×M → N ∪ {∞} if the machines
are unrelated. That is, the processing time of a job does or
does not, respectively, depend on the machine to which the
job is assigned to. For brevity, we usually write pj or pij in-
stead of p(j) or p(j, i), for each job j and machine i. The
goal is to find a schedule of the jobs on the machines, which
minimizes a given objective function. A schedule in this set-
ting is an assignment from jobs to machines and starting
times. However, for brevity, by the fact that for any machine,
we can order the jobs assigned to it optimally according to
Smith’s rule (Smith 1956), we do not specify the starting
times explicitly. The completion time Cj of j is given by
the sum of its starting and processing times. Probably the
most studied objective function is the minimization of the
makespan Cmax = maxj Cj , directly followed by the mini-
mization of the total completion time objective

∑
Cj or the

sum of weighted completion times
∑
wjCj . In this paper,

we use the three-field notation prevalent in scheduling the-
ory. For instance, Cmax minimization on identical machines
is abbreviated as P ||Cmax and minimization of ΣCj on un-
related machines as R||

∑
Cj . For a general overview of

scheduling notation we refer the reader to (Brucker 2004).
All of the scheduling problems discussed so far are fun-

damental and often studied with respect to additional con-
straints. One line of research considers incompatibilities be-
tween jobs in the sense that some jobs may not be pro-
cessed by the same machine. More formally, an incompat-
ibility graph G = (J,E) is part of the input, and an edge
{j, j′} ∈ E signifies that in a feasible schedule j and j′

cannot be assigned to the same machine. In this paper, we

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

192

problem complexity proposed running time

P |cliques|
∑
Cj Polynomial O(nm2 + n5/2m)

R|cliques,M(j), (pik)k∈[b],i∈M |
∑
Cj Polynomial O(n4m+ n3m2 logmn)

P |cliques,M(k), pi ∈ {p1 < p2 < 2p1}|
∑
Cj APX-hard -

R|cliques, pji ∈ {p1 < p2 < p3}|
∑
Cj APX-hard -

R|2 cliques, pij ∈ {p1 < p2 < p3}|
∑
Cj NP-hard -

P |cliques,M(k)|
∑
Cj FPT w.r.t. b 2O(b4·log(b))m log(m) log(n) log(mpmax)

R|cliques|
∑
wjCj FPT w.r.t. m, pmax, ϑ (pmaxϑm)O(ϑ3m3)O(b log3(b) log(wmax))

R|cliques|
∑
wjCj FPT w.r.t. b, pmax, ϑ (pmaxϑb)

O(ϑ3b3)O(m log2(m) log(wmax))

Table 1: An overview of the results presented in this paper.

study variants of R||
∑

(wj)Cj in which the incompatibility
graph is a collection of cliques corresponding to the groups
of jobs mentioned above. In the three-field notation, we de-
note the class to which the incompatibility graph belongs
in the middle, e.g. R|cliques|

∑
(wj)Cj . Some subvariants

of R|cliques|
∑

(wj)Cj are interesting on their own, hence
we add additional information in the middle field, to distin-
guish them. For example, by P |cliques,M(j)|Cmax we un-
derstand a subproblem of R|cliques|Cmax in which the pro-
cessing times are given by a function p : J → N, but each
job j may only be processed on a given set M(j) of ma-
chines eligible for j. Similarly, by P |cliques,M(k)|Cmax,
we denote a variant in which jobs in a clique k ∈ [b] have
the same set of eligible machines M(k). Or, we denote
by R|cliques,M(j), (pik)k∈[b],i∈M |

∑
Cj a setting derived

from the motivational example. In this setting, jobs belong-
ing to the same clique have the same processing times (de-
noted by (pik)k∈[b],i∈M), hence they can be seen as copies
of the same job. Moreover, an assignment of a job can be
restricted to some machines, which is denoted by M(j).

Related Work. First, note that both P ||
∑
wjCj and

P ||Cmax are well-known to be strongly NP-hard (Garey and
Johnson 1979). On the other hand, R||

∑
Cj can be solved

via matching techniques (Bruno, Jr., and Sethi 1974).
Scheduling with incompatibilities has first been consid-

ered in the 1990’s by Bodlaender, Jansen and Woegin-
ger (Bodlaender, Jansen, and Woeginger 1994), who studied
P ||Cmax with incompatibilities between jobs in the sense
used in this paper. Among other things the authors presented
an approximation algorithm with approximation ratio de-
pending on the quality of a coloring for the incompatibil-
ity graph. This result yields constant approximation algo-
rithms for subproblem where incompatibility graph can be
colored in polynomial time with with constant number of
colors, which is less than the number of the machines. Fur-
thermore, (Bodlaender and Jansen 1993) presents hardness
results in the same setting for cographs, bipartite graphs and
interval graphs. In (Dokka, Kouvela, and Spieksma 2012)
approximation and inapproximability results are presented
for the so called multi-level bottleneck assignment problem.
This problem can be seen as a variant of P |cliques|Cmax in
which each clique has the same size and each machine has
to receive exactly one job from each clique.

However, the exact setting studied in the present paper
(with respect to incompatibilities) was introduced only re-
cently by Das and Wiese (2017), who called the cliques
bags. They obtained a PTAS for P |cliques|Cmax and
showed that there is no constant approximation algorithm
for P |cliques,M(j)|Cmax, unless P = NP. Moreover, they
gave an 8-approximation for P |cliques,M(k)|Cmax. This
line of research was continued by two groups. In particular,
in (Grage, Jansen, and Klein 2019) there was an EPTAS for
P |cliques|Cmax presented. The second group, considered
in (Page and Solis-Oba 2020) a variant of R|cliques|Cmax

where the number of machine types and cliques is restricted
and obtained a PTAS among many other results. Two ma-
chines have the same type if the processing time of each job
is the same on both of them.

Finally, we also consider fixed-parameter tractable (FPT)
algorithms for scheduling problems. A good overview on
this line of research is provided in a survey (Mnich and van
Bevern 2018). The most notable result in our context is prob-
ably a work due to Knop and Koutecký (2018), who used
n-fold Integer Programs to prove (among other things) two
FPT results for R||

∑
wjCj . In particular, R||

∑
wjCj is

FPT with respect to the number of machines and the num-
ber of different job kinds ϑ , and also FPT with respect to
the maximum processing time, the number of different job
kinds ϑ, and the number of distinct machine types κ. Jobs
are of the same kind if they are indistinguishable regarding
their properties. These results were generalized and greatly
extended by Knop et al. (2019). In their work, they introduce
a general framework for solving various configuration ILPs
by modeling them as (an extended version of) the Monoid
Decomposition problem. This allows to solve many prob-
lems with different kinds of objects (for example, jobs with
release times and due dates), environments (for example, un-
related machines), and (linear or non-linear) objectives in
FPT time with plenty different, natural parameterizations.

Results and Methodology. The first section begins
with polynomial time algorithm for P |cliques|

∑
Cj . Then

we present a polynomial time algorithm for a setting derived
from our motivational example.

Note that this setting is related to the case with clique
dependent assignment restrictions introduced in (Das and
Wiese 2017). Hence we study this case in the second sec-

193

Algorithm 1 IncompatibilitySolving(i, S)

Require: A set of cliques V1 ∪ . . . ∪ Vb, number 1 ≤ i ≤
m, a schedule S such that machinesm1, . . . ,mi−1 have
compatible jobs assigned.

Ensure: A schedule with the total completion time equal
to the total completion time of S, where jobs on
m1, . . . ,mi are independent.

1: Let VL = {vL[1], . . . , vL[b]}.
2: Let VB = {vB [1], . . . , vB [b]}.
3: Construct E by connecting vB [i] to vL[j] iff on
mi, . . . ,mm there is a job from Vi scheduled as j-th.

4: Let M ′ be a perfect matching in (VL ∪ VB , E).
5: for l = 1, . . . , b do
6: Let {vL[l], vB [j]} ∈M ′.
7: Exchange the job on position l-th on mi with any job

from Vj assigned to position l-th on mi, . . . ,mm

8: end for
9: return S

tion and prove it to be APX-hard already for the case
with only two processing times P |cliques, pj ∈ {p1 <
p2},M(k)|

∑
Cj .

On the other hand, it can be solved in polynomial time
if the number of cliques is constant even if there are arbi-
trarily many processing times. While the last result relies
on costly guessing steps, we refine it in the last section us-
ing n-fold Integer Programs yielding an FPT time algorithm
with respect to b for P |cliques,M(k)|

∑
Cj . Furthermore,

we revisit FPT results due to (Knop and Koutecký 2018) for
R||
∑
wjCj . Careful extension of the IPs considered in this

work yields that R|cliques|
∑
wjCj is FPT with respect to

m, pmax, and ϑ or with respect to b, pmax, and ϑ.
All of our results presented in this paper are summarized

in Table 1. Moreover, the omitted proofs and more details
can be found in the preprint (Jansen et al. 2020). We end our
results with a short discussion on open problems.

Polynomial Time Algorithms
Let us begin with a key procedure for the algorithm for iden-
tical machines. In a nutshell, we prove that a perfect match-
ing in the vertices of the graph constructed in line 4 of Algo-
rithm 1 corresponds to a reassignment of the jobs in S in a
way that the assignment of the jobs to m1, . . . ,mi−1 is not
changed and that mi is given a set of compatible jobs. With-
out loss of generality we assume that each clique Vi consists
of exactly m jobs; if this is not the case we add dummy jobs
with processing time 0. Notice also that in any schedule the
jobs can be divided into layers. The layers are formed of the
jobs that are scheduled as last on their machines, then second
last, . . . , and as first (which correspond to b-th layer). We can
exchange the jobs that are on a given layer without increas-
ing the total completion time, because the job scheduled as
last on a machine contributes once to the total completion
time, the jobs scheduled as second last twice, etc.

Theorem 1 (Hall 1935). A bipartite graph (A ∪ B,E) has
a matching that saturates A if and only if |N(S)| ≥ |S| for
all S ⊆ A.

Lemma 1. Let S be a schedule for an instance of
P |cliques = V1 ∪ . . . ∪ Vb|ΣCj , such that each of the ma-
chinesm1, . . . ,mi−1 has compatible jobs assigned in S and
b jobs are assigned to each machine. Algorithm 1 constructs
in O(bm + b5/2) time a schedule such that each of the ma-
chines m1, . . . ,mi has compatible jobs assigned, each of
the machines has b jobs and the total completion time of the
new schedule is equal to the total completion time of S.

Proof. We prove that it is always possible to exchange the
jobs inside the layers 1, . . . , b for machines mi, . . . ,mm, so
that the load onmi consists of compatible jobs. Consider the
structure of the graph constructed in Algorithm 1. Take any
nonempty V ′B ⊆ VB . Notice that a clique corresponding to
any vertex in V ′B has exactly m− i+ 1 jobs on the machines
mi, . . . ,mm. A layer i on the machines mi, . . . ,mm has
exactly m − i + 1 jobs in total. Hence, clearly the size of
neighbors of V ′B in VL is at least |V ′B |. If V ′B = ∅, it is also
true. By Theorem 1 there is a perfect matching in the graph.

To calculate the complexity let us perform the following
observations. The number of jobs is n = mb. The graph
constructed in step 3 has O(b) vertices and O(b2) edges. It
can be constructed in O(mb) time by visiting all machines
mi′≥i. The complexity of the Hopcrof-Karp algorithm is
O((|E|+ |V |)|V |1/2) (Hopcroft and Karp 1973), hence here
it is O(b5/2). The exchange can be done in O(b) time. To-
gether this gives time O(bm+ b5/2)

Consider an instance of P |cliques|ΣCj . Assume that each
of the cliques have m jobs. If this is not the case, add
jobs with processing time 0. Now there is O(nm) jobs, be-
cause b = O(n). Order the jobs non-increasingly accord-
ing to their processing times and schedule them in a round
robin fashion without respect to the cliques, which is by the
Smith’s Rule optimal (Smith 1956). By Lemma 1 we may
easily construct a method to change the schedule to respect
the cliques, by calling Algorithm 1 m times.

Theorem 2. P |cliques|ΣCj can be solved to optimality in
O(nm2 + n5/2m) time.

Schedule S

1 2 3

m1 j1 j6 j11

m2 j2 j4 j3

m3 j9 j5 j8

m4 j10 j12 j7 jL[1]

jL[2]

jL[3]

vB [1]

vB [2]

vB [3]
Schedule S′

1 2 3

m1 j1 j6 j11

m2 j9 j4 j7

m3 j2 j5 j8

m4 j10 j12 j3

Figure 1: An illustration of an application of Algo-
rithm 1. Let the set of cliques be given by {j1, j2, j3, j4},
{j5, j6, j7, j8}, {j9, j10, j11, j12} and let i = 2 (which
means that m1 has already a set of compatible jobs as-
signed). Notice how using a matching in the constructed
graph the jobs can be exchanged in a way that m2 has only
compatible jobs assigned.

194

Algorithm 2 An exact algorithm for
R|cliques,M(j), (pik)k∈[b],i∈M |

∑
Cj .

Require: A set of cliques V1∪ . . .∪Vb, a set ofmmachines
M , a mapping between machines and cliques, and rela-
tion compatible ⊆ J ×M between jobs and machines.

Ensure: An optimal schedule
1: Construct a flow network:
2: Let there be sinks T = M × {1, . . . , n}, each with ca-

pacity 1.
3: Let there be sources S = V1 ∪ . . . ∪ Vb, each with ca-

pacity 1.
4: Let there be vertices V 1 = M × {1, . . . , b} × {1}.
5: Let there be vertices V 2 = M × {1, . . . , b} × {2}.
6: A1 = {(j, (m, i, 1))|j ∈ Vi,m ∈M,

(j,m) ∈ compatible}.
7: A2 = {((m, i, 1), (m, i, 2))|m ∈M, i ∈ {1, . . . , b}}.
8: A3 = {((m, i, 2), (m,n′))|n′ ∈ {1, . . . , n},m ∈M,

i ∈ {1, . . . , b}}.
9: Let A = A1 ∪A2 ∪A3.

10: ∀e∈Acapacity(e) = 1.

11: ∀e∈Acost(e) =

{
n′pik | e = ((i, k, 2), (i, n′))
0 | otherwise

}
.

{By an abuse of the notation, we assume that for a clique
Vk, pik is the processing time of a job from Vk on mi.}

12: Construct the maximum flow with minimal cost in (S ∪
T ∪ V 1 ∪ V 2, A, capacity, cost).

13: return If the flow is less than n, then there is no feasible
schedule. Otherwise return a schedule corresponding to
the flow.

By constructing a suitable flow network, similar to the one
used in (Bruno, Jr., and Sethi 1974), but with the cliques
requirement satisfied we have:

Theorem 3. R|cliques,M(j), (pik)k∈[b],i∈M |
∑
Cj can be

solved to optimality in O(n4m+ n3m2 log nm) time.

Proof. Consider Algorithm 2. Observe that the constructed
flow network has integral capacities, hence there exist an
integral flow that has minimum cost. The flow network is
an adaptation of the network presented in (Bruno, Jr., and
Sethi 1974). It is easy to see that a schedule corresponding
to such a flow respects the cliques due to capacities of A2.
Also it respects the restrictions of the jobs by the composi-
tion of A1. The constructed network has O(mn) vertices
and O(n2 + nm) arcs. The complexity follows from the
size of the network and an algorithm for min-cost flow. Pre-
cisely, by an observation that in our network the maximum
flow is O(n). Hence, the successive shortest path algorithm
has the time complexity O(n2m(n2 +nm log nm)) (Ahuja,
Magnanti, and Orlin 1993). The part (n2 + nm log nm)
in the formula is due to the time complexity of an algo-
rithm for shortest path problem. The Fibonacci heap im-
plementation may be used, which has the time complexity
O(n2 + nm+ nm log nm) = O(n2 + nm log nm).

Hardness Results
We prove that P |cliques,M(k), pi ∈ {p1 < p2 <
2p1}|

∑
Cj is APX-hard by an L-reduction from the prob-

lem MAX 3SAT-6. Let us start with a description of this
problem. It is an optimization version of 3SAT in which ev-
ery variable appears in 6 clauses and each literal in exactly
3 clauses. The goal is to calculate the maximum number of
clauses that can be satisfied, i.e., have at least one literal with
truth assigned. From the sketch of the proof of Theorem 12
from (Feige, Lovász, and Tetali 2004) we get the following
lemma.
Lemma 2 (Feige, Lovász, and Tetali 2004). The problem
MAX 3SAT-6 is APX-hard.

We use L-reduction in the sense of (Ausiello et al. 1999)
to prove the following theorem.
Theorem 4. P |cliques,M(k), pi ∈ {p1 < p2 <
2p1}|

∑
Cj is APX-hard.

Proof. For the pair of the problems let us define f , the
function constructing an instance of P |cliques,M(k), pi ∈
{p1 < p2 < 2p1}|

∑
Cj from an instance of MAX 3SAT-

6. Let the set of variables be V ; and the set of clauses be C,
where |C| = 2|V |. Define κ : V ×{1, . . . , 6} → C×{1, 2, 3}
to be a function that maps the first unnegated literal of a
variable, the first negated literal of the variable, etc. to its
clause and the position in the clause. For a variable v ∈ V ,
construct a set of machines ∪i=1,...,6{m[v, i]}. The ma-
chine m[v, 1] corresponds to the first non-negated literal of
v, m[v, 2] corresponds to first negated one, etc. Construct
also a set of clause machines {m[C, 1],m[C, 2],m[C, 3]},
for C ∈ C. The jobs that we construct are described in Ta-
ble 2. Notice that there are 13|V | jobs with size p1 and 11|V |
jobs with size p2. The construction is illustrated in Fig. 2.

Let k be the maximum number of clauses that can be
satisfied for a given instance of MAX 3SAT-6. Notice that
|V | ≤ k ≤ 2|V |, because if we assign T to all the variables,
then at least half of the clauses are satisfied. Let us make
an assignment of the jobs to machines based on a valuation
giving k satisfied clauses. Consider two cases.

• If a variable v has value T , let m[v, 1],m[v, 3],m[v, 5]
be assigned jobs j[v, 1], j[v, 3], j[v, 5] and

job clique pi clique allowed on
j[v, 1] V [v, 1] p1 m[v, 1],m[v, 2]
j[v, 2] V [v, 2] p2 m[v, 2],m[v, 3]
j[v, 3] V [v, 3] p1 m[v, 3],m[v, 4]
j[v, 4] V [v, 4] p2 m[v, 4],m[v, 5]
j[v, 5] V [v, 5] p1 m[v, 5],m[v, 6]
j[v, 6] V [v, 6] p2 m[v, 6],m[v, 1]
jT [v, i] V ∗[v, i] p1 m[v, i],m[κ(v, i)]
jF [v, i] V ∗[v, i] p2 m[v, i],m[κ(v, i)]
j[C, 1] V [C, 1] p1 m[C, 1],m[C, 2],m[C, 3]
j[C, 2] V [C, 1] p1 m[C, 1],m[C, 2],m[C, 3]
j[C, 3] V [C, 1] p2 m[C, 1],m[C, 2],m[C, 3]

Table 2: The processing times pi of jobs used in the L-
reduction in Theorem 4.

195

let m[v, 2],m[v, 4],m[v, 6] be assigned jobs
j[v, 2], j[v, 4], j[v, 6].

• Otherwise let m[v, 1],m[v, 3],m[v, 5] be assigned jobs
j[v, 6], j[v, 2], j[v, 4] and let m[v, 2], m[v, 4],m[v, 6] be
assigned jobs j[v, 1], j[v, 3], j[v, 5].

If m[v, i] has job with processing time p2 assigned already,
assign a job with processing time p1 from V ∗[v, i] to it; oth-
erwise assign a job with processing time p2 from V ∗[v, i] to
it. Assign the other job from V ∗[v, i] to m[κ(v, i)]. For all
C ∈ C assign the jobs from the clique V [C, 1] to the eligible
machines in an optimal way. Notice that only the machines
that correspond to the clauses that are not satisfied can have
two jobs with size p2 assigned, and there is exactly one such
machine for a given not satisfied clause. Notice that the cost
of such a schedule is 6|V |(2p1 + p2) + (2|V | − k)(4p1 +
5p2)+(11|V |−6|V |−4(2|V |−k))(2p1 +p2)+ 1

2 (13|V |−
6|V | − 2(2|V | − k)− (11|V | − 6|V | − 4(2|V | − k)))3p1 =
25|V |p1+11|V |p2+(2|V |−k)(p2−p1) ≤ k(24p1+12p2).
Hence let (24p1 + 12p2) be the β constant, bounding the
value of optimal solution for MAX 3SAT-6 in terms of the
value of optimal solution for the scheduling problem.

Let us assume that for a given instance of MAX 3SAT-6
we have a solution y of the corresponding instance of the
scheduling problem with a given cost. Let us define the g
function, a function which constructs a solution of MAX
3SAT-6 from a solution of the scheduling problem. The g
function begins with modifying the solution according to the
following observations.

1. Let us assume that in y there existsm[v, i] that has exactly
2 jobs assigned; let us assume that both of them have size
p1 (have size p2). Notice that this means that the machine
has a job jT [v, i] (a job jF [v, i]) assigned. Notice that we
can exchange this job with jF [v, i] (with jT [v, i]) without
increasing the total completion time.

2. Assume that some machine m[v, i] has three jobs as-
signed. It also means that there is a machine m[v, i′] that
has exactly one job assigned. Notice that in any case,
by the previous observation and by the assumption that
p1 ≤ p2 ≤ 2p1 we may shift the jobs in a way that after
the shift all of the machines have exactly 2 jobs, without
increasing the total completion time of the schedule. This
follows from a simple analysis of all possible cases of the
assignment of the jobs to the machines (see (Jansen et al.
2020) for the sketch of analysis).

Notice that this means that we may assume that the machines
m[v, i] are processing exactly one job with size p1 and one
with size p2 each. We prove that the total completion time
of the schedule depends only on the number of the machines
that are processing two jobs with size p2. Let the number of
such machines be k′. Total completion time of the schedule
is then equal to k′3p2+(11|V |−2k′)(2p1+p2)+ 1

2 (13|V |−
(11|V | − 2k′))3p1 = 25|V |p1 + 11|V |p2 + k′(p2 − p1).
From such a schedule we can easily find a valuation of the
variables in the instance of MAX 3SAT-6 such that it satis-
fies exactly 2|V | − k′ clauses. Let now k′′ be the number of
machines that are processing two jobs with size p2 in an op-
timal solution. Notice that k′′ corresponds to a schedule with

j[v, 1] j[v, 2] j[v, 3] j[v, 4] j[v, 5] j[v, 6]

m[v, 1] m[v, 2] m[v, 3] m[v, 4] m[v, 5] m[v, 6]

jT [v, 1] jF [v, 1]

m[C, 1] m[C, 2] m[C, 3]

j[C, 1] j[C, 2] j[C, 3]

Figure 2: An illustration of the idea of eligibility of the jobs
used in Theorem 4. The figure presents a component cor-
responding to one of the variables and a component corre-
sponding to one of the clauses. In the example C is such a
clause that (C, 1) = κ(v, 1).

cost 25|V |p1 + 11|V |p2 + k′′(p2 − p1). And this schedule
corresponds to a solution to MAX 3SAT-6 that has exactly
(2|V | − k′′) clauses satisfied. There can be no better solu-
tion to MAX 3SAT-6. Hence let us assume that for some γ
we have that |(2|V |−k′′)− (2|V |−k′)| ≤ γ|k′′(p2−p1)+
25|V |p1 + 11|V |p2 − (k′(p2 − p1) + 25|V |p1 + 11|V |p2)|.
Which is equivalent to k′−k′′ ≤ γ(k′−k′′)(p2−p1). Hence
clearly γ = 1

p2−p1 is a suitable constant, bounding the dif-
ference of values of an optimal solution for a given instance
of MAX 3SAT-6 and a solution obtained by a transformation
of the solution of the prepared scheduling instance; with the
difference between values of an optimal solution for the in-
stance of the scheduling problem and any (reasonable) so-
lution to the instance of the scheduling problem. All other
conditions are easily fulfilled.

The APX-hardness for R|cliques, pij ∈ {p1 < p2 <
p3}|

∑
Cj follows readily from the observation that we may

always set p3 to such a high value (dependent on the size of
an instance - mind the difference with the previous problem)
that in any reasonable schedule it will be not used.

The presented idea partially follows from the next prob-
lem and an α-reduction, this time from an even more re-
stricted version, i.e., from the problem 3SAT* considered
in (Maack and Jansen 2020). The input of 3SAT* problem
consists of a set of variables, and two sets of clauses: 1-in-3
clauses and 2-in-3 clauses. Each of the literals occurs exactly
2 times, hence each variable occurs exactly twice negated
and twice nonnegated. The number of 1-in-3 clauses and 2-
in-3 clauses are equal. The question is if there is assignment
of the variables such that in each 1-in-3 clause exactly one
literal is true and that in each 2-in-3 clause exactly two lit-
erals are true. In the paper it was proved that the problem
is NP-complete. For the next problem we use p3 to restrict
assignment of some jobs to some machines. We have to also
divide the jobs differently.

Theorem 5. R|2 cliques, pij ∈ {p1 < p2 < p3}|
∑
Cj is

NP-complete.

196

FPT Results
This section presents the FPT results for scheduling with
clique incompatibility considering different parameteriza-
tions. To solve these problems, the algorithms model the
respective problem as n-fold Integer Programs. These IPs
are of specific form. The constraint matrix consists of non-
zero entries only in the first few rows and in blocks along
the diagonal beneath. Further, we have to assure that the in-
troduced objective functions are separable convex. Then the
n-fold IP and thus, the underlying problem can be solved
efficiently. The FPT results we obtain this way are:

• P |cliques,M(k)|
∑
Cj can be solved in FPT time pa-

rameterized by the number of cliques b,

• R|cliques|
∑
wjCj can be solved in FPT time parameter-

ized by the number of machines m, the largest processing
time pmax, and the number of job kinds ϑ.

The basis for the last algorithm is formed by the work (Knop
and Koutecký 2018). Therein, the authors prove FPT results
for R||

∑
wjCj by formulating the problems as n-fold IPs

with an appropriate objective function and similar parame-
ters. We prove that the IP can be extended to handle clique
incompatibility by carefully adapting the variables, the IP
and the objective function, yielding the result above. Note
that in (Knop et al. 2019), these results are generalized, but
by that also more complex. Further, using these results does
not improve upon our running times.

But first, let us give a short introduction to FPT and n-
fold Integer Programming necessary to understand the re-
sults. For details on FPT, we refer to the standard text-
book (Cygan et al. 2015). For details on n-fold IPs, we rec-
ommend (Eisenbrand et al. 2019).

FPT. We say that an optimization problem is fixed-
parameter tractable (FPT) with respect to some instance-
dependent parameter k if there exists an algorithm which,
for an instance of size n, finds an optimal solution in time
f(k) · nO(1), where f is some function depending only on
k (Mnich and Wiese 2015).

n-fold IP. Let n, r, s, t ∈ N. Let A1, . . . , An ∈ Zr×t
and B1, . . . , Bn ∈ Zs×t be integer matrices. The constraint
matrix A ∈ Z(r+n·s)×(n·t) of an n-fold IP is of following
form:

A =

A1 A2 . . . An
B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . Bn

 .

Denote by ∆ the largest absolute value inA. We distinguish
the constraints as follows: Denote the constraints (rows) cor-
responding to the Ai matrices globally uniform and the ones
corresponding to the Bi matrices locally uniform.

A function g : Rn → R is called separable convex if
there exist convex functions gi : R → R for each i ∈ [n]
such that g(x) =

∑n
i=1 gi(xi). Let f : Rnt → R be some

separable convex function and b ∈ Zr+n·s. Further, denote

by ` and u some lower and upper bounds on the variables.
The corresponding n-fold Integer Program (n-fold IP) is de-
fined by min {f(x) | Ax = b, ` ≤ x ≤ u, x ∈ Zn·t}. The
main idea for solving these IPs relies on local improvement
steps which are used to converge from an initial solution to
an optimal one yielding:

Proposition 1 (Eisenbrand et al. 2019). The Integer Pro-
gram (n-fold IP) can be solved in time (∆rs)O(r2s+rs2)

nt log(nt) log(‖u − `‖∞) log(fmax) where fmax =
max

{
|f(x)|

∣∣ ` ≤ x ≤ u}.

Scheduling with Clique Machine Restrictions
We consider P |cliques,M(k)|

∑
Cj . Recall that in this set-

ting, we have a set M(k) of machines for each clique k ∈
[b]. In a feasible schedule jobs of k are scheduled exclusively
on machines i ∈M(k). We prove the following result:

Theorem 6. P |cliques,M(k)|
∑
Cj can be solved in FPT

time parameterized by the number of cliques b.

To prove this result, we first establish some notation and
basic observation, then introduce an Integer Programming
model with n-fold form for the problem, and lastly argue
that it can be solved efficiently.

In any schedule for an instance of the problem there can
be at most b jobs scheduled on each machine. Hence, we
may imagine that there are b slots on each machine num-
bered in chronological order. We further use the discussed
intuition that the jobs form b layers. We can represent any
schedule by an assignment of the jobs to these slots. Some
of the slots may be empty, and we introduce the convention
that all the empty slots (hence taking 0 time) on a machine
should be in the beginning. If a job of clique k is scheduled
in a certain slot, we say that k is present in the slot, in the cor-
responding layer and on the corresponding machine. We are
interested in the pattern of cliques present on the machine
and call such a pattern a configuration. More precisely, we
call a vector C = (C1, C2, . . . , Cb) ∈ {0, 1, . . . , b}b a con-
figuration if the following two conditions are satisfied:

• ∀`, `′ ∈ [b] : C` = C`′ ∧ ` 6= `′ =⇒ C` = C`′ = 0

• ∀` ∈ [b− 1] : C` > 0 ∧ ` < b =⇒ C`+1 > 0

Note that the 0 represents an empty slot. The first condi-
tion corresponds to the requirement that at most one job of
a clique should be scheduled on each machine. The second
one matches to the convention that the empty slots are at the
beginning. We denote the set of configurations as C. More-
over, C(k) denotes for each k ∈ [b] the set of configurations
in which k is present, i.e., C(k) = {C ∈ C | ∃` ∈ [b] : C` =
k}. Note that |C| ≤ (b+ 1)! since there can be up to b zeros
in a configuration and a configuration excluding the zeros
can be seen as a truncated permutation of the numbers in
[b]. We call a configuration C eligible for a machine i if all
the cliques occurring in C are eligible on i, that is, for each
C` 6= 0 we have i ∈M(C`).

A schedule for an instance of the problem trivially induces
an assignment of the machines to the configurations. We call
such an assignment τ : M → C feasible if there exists a fea-
sible schedule corresponding to τ . That is, if τ(i) is eligible

197

on i for each machine i and, for each clique k, the number
of machines assigned to a configuration in C(k) is equal to
the number of jobs in k. Obviously, different schedules may
have the same assignment. However, we argue that given a
feasible assignment τ , we can find a schedule corresponding
to τ with a minimal objective function value via a simple
greedy procedure. Namely, for each clique k we can succes-
sively choose a smallest job that is not scheduled yet and
assign it to a slot positioned in the lowest layer that still in-
cludes non-empty slots belonging to k according to τ . Due
to this observation, we can associate an objective value to
each feasible assignment. In the next step we introduce an
Integer Program to search for a feasible assignment τ with
minimal objective.

We introduce two types of variables, that is, xC,i ∈ {0, 1}
for each machine i ∈ M and configuration C ∈ C corre-
sponding to the choice of whether i is assigned to C or not.
Further, we have yk,` ∈ {0, 1, . . . , n} for each clique k ∈ [b]
and layer ` ∈ [b] counting the number slots reserved for
clique k in the layers 1 to `. Moreover, we assure xC,i = 0
if C is not eligible on i using more restrictive upper bounds.
Let C(k, `) = {C ∈ C | ∃`′ ∈ [`] : C`′ = k} for each
k, ` ∈ [b], nk be the number of jobs belonging to clique k,
and pk,s the size of the job that has position s if we order
the jobs of clique k non-decreasingly by size. The Integer
Program has the following form:

min
∑
`,k∈[b]

yk,`∑
s=1

pk,s

∑
C∈C

xC,i = 1 ∀i ∈M (1)∑
i∈M

∑
C∈C(k,`)

xC,i = yk,` ∀k ∈ [b], ` ∈ [b] (2)

yk,b = nk ∀k ∈ [b] (3)

Constraint (1) assures that exactly one configuration is
chosen for each machine; due to (2), the variables yk,` cor-
rectly count the slots reserved for clique k; and (3) guar-
antees that the jobs of each clique are covered. Finally, the
objective function corresponds to the one described above:
For each clique k, we sum up the smallest yk,1 job sizes for
the first layer, the smallest yk,2 sizes in the second one, and
so on. Note that this counting is correct since we use the
convention that empty slots are at the bottom and therefore,
each job contributes once to the objective for its own layer
and once for each layer above. Although the integer program
does not have a linear objective and super-constant number
of variables and constraints, we can solve it in suitable time
using n-fold techniques:

Lemma 3. The above IP can be solved in time
2O(b4·log(b))m log(m) log(n) log(mpmax).

Proof. In order to use algorithms for n-fold IPs, we have to
show that the IP has a suitable structure and the objective
function is separable convex.

To obtain the desired structure, we have to duplicate the y
variables for each machine. Hence, we get variables yk,`,i

for each i ∈ M and k, ` ∈ [b]. We choose some ma-
chine i∗ ∈ M and set yk,`,i = 0 for each i 6= i∗ using
lower and upper bounds for the variables. In the constraints
(2) and (3) we have to replace each occurrence of yk,` by∑
i∈M yk,`,i. Moreover, we have to change the objective to

min
∑
`,k∈[b]

∑yk,`,i∗

s=1 pk,s. It is easy to see that the resulting
IP is equivalent and has an n-fold structure with one brick
for each machine, a brick size of t ≤ b2+(b+1)!, and a max-
imum absolute entry of ∆ = 1. Constraint (1) is locally uni-
form, and the other constraints are globally uniform. Hence,
we have s = 1 and r = b2 + b.

Concerning the objective function, first note that many of
the variables do not occur in the objective and hence, can be
ignored in the following. We essentially have to consider the
function gk : [nk] → R, q 7→

∑q
s=1 pk,s for each k ∈ [b]

since the objective can be written as
∑
`,k∈[b] gk(yk,`,i∗). Let

{x} = x− bxc for each x ∈ R and g̃k : R→ R with:

x 7→

pk,1x if x < 1

pk,dxe{x}+
∑bxc
s=1 pk,s if bxc ∈ [nk − 1]

pk,nk
(x− nk) +

∑nk

s=1 pk,s if x ≥ nk
.

Then we have g̃k(q) = gk(q) for each k ∈ [nk]. Further-
more, g̃k is continuous and essentially a linear function with
nk − 1 points at which the slope changes. Due to the order-
ing of the processing times, the slope can only increase and
hence, the function is convex.

Finally, note that maximal value fmax of the objective
function can be upper bounded by pmaxb

2n and the maximal
difference between the upper and lower bound of a variable
is given by n. By plugging in the proper values, Proposi-
tion 1 yields the stated running time.

Scheduling with Cliques for Sum of Weighted
Completion Times
We consider here R|cliques|

∑
wjCj . Recall that we are

given m machines forming a set M and n jobs forming a
set J . Each job j ∈ J has an m-dimensional vector pj =
(p1j , . . . , p

m
j) ∈ Z ∪ {∞} stating that job j has a processing

time pij on machine i ∈M . Also, each job has a weight wj .
The jobs are partitioned into b cliques. Further, we introduce
kinds of jobs formally. Two jobs belong to the same kind
if their processing time vectors are equal and their weights
are the same. Denote the number of job kinds as ϑ. We can
re-write the set of jobs as (n1,1, . . . , nϑ,1, n1,2, . . . , nϑ,b)
where jobs of kind j and clique k appear nj,k times. De-
note by pmax the largest processing time and by wmax the
largest weight occurring in the instance. In the remaining of
this section, we prove the following theorem:

Theorem 7. R|cliques|
∑
wjCj can be solved in FPT time

parameterized by the number of machines m, the largest
processing time pmax and the number of job kinds ϑ.

The main obstacle in the design of an n-fold IP for this
setting is to formulate an appropriate objective function. In
(Knop and Koutecký 2018) it was developed a quadratic sep-
arable convex function equivalent to

∑
wjCj . This result

relies on the fact that in an optimal schedule the jobs on

198

each machine are ordered regarding the Smith’s rule, i.e.,
non-increasingly regarding ρi(j) = wj/p

i
j (Goemans and

Williamson 2000). We may visualize this as a Gantt chart for
each machine: Roughly speaking, it is a line of neighboring
rectangles in the order of the schedule. The width of the i-th
rectangle is the processing time of the ith job on the machine
and the rectangles height corresponds to the total weight of
all uncompleted jobs (including the ith job). The area under
the function, i.e. an integral of the weights of uncompleted
jobs in time, corresponds to the weighted completion time
and can be separated into two parts. One part is dependent
only on the job kind and machine kind. The second one is
dependent on the composition of the jobs assigned to the
machine. By the fact that for any machine, the Smith’s or-
der is optimal, the order of job kinds is known. Hence, the
composition is determined by the number of jobs of each
kind assigned to the machine. Thus, the second part yields a
piece-wise linear convex function. For details see (Knop and
Koutecký 2018). This gives:
Proposition 2 (Knop and Koutecký 2018). Let xi1, . . . , x

i
ϑ

be numbers of jobs of each kind scheduled on a machine
mi and let πi : [{1, . . . , ϑ}] → [{1, . . . , ϑ}] be a permuta-
tion of job kinds such that ρi(πi(j)) ≥ ρi(πi(j + 1)) for
all 1 ≤ j ≤ ϑ − 1. Then the contribution of mi to the
weighted completion time in an optimal schedule is equal to∑ϑ
j=1(1/2(zij)

2(ρi(πi(j))−ρi(πi(j+1)))+1/2 ·xijpijwj)
where zij =

∑j
`=1 p

i
πi(`)

xiπi(`)
.

Proof. First, let us focus on constructing the n-fold IP. For
this result, we extend the n-fold IP introduced in (Knop and
Koutecký 2018) and adapt the separable convex function to
our needs. Let xij,k be a variable that corresponds to the
number of jobs of kind j ∈ {1, . . . , ϑ} from clique k ∈
{1, . . . , b} that are scheduled on machine i ∈ {1, . . . ,m}.
Consider the following IP:

b∑
k=1

j∑
`=1

xiπi(`),k
piπi(`)

= zij ∀j ∈ [ϑ], ∀i ∈ [m] (1)

m∑
i=1

xij,k = nj,k ∀j ∈ [ϑ], ∀k ∈ [b] (2)

ϑ∑
j=1

xij,k ≤ 1 ∀i ∈ [m], ∀k ∈ [b] (3)

with lower bounds 0 for all variables and upper bounds
xij,k ≤ 1 and zij ≤ b · pmax.

Let the xij,k variables form a vector x and the zij vari-
ables from a vector z. Denote by xi and zi the corre-
sponding subset restricted to one machine i. The objective
is to minimize the function f(x, z) =

∑m
i=1 f

i(xi, zi) =∑ϑ
j=1(1/2(zij)

2(ρi(πi(j)) − ρi(πi(j + 1))) + 1/2 ·∑b
k=1 x

i
j,kp

i
jwj). As we consider the altered variables xij,k

over all cliques simultaneously, this corresponds to the ob-
jective function from Proposition 2. Thus, the function ex-
presses the sum of completion times objective. Further it
obviously stays separable convex.

Regarding the constraint matrix, Constraint (1) is satis-
fied if the zij variables are set as demanded in Proposition 2,
i.e., the jobs are scheduled with respect to the Smith’s rule.
Constraint (2) assures that the number of jobs from a kind j
and clique k scheduled on the machines matches the over-
all number of jobs from that kind and clique. Finally, Con-
straint (3) assures that the number of jobs scheduled on a
machine i from the same clique k is at most one.

We construct a schedule from the solution of the above IP
as follows: Assign xij,k jobs of job kind j from clique k to
machine i (note that this number is at most one due to Con-
straint (3)). After assigning all jobs to a machine, place them
non-increasingly regarding the Smith’s ratio ρi(j) onto the
machine. As we did not change the objective from (Knop
and Koutecký 2018), such a solution corresponds to an op-
timal one regarding the sum of weighted completion times
objective.

Regarding the running time, we first have to estimate the
n-fold IP parameters. The first constraint is globally uni-
form whereas the second and third constraints are locally
uniform and repeated for each clique. The parameters can
be bounded by

n = b, t = O(ϑ ·m), r = O(ϑ ·m), s = O(m+ ϑ),
∆ = pmax, log(||u− `||∞) = log(b · pmax),
log(fmax) = O(log(m · b2 · pmax · wmax)) ≤ O(log(m ·
b · pmax · wmax)).

Applying Proposition 1 to solve the IP and set-
ting up the schedule results in a running time of
(pmaxϑm)O(ϑ3m3)O(b log3(b) log(wmax)). Note that the in-
equality constraints do no harm as we can introduce param-
eter many slack-variables to turn them into equality con-
straints.

Consider R|cliques|
∑
wjCj but parameterized by b,

pmax and ϑ. The n-fold IP solving the following prob-
lem is an extended formulation of the one from (Knop
and Koutecký 2018), but with additional consideration for
cliques - we have to embed them appropriately. It proves,
Theorem 8. R|cliques|

∑
wjCj can be solved in FPT time

parameterized by the number of cliques b, the largest pro-
cessing time pmax and the number of job kinds ϑ, in a run-
ning time of (bϑpmax)O(ϑ3b3)O(m log2(m) log(wmax)).

Open Problems
While this paper presents quite a few results, many research
directions are still open. For instance, the case of uniformly
related machines Q|cliques|

∑
Cj , where the machines

have different speeds is more general than P |cliques|
∑
Cj ,

but in turn more restricted than R|cliques|
∑
Cj , remains

open. Another question is whether a constant rate approx-
imation algorithm for P |cliques,M(k)|

∑
Cj is possible,

given that it is APX-hard. Furthermore, we are interested in
a more detailed study of our setting from the perspective of
approximation algorithms or even approximation algorithms
with FPT running times. Finally, the study of further sensible
classes of incompatibility graphs for

∑
Cj objective seems

worthwhile.

199

Acknowledgments
Supported by DFG Projects "Strukturaussagen und deren
Anwendung in Scheduling- und Packungsprobleme", JA
612/20-1 and, JA 612/20-2; and by Gdańsk University of
Technology, grant no. POWR.03.02.00-IP.08-00-DOK/16.

References
Ahuja, R. K.; Magnanti, T. L.; and Orlin, J. B. 1993. Net-
work Flows - Theory, Algorithms and Applications. Prentice
Hall. ISBN 978-0-13-617549-0.

Ausiello, G.; Marchetti-Spaccamela, A.; Crescenzi, P.;
Gambosi, G.; Protasi, M.; and Kann, V. 1999. Complex-
ity and Approximation: Combinatorial Optimization Prob-
lems and Their Approximability Properties. Springer. ISBN
3540654313.

Bodlaender, H. L.; and Jansen, K. 1993. On the Complex-
ity of Scheduling Incompatible Jobs with Unit-Times. In
MFCS, volume 711 of Lecture Notes in Computer Science,
291–300. Springer.

Bodlaender, H. L.; Jansen, K.; and Woeginger, G. J. 1994.
Scheduling with Incompatible Jobs. Discret. Appl. Math.
55(3): 219–232.

Brucker, P. 2004. Scheduling algorithms (4. ed.). Springer.
ISBN 978-3-540-20524-1.

Bruno, J. L.; Jr., E. G. C.; and Sethi, R. 1974. Scheduling In-
dependent Tasks to Reduce Mean Finishing Time. Commun.
ACM 17(7): 382–387.

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein,
C. 2001. Introduction to Algorithms, Second Edition. The
MIT Press and McGraw-Hill Book Company. ISBN 0-262-
03293-7.

Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.;
Marx, D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S.
2015. Parameterized Algorithms. Springer.

Das, S.; and Wiese, A. 2017. On Minimizing the Makespan
When Some Jobs Cannot Be Assigned on the Same Ma-
chine. In ESA, volume 87 of LIPIcs, 31:1–31:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

Dokka, T.; Kouvela, A.; and Spieksma, F. C. R. 2012. Ap-
proximating the Multi-Level Bottleneck Assignment Prob-
lem. Oper. Res. Lett. 40(4): 282–286.

Eisenbrand, F.; Hunkenschröder, C.; Klein, K.; Koutecký,
M.; Levin, A.; and Onn, S. 2019. An Algorithmic Theory of
Integer Programming. CoRR abs/1904.01361.

Feige, U.; Lovász, L.; and Tetali, P. 2004. Approximating
Min Sum Set Cover. Algorithmica 40(4): 219–234.

Garey, M. R.; and Johnson, D. S. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman. ISBN 0-7167-1044-7.

Goemans, M. X.; and Williamson, D. P. 2000. Two-
Dimensional Gantt Charts and a Scheduling Algorithm of
Lawler. SIAM J. Discret. Math. 13(3): 281–294.

Grage, K.; Jansen, K.; and Klein, K. 2019. An EPTAS for
Machine Scheduling with Bag-Constraints. In SPAA, 135–
144. ACM.
Hall, P. 1935. On Representatives of Subsets. Journal of the
London Mathematical Society s1-10(1): 26–30.

Hopcroft, J. E.; and Karp, R. M. 1973. An n5/2 Algorithm
for Maximum Matchings in Bipartite Graphs. SIAM J. Com-
put. 2(4): 225–231.
Jansen, K.; Lassota, A.; Maack, M.; and Pikies, T. 2020. To-
tal Completion Time Minimization for Scheduling with In-
compatibility Cliques. CoRR abs/2011.06150.
Knop, D.; and Koutecký, M. 2018. Scheduling Meets n-Fold
Integer Programming. J. Sched. 21(5): 493–503.
Knop, D.; Koutecký, M.; Levin, A.; Mnich, M.; and Onn, S.
2019. Multitype Integer Monoid Optimization and Applica-
tions. CoRR abs/1909.07326.
Maack, M.; and Jansen, K. 2020. Inapproximability Results
for Scheduling with Interval and Resource Restrictions. In
STACS, volume 154 of LIPIcs, 5:1–5:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.
Mnich, M.; and van Bevern, R. 2018. Parameterized Com-
plexity of Machine Scheduling: 15 Open Problems. Comput.
Oper. Res. 100: 254–261.
Mnich, M.; and Wiese, A. 2015. Scheduling and Fixed-
Parameter Tractability. Math. Program. 154(1-2): 533–562.
Page, D. R.; and Solis-Oba, R. 2020. Makespan Mini-
mization on Unrelated Parallel Machines with A Few Bags.
Theor. Comput. Sci. 821: 34–44.
Smith, W. E. 1956. Various Optimizers for Single-Stage Pro-
duction. Naval Research Logistics Quarterly 3(1-2): 59–66.

200

