
LM-Cut and Operator Counting Heuristics
for Optimal Numeric Planning with Simple Conditions

Ryo Kuoriwa, Alexander Shleyfman, Chiara Piacentini, Margarita P. Castro, J. Christopher Beck
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, ON M5S 3G8

rkuroiwa@mie.utoronto.ca, shleyfman.alexander@gmail.com, {chiarap, mpcastro, jcb}@mie.utoronto.ca

Abstract

We consider optimal numeric planning with numeric condi-
tions consisting of linear expressions of numeric state vari-
ables and actions that increase or decrease numeric state vari-
ables by constant quantities. We build on previous research
to introduce a new variant of the numeric hmax heuristic
based on the delete-relaxed version of such planning tasks.
Although our hmax heuristic is inadmissible, it yields a nu-
meric version of the classical LM-cut heuristic which is ad-
missible. Further, we prove that our LM-cut heuristic neither
dominates nor is dominated by the existing numeric heuristic
hmax

hbd . Admissibility also holds when integrating the numeric
cuts into the operator-counting (OC) heuristic producing an
admissible numeric version of the OC heuristic. Through ex-
periments, we demonstrate that both these heuristics compete
favorably with the state-of-the-art heuristics: in particular,
while sometimes expanding more nodes than other heuristics,
numeric OC solves 19 more problem instances than the next
closest heuristic.

Introduction
In this paper, we consider numeric planning with instanta-
neous actions. The presence of numeric state variables intro-
duces a further degree of complexity over classical planning,
making plan existence undecidable in general (Helmert
2002). Nevertheless, since the introduction of numeric vari-
ables in PDDL2.1 (Fox and Long 2003), several methods
have been proposed to solve satisficing and optimal vari-
ants of numeric planning problems (Hoffmann 2003b; Shin
and Davis 2005; Gerevini, Saetti, and Serina 2008; Eye-
rich, Mattmüller, and Röger 2009; Coles et al. 2013; Scala
et al. 2016; Illanes and McIlraith 2017; Li et al. 2018; Scala,
Haslum, and Thiébaux 2016; Scala et al. 2017; Aldinger and
Nebel 2017; Piacentini et al. 2018a,b). We consider here
optimal planning with so-called simple numeric conditions
(where numeric variables can be increased or decreased by
constant quantities and pre-conditions are inequalities in-
volving linear expressions) and focus on the delete-relaxed
version of such problems to develop heuristics.

First, we introduce a variation of the numeric hmax heuris-
tic based on sub-goaling relaxations (Scala, Haslum, and

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Thiébaux 2016). Next, building upon our version of the re-
laxed hmax, we extend the well-known classical LM-cut
heuristic (Helmert and Domshlak 2009) to account for nu-
meric effects and include it in the operator-counting frame-
work (Pommerening et al. 2015). We prove that while our
version of the relaxed hmax is inadmissible, our LM-cut and,
therefore, operator counting heuristics are admissible and
show the theoretical relationship among these heuristics.

The empirical evaluation indicates a good trade-off be-
tween informativeness and computational time, in particu-
lar, these heuristics favorably compete with several classes
of state-of-the-art heuristics and overall achieve higher cov-
erage. The experimental results over classical planning tasks
with resources show the potential of explicitly modelling
resources as numeric state variables, instead of using their
propositional representation.

Preliminaries
Numeric Planning
We consider a fragment of numeric planning restricted to
the STRIPS formalism (Fikes and Nilsson 1971) with the
addition of numeric state variables. We focus our attention
on a restricted class of numeric planning defined by Hoff-
mann (2003a), called the restricted numeric task (RT). For-
mally, RT is defined as a 5-tuple ΠRT = 〈Fp,N ,A, sI , G〉,
where Fp is a finite sets of facts and N is a set of numeric
variables. Numeric variables v ∈ N have rational values in
Q. A state s is a tuple 〈sp, sn〉, where sp ⊆ Fp is a set of
facts and sn is a full assignment over the variables inN ; s[v]
indicates the value of the variable v ∈ N .1

Conditions can be either propositional ψ ∈ Fp or nu-
meric, defined as ψ : v D w, with D ∈ {≥, >}, v ∈ N
and w ∈ Q. The set of all numeric conditions is denoted
by Fn. A propositional condition ψ ∈ Fp is satisfied by the
state s if ψ ∈ sp. A numeric condition ψ : v D w ∈ Fn is
satisfied by s if s[v] D w.

An action a ∈ A is a triplet 〈pre(a), eff(a), cost(a)〉,
where pre(a) are the preconditions, eff(a) the effects,
and cost(a) ∈ R0+ is the cost. Preconditions are de-
fined as prep(a) ∪ pren(a), with propositional and nu-
meric conditions, respectively. Effects are a triplet eff(a) =

1For simplicity, we sometimes write s = sp ∪ sn as a minor
abuse of notation.

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

210

〈add(a), del(a), num(a)〉, where add(a), del(a) ⊆ Fp are
added and deleted facts, and num(a) is the set of additive
numeric effects of the from (v += k), where v ∈ N
and k ∈ Q. We assume that actions have at most one nu-
meric effect on each numeric variable. We say that action
a is applicable in state s if s |= prep(a) ∪ pren(a). The
result of applying a in s is denoted by sJaK = 〈s′p, s′n〉,
with s′p = sp \ del(a) ∪ add(a), while for each v ∈ N ,
s′n[v] = sn[v]+k if (v += k) ∈ num(a), and s′n[v] = sn[v]
otherwise. We replace ψ : v > w with ψ′ : v ≥ w+ε, where
ε > 0 is a sufficiently small constant, assuming only ≥ con-
ditions.

The goal conditions G = Gp ∪ Gn denote propositional
and numeric conditions, respectively. The set of numeric
conditions F̄n = {ψ ∈ Fn | ψ ∈ Gn ∨ ∃a ∈ A : ψ ∈
pren(a)} is called active numeric facts. Note that F̄n is fi-
nite. When a state s satisfies a condition ψ or a set of condi-
tions Ψ, we write s |= ψ and s |= Ψ, respectively. The goal
condition G is a subset of Fp ∪Fn. We say that s∗ is a goal
state if s∗ |= G.

An s-plan is an action sequence π that can be applied suc-
cessively in s and results in a goal state s∗ |= G. A plan for
Π is an sI -plan. The cost of an s-plan π is the sum of all its
action costs and an optimal s-plan has minimal cost among
all possible s-plans. The optimal cost of an s-plan is denoted
by h∗(s). The cost of Π is h∗(sI).

A disjunctive fact landmark LF ⊆ Fp ∪ Fn is a set of
facts such that in the execution of any plan π, there is a state
s such that s |= ψ for some ψ ∈ LF . A disjunctive action
landmark L ⊆ A is a set of actions such that set-wise it
holds L ∩ π 6= ∅, for every plan π for Π.

If a ΠRT does not have any numeric state variable (N =
∅), we have a classical (STRIPS) planning task Π. A nu-
meric variable v ∈ N is called a resource variable if it
has a non-negative domain [0, Rv], where Rv ∈ Q0+ is
the maximum capacity, and v is affected only by actions
When a numeric state variable v ∈ N has non-negative do-
main [0, Rv], where Rv ∈ Q0+ is the maximum capacity
and is affected only by actions which are applicable in s if
s[[a]][v] ∈ [0, Rv], it is called resource variable. If all the
numeric variables are resources and the effects are the type
v += kav with kav < 0 for all a ∈ A, v ∈ N , we have
a resource-constrained planning task (RCP) (Nakhost, Hoff-
mann, and Müller 2012), while if there exists at least one
action with kav > 0, we have a planning task with resources
(RP) (Wilhelm, Steinmetz, and Hoffmann 2018). RT general-
izes RP by allowing numeric variables to have domain Q and
numeric conditions of the form: ψ : v ≥ wψ0 , with wψ0 ∈ Q.

Scala, Haslum, and Thiébaux (2016) introduce planning
with simple numeric conditions (SC), an extension of RT

where numeric preconditions are ψ :
∑
v∈N v · wψv ≥ wψ0 ,

with wψv , w
ψ
0 ∈ Q. Tasks with SC only are called SC tasks

(SCT). They can be reduced to RT by introducing a new nu-
meric variable for each SC and modifying numeric effects so
that they change the variable by the net effects on the SC, as
shown in the supplementary material (Kuroiwa et al. 2021).

Delete-free RT. We say that an RT is delete-free if for each
action a ∈ A it holds that del(a) = ∅ and all numeric ef-
fects are of the form (v += kav) with kav > 0. The support
function supp : Fp ∪ Fn → 2A for such tasks is defined
to be supp(ψ) = {a ∈ A | ψ ∈ add(a)} if ψ ∈ Fp and
supp(v ≥ w0) = {a ∈ A | v += kav ∈ num(a)} if
v ≥ w0 ∈ Fn. The optimal cost of the delete-free RT is
denoted by h+.

The delete-relaxed version of an RT ΠRT, Π+, is a delete-
free RT, where the effects del(a) and ∀(v += kav) ∈ num(a)
if kav ≤ 0 are ignored for all a ∈ A. The optimal cost of Π+,
h+, is an admissible estimate of the optimal cost of ΠRT,
since all plans for ΠRT are also plans for Π+. In what follows,
we consider heuristics for delete-relaxed versions of RTs.

LM-Cut in Classical Planning
Helmert and Domshlak (2009) introduce the LM-cut heuris-
tic for classical planning and show that it produces excellent
estimates of h+ for many tasks. The heuristic is based on
disjunctive action landmarks, computed as a cut in a labelled
weighted digraph called justification graph.

A labelled weighted digraph is formally defined by a
triplet G = 〈N,E,W〉, where N are the vertices of the
graph, E ⊆ N × N × A are labelled edges of the graph,
where A denotes the label set, and W : E → R0+ is
the weight function on edges. An interleaving sequence of
vertices and labels (n0, a0, n1, . . . , am, nm+1) (that can be
viewed as a sequence of edges) is called a path if for each
i ∈ {0, . . . ,m} it holds that (ni, ni+i; am) ∈ E. When the
labels are evident from the context we denote such path by
path(n0, nm+1) and say that nm+1 is reachable from n0 if
such a path exists. Given two disjoint sets N1, N2 ⊆ N , we
define a directed cut to be (N1, N2) = {(n1, n2; a) ∈ E |
n1 ∈ N1, n2 ∈ N2}. We also assume that N1 ∪ N2 = N .
The weights of the path π and the cut L are denoted respec-
tively as

W(π) =
∑
e∈π

W(e) and W(L) = min
e∈L

W(e).

Lastly, for a vertex n0 ∈ N , we define the set of edges in-
cident to n0 as in(n0) = {(n, n0; a) ∈ E | n ∈ N, a ∈ A}
and the in-border of E′ ⊆ E as ∂ in(E′) = {n0 ∈ N |
in(n0) ∩ E′ 6= ∅}.

The computation of the LM-cut heuristic is performed in
rounds, leveraging the concept of cost partitioning (see Defi-
nition 1) to guarantee the admissibility of the heuristic. Start-
ing with hLM-cut(s) = 0, each round proceeds as follows:2

1. Compute the hmax values (Bonet and Geffner 2001) of
all relevant facts. If maxg∈G h

max(g) = 0 return the
computed heuristic value. If there is g ∈ G such that
hmax(g) =∞ return∞.

2. Use the hmax values to construct a Justification Graph
(JG) and using this graph compute a disjunctive action
landmark Lwith nonzero cost c. Update hLM-cut(s) += c.

3. Reduce the costs of all actions in L by c.
4. Go to Step 1, using the updated action costs.

2A formal definition of the computation can be found in the
literature (Helmert and Domshlak 2009; Bonet and Helmert 2010).

211

LM-cut in RT Planning
We can use the exact same schema as described in the previ-
ous section to compute an admissible heuristic for RT plan-
ning. To prove that the heuristic remains admissible when
considering numeric state variables, we need the following
building blocks: (1) an assurance that the cost-partitioning
concept is valid in RT, (2) an hmax heuristic that handles
numeric conditions, and (3) a JG with numeric precondi-
tions and effects. These building blocks and the appropriate
proofs are discussed below.

Cost-Partitioning in RT Planning
In their works, Katz and Domshlak (2008) and Yang et al.
(2008) independently proposed an approach to additively
combine individual admissible heuristic estimates.
Definition 1. Given a planning task Π, its cost-partitioning
is a family of planning tasks {Πi}ni=1 where each task differs
from Π only by its cost function costi and it holds that ∀a ∈
A :

∑n
i=1 costi(a) ≤ cost(a).

Proposition 1. Given a planning task Π, cost partitioning
{Πi}ni=1, and an admissible heuristic function hi for each
Πi, the heuristic function h(s) =

∑n
i=1 hi(s) is admissible.

Here we give a simplified version of the claim proposed
by Katz and Domshlak. The proof of this, less general, claim
is given in the supplementary material (Kuroiwa et al. 2021).
Note that the proof does not rely on any formalism proper-
ties and depends only on the transition system. Therefore,
Prop. 1 holds for numeric planning.

hmax in Numeric Planning
While the computation of hmax in classical planning (Bonet
and Geffner 2001) can be done in polynomial time, with nu-
meric state variables, the problem of calculating hmax is NP-
hard even if we are restricted to RTs.

Let hmax(s) = ĥ(s,G) be defined as a maximal fixed-
point of the following recursive equations: ĥ(s, F) =

maxψ∈F ĥ(s, ψ) for F ⊆ Fp ∪ Fn and

ĥ(s, ψ) =

{
0 if s |= ψ

min
a∈supp(ψ)

ĥ(s, preψ(a)) + cost(a) otherwise.

Here, preψ(a) is pre(a) if ψ ∈ Fp, or pre(a)∪{v ≥ w−kav}
if ψ : v ≥ w ∈ Fn. Note that hmax can be computed in a
finite number of steps (Scala, Haslum, and Thiébaux 2016).
Proposition 2. Given an RT and a state s, the problem of
computing hmax is NP-hard (Kuroiwa et al. 2021).

As in the classical case, the RT heuristic can be interpreted
using both interval (Aldinger and Nebel 2017) and sub-
goaling relaxations (Scala, Haslum, and Thiébaux 2016), but
because of its intractability, a further relaxation is needed.
Scala et al. (2016) modified hmax by introducing a function
ma(s, ψ) that, intuitively, accounts for the number of times
action a must be applied in state s to reach fluent ψ.
Definition 2. Given a delete-free RT, a state s, a fact ψ ∈ F ,
and action a ∈ supp(ψ), We define ma as

ma(s, ψ) =

0 if s |= ψ

w−s[v]
ka if s 6|= ψ ∧ ψ : v ≥ w ∈ Fn
1 otherwise,

where ka ∈ Q0+ is the numeric effect of action a on vari-
able v, i.e., (v += ka) ∈ num(a). If a /∈ supp(ψ), we say
ma(s, ψ) =∞.

This definition allows us to restrict our fluents to the set of
active numeric facts, F̄n. Note that in contrast to Fn, F̄n is
a finite set. This notation allows us to define another version
of hmax that we denote by hmax

cri .3

Definition 3. Given an RT and a state s, we define heuristic
function hmax

cri (s) := hmax
cri (s,G) as follows. As always, for

a set of facts F ⊆ Fp ∪ Fn:

hmax
cri (s, F) = max

ψ∈F
hmax

cri (s, ψ).

For a fact ψ ∈ Fp ∪ Fn, hmax
cri (s, ψ) = 0 if s |= ψ, or

otherwise

hmax
cri (s, ψ) = min

a∈supp(ψ)
hmax

cri (s, pre(a))+ma(s, ψ)cost(a).

Unfortunately, as we show in Ex. 1, hmax
cri is not an admis-

sible heuristic. In contrast, in their work, Scala et al. (2016)
propose another level of relaxation, decoupling precondi-
tions and numeric effects of actions, that assures the admis-
sibility of their hmax version (i.e., hmax

hbd).
Definition 4. Given an RT and a state s, the heuristic func-
tion hmax

hbd is defined exactly as hmax
cri , except when ψ ∈ Fn

is a numeric fact, in this case

hmax
hbd (s, ψ) = min

a∈supp(ψ)
hmax

hbd (s, pre(a))+

min
a∈supp(ψ)

ma(s, ψ) · cost(a).

Note that while these definitions address all subsets of
Fp ∪ Fn, in practice we need to compute hmax

x only for the
fluents in the finite set Fp ∪ F̄n, which allows us to com-
pute both hmax

cri and hmax
hbd in polynomial time in the size of

the RT. It is also important to note that for any state s in a
given RT, hmax

hbd (s, ψ′) ≤ hmax
cri (s, ψ′) because hmax

hbd decou-
ples preconditions and effects of actions that have numeric
fluents, while hmax

cri does not.

The Justification Graph and LM-cut
To follow the scheme of Helmert and Domshlak (2009) for
the numeric version of LM-cut, we need to construct a JG
using our hmax estimates.

Helmert and Domshlak (2009) defined a JG to have a sin-
gleton goal set and all operators to have exactly one precon-
dition, one add effect, and no delete effects. This defines a
directed weighted graph G whose vertices correspond to the
facts of the planning task and labeled weighted edges cor-
respond to actions. In the classical case, the weight of the
shortest path from a vertex representing some fact in s to
another fact ψ, corresponds to the hmax(s, ψ) value, hence
the graph is said to justify hmax.

To meet the requirement of having exactly one precon-
dition, the hmax-values need to be preserved. Intuitively
speaking, the precondition choice function defined by Bonet

3The notation “cri” is chosen since this version of hmax admits
the critical path value in our version of the justification graph.

212

and Helmert (2010) maps each action to one of its precon-
ditions, which in classical planning is done via maximizing
hmax. Thus, for hmax

cri , we can write as follows.

Definition 5. Given an RT, a precondition choice function
pcfcri : S × A → Fp ∪ F̄n is the function that satisfies the
condition

pcfcri(s, a) ∈ argmax
ψ∈pre(a)

hmax
cri (s, ψ).

For actions with no precondition, we add an artificial fact
denoted by ∅. If pre(a) = ∅, we write pcfcri(s, a) = ∅.

In contrast to hmax
cri , hmax

hbd decouples numeric effects
of an action from its preconditions. To make pcfhbd jus-
tify hmax

hbd , pcfhbd is defined to map each action/effect pair
〈a, ψ〉, not each action, to one of the preconditions of
some â in supp(ψ). Thus, it is possible that pcf(s, a, ψ) 6=
pcf(s, a, ψ′) for ψ 6= ψ′ and pcf(s, a, ψ) /∈ pre(a). The re-
sult is a precondition choice function defined as follows:

pcfhbd(s, a, ψ) ∈ argmax
ψ′∈pre(â)

hmax
hbd (s, ψ′),

where â = a if ψ ∈ Fp, or otherwise

â ∈ argmin
a′∈supp(ψ)

hmax
hbd (s, pre(a′)).

Our definitions of JG for hmax
cri and hmax

hbd differ only on
the precondition chosen by the pcf version. We use the gen-
eralised term pcf as a short notation for both function pcfcri
and pcfhbd, where pcfcri is extended with a mute variable ψ.

Definition 6. Given an RT and a state s, the justification
graph is a labelled weighted digraph G = 〈N,E,W〉 with

1. a set of vertices N = {nψ | ψ ∈ Fp ∪ F̄n ∪ {∅}};
2. a set of labeled edges:

E = Ê ∪ {(nψ, nψ′ ; a) | a ∈ supp(ψ′), ψ = pcf(s, a, ψ′)};

where for simplicity we include the following zero-cost
edges

Ê = {(n∅, nψ; a0) | s |= ψ};

3. and a weight function W : E → R0+ defined as

(nψ, nψ′ ; a) 7→ ma(s, ψ′) · cost(a).

The function lbl : E → A is defined as (nψ, nψ′ ; a) 7→ a.

The construction of the JG is at most quadratic in the
size of the RT problem and, when no numeric conditions
are present, the construction is identical to that of the JG
used in classical planning formalisms such as STRIPS or
FDR (Bäckström and Nebel 1995; Helmert 2006).

Admissibility
We now turn to the admissibility status of the four heuristics
discussed above, as summarized in Table 1.

∅

v ≥ 2

v ≥ 6

W(L1) = 3W1(L2) = 1

(a1, 2)

(a1, 6)

(a2, 3)

Figure 1: A JG for the RT in Ex. 1. The functions W and
W1 denote the cut weights of the LM-cut procedures, where
action costs are reduced in each iteration.

hmax Heuristics. While Scala et al. (2016) proved the ad-
missibility of hmax

hbd , we show in Ex. 1 that hmax
cri is inadmis-

sible.
Example 1. Let 〈Fp,N ,A, sI , G〉 be an RT with Fp = ∅
and N = {v}. Let sI = {v = 0}, G = {v ≥ 6}, and
A = {a1, a2}, where

action pre eff cost
a1 ∅ v += 1 1
a2 v ≥ 2 v += 2 1

Note, that in this case F̄n = {v ≥ 2, v ≥ 6}. The JG of the
first and second iterations can be seen in Figure 1, where
the critical path is indicated in red and the landmarks of
numeric LM-cut are denoted by blue lines. Thus, we have:

hmax
hbd (sI) = 3 < hLM-cut

cri (sI) = h∗(sI) = 4 < hmax
cri (sI) = 5.

The example also shows that hmax
hbd does not dominate

hLM-cut
cri even in the case where all variables are numeric. This

complements the fact that hmax is dominated by hLM-cut in
classical planning (Helmert and Domshlak 2009).

hLM-cut Heuristics. The JGs based on pcfcri and pcfhbd ad-
mit the property of justifying hmax

cri and hmax
hbd , correspond-

ingly. However, it is important to note the following.
Proposition 3. The LM-cut heuristic based on the pcfhbd
JG, hLM-cut

hbd , is inadmissible.

The intricate example of inadmissibility of hLM-cut
hbd is

shown in the supplementary material (Kuroiwa et al. 2021).
We now turn to the proof of admissibility of hLM-cut

cri . Since
hLM-cut

hbd is inadmissible, we construct the JG using the pcfcri
function. To simplify the notation, in what follows, we drop
the subscript and write hLM-cut instead of hLM-cut

cri .
Without compromising the admissibility, we restrict the

vertices of G to the following: for each nψ ∈ N it holds
that there are facts ψ′ ∈ s and ψ′′ ∈ G such that there

hyx max LM-cut
hbd 3(Scala et al. 2016) 7 (Prop. 3)
cri 7 (Ex. 1) 3(Thm. 1)

Table 1: Admissibility chart: 3– admissible, 7– inadmissi-
ble. The hyx is the heuristic name where y ∈ {max,LM-cut}
and x ∈ {cri, hbd}.

213

exist a path(nψ′ , nψ) and a path(nψ, nψ′′). Note that both
checks are polynomial, and assure that hmax

cri (s, ψ) <∞. To
establish a goal vertex for our computation we choose

g ∈ argmax
ψ∈G

hmax
cri (s, ψ).

Definition 7. Given an RT, a state s, and the JG G =
〈N,E,W〉, the goal zone of the graph G is the set of vertices
that can reach the goal fact g at zero cost and is defined as:

Ng = {nψ ∈ N | ∃path(nψ, ng) : W(path(nψ, ng)) = 0}.

The before-goal zone is a set of vertices that can be reached
from the vertex n∅ without passing through Ng:

N0 = {nψ ∈ N | ∃path(n∅, nψ) :

path(n∅, nψ) ∩Ng = ∅}.

Lastly, the beyond-goal zone is N b = (N \Ng) \N0.

The RT problem is unsolvable if there are no directed
paths from n∅ to ng . Whereas, if n∅ ∈ Ng there is a path
from n∅ to ng such that W(path(n∅, ng)) = 0, which in
turn means that heuristic value for s is 0.

Scala et al. (2017) defined landmarks for numeric plan-
ning. Following Helmert and Domshlak (2009), we show
below how to extract such landmarks from JGs.

Lemma 1. Assume an RT of a non-zero optimal cost. Let G
be the JG corresponding to ΠRT, and let L be a directed cut
in G that separates n∅ from ng , such that W(L) > 0. Then,

1. ∂ in(L) is a disjunctive fact landmark.
2. lbl(L) is a disjunctive action landmark.

The proof of this claim is presented in the supplementary
material (Kuroiwa et al. 2021). We also note that this prop-
erty does not necessarily hold for a JG that is constructed
based on pcfhbd.

Now, we are ready to state and prove our main theoretical
claim that states that numeric LM-cut is admissible.

Theorem 1. Let ΠRT = 〈Fp,N ,A, s,G〉 be a solvable
RT with a non-zero optimal cost. Let G = 〈N,E,W〉 be
the JG corresponding to ΠRT, and let N0, N b and Ng be
before-, beyond- and goal zones, as defined above. Let L =
(N0, Ng ∪N b) be a directed cut in G. We define the weight
of the cut to be the weight of the minimal edge in the cut, i.e.

W(L) = min
e∈L

W(e).

h1(s) = W(L) is admissible for ΠRT
1 , where ΠRT

1 is a copy
of ΠRT, with the augmented cost function cost1

cost1(a) =

{
W(L)
mLa

if a ∈ lbl(L)

0 otherwise,

where mL
a = min(nψ,nψ′ ;a)∈Lma(s, ψ′), i.e., the minimum

over all m’s of the same action edges in the cut.

Proof. First, we show that cost1(a) ≤ cost(a) for all a ∈
A. The claim is clear for a /∈ lbl(L), otherwise there is

(nψ, nψ′ ; a) ∈ L such that W(nψ, nψ′ ; a) = mL
a · cost(a),

thus

cost1(a) =
W(L)

mL
a

≤ mL
a · cost(a)

mL
a

= cost(a).

To finish the claim, all is left to show that the weight of L
is an admissible estimate for the solution of ΠRT

1 . Assume in
contradiction that it is not, i.e., there is a plan π such that

cost1(π) < W(L).

By Lem. 1 point 1, ∂ in(L) is a disjunctive fact landmark.
Thus, there is at least one fluent in ∂ in(L) that is achieved
by the plan π.4 We denote by ψ0 the first fluent in ∂ in(L)
that is achieved by π. Note that lbl(in(nψ)) = supp(ψ); we
write Lψ = L ∩ in(nψ). By construction of the JG, we have
that

min
a∈lbl(Lψ0

)
ma(s, ψ0)cost1(a)

constitutes a lower bound on achieving the fluent ψ0. Intu-
itively, ma(s, ψ0) is the (not necessarily integer) number of
times that action a should be applied from s to achieve ψ0.
Thus, there is an action â0 ∈ lbl(Lψ0

) such that

mâ0(s, ψ0)cost1(â0) ≤ cost1(π) < W(L).

The fact that mL
â0
≤ mâ0(s, ψ0) allows us to conclude

with the following contradiction

W(L) ≤ mâ0(s, ψ0)
W(L)

mL
â0

≤ mâ0(s, ψ0)cost1(â0).

Using Prop. 1 and Thm. 1, we finalize our claim.

Corollary 1 (Admissibility). The LM-cut heuristic for RT is
admissible, and can be computed in polynomial time.

Proof. Admissibility follows directly from Prop. 1 and
Thm. 1. The computation of hmax

cri (s, g) and the construc-
tion of the JG are both polynomial in RT and the cuts L are
produced in polynomial time in the size of JG. Thus, if we
show that the number of such cuts does not exceed |A| we
can prove our claim. We show that for each L there is at least
one action a ∈ lbl(L) where the cost is reduced to zero.

Let (ψ,ψ′; a) ∈ L be the edge where W(L) achieves its
minimum (W(L) > 0). By definition of W we have that

W(L) = W(ψ,ψ′; a) = ma(s, ψ′)cost(a) = mL
a cost(a).

Thus, the updated cost of a ∈ A, cost1(a), is

cost(a)− W(L)

mL
a

= cost(a)− mL
a cost(a)

mL
a

= 0.

Finally, we show that hLM-cut does not dominate hmax
hbd .

Example 2. Let 〈Fp,N ,A, sI , G〉 be an RT with Fp =
{p, g} and N = {v}. Let, the rest of elements in the tu-
ple be sI = {v = 0}, G = {g}, and A = {a1, a2, a3, a4},
where

4This is a minor abuse of notation: fluent ψ corresponds to the
node nψ ∈ ∂ in(L).

214

∅

v ≥ 1 p

v ≥ 2

g

W(L1) = 1W1(L2) = 1W2(L3) = 0.5

(a1, 1)

(a1, 2)

(a2, 1)
(a3, 1)

(a4, 1)

Figure 2: A JG for the RT in Ex. 2. The functions W, W1,
and W2 denote the consequent cut weights of the LM-cut
procedures, where action costs are reduced in each iteration.

action pre eff cost
a1 ∅ v += 1 1
a2 v ≥ 1 p 1
a3 p g 1
a4 v ≥ 2 g 1

In this case we have F̄n = {v ≥ 1, v ≥ 2}. The JG of all
iterations can be seen in Figure 2, where the landmarks of
numeric LM-cut are denoted by blue lines. Thus, we have

hLM-cut(sI) = 2.5 < hmax
hbd (sI) = h∗(sI) = 3.

Hence, we have that hLM-cut does not dominate hmax
hbd .

Using Ex. 1 and Ex. 2 we conclude the section with the
following proposition.
Proposition 4. hLM-cut and hmax

hbd are incomparable.

Operator Counting
The operator-counting (OC) framework combines lin-
ear/integer programming (LP/IP) based heuristics using the
optimal cost for the following problem as a heuristic value
(Pommerening et al. 2014):

minimize
∑
a∈A cost(a)Xa (1)

subject to Xa ≥ 0, ∀a ∈ A (2)
C (3)

where Xa for all a ∈ A is a decision variable representing
the number of occurrence of action a in a plan, and C is a
set of OC constraints: linear inequalities over Xa such that
for every plan π, ∀a ∈ A, Xa = count(π, a) is a feasible
solution where count(π, a) is the number of occurrences of
action a in π. Since the optimal cost of the LP/IP problem
is a lower bound of the cost of every plan, OC heuristics are
admissible. Adding OC constraints does not remove feasi-
ble solutions for any plan and tightens the bound. Therefore,
different types of OC constraints can be used together to im-
prove the heuristic informativeness.

While the OC framework was originally proposed for
classical planning, a recent work has applied it to numeric
planning (Piacentini et al. 2018b). They introduced the state
equation constraints (SEQ) (Bonet 2013) and the delete re-
laxation constraints (Imai and Fukunaga 2015) into numeric
planning tasks with simple conditions (SCT).

LM-Cut for Operator-Counting Constraints
Given a disjunctive action landmark L, the landmark con-
straint is as follows (Bonet and Helmert 2010):∑

a∈lbl(L)

Xa ≥ 1. (4)

The above inequality is a valid OC constraint. In classical
planning, the landmarks extracted by hLM-cut can be used
to generate the landmark constraints (Pommerening et al.
2014). Here, we generalize this approach.

Theorem 2. Given an RT, let L be a cut set obtained by the
LM-cut heuristic. Let count(π, a) be the number of times
action a appears in a plan π. The following holds for any π∑

a∈lbl(L)

count(π, a)

mL
a

≥ 1. (5)

Proof. Let π be a plan for the RT, and let L = (N0, Ng ∪
N b) be the cut in the JG. Recall that ∂ in(L) is a disjunctive
fact landmark. Thus, there is at least one fluent in ∂ in(L)
that is achieved by the plan π. Let ψ0 be the first fluent in
Ng ∪N b that is achieved by π, and let a0 be the action in π
that achieves ψ0, i.e., a0 ∈ lbl(Lψ0

) ∩ π, where lbl(Lψ0
) =

supp(ψ0) ∩ lbl(L).
Next, note that if ma0(s, ψ0) ≤ 1, it holds that

1 ≤ count(π, a0)

ma0(s, ψ0)
≤ count(π, a0)

mL
a0

≤
∑

a∈lbl(L)

count(π, a)

mL
a

.

Thus, assume that ma0(s, ψ0) > 1 and ψ0 ∈ F̄n is a nu-
meric fluent. Assume that ψ0 is of the form v ≥ w0. For
each a ∈ supp(ψ0) it holds that (v += ka) ∈ num(a).
Since π achieves ψ0 we can write

w0 ≤ s[v] +
∑

a∈lbl(Lψ0
)

ka · count(π, a).

Now, subtract from both sides of the inequality s[v] and sub-
sequently divide by w0 − s[v] > 0:

1 ≤
∑

a∈lbl(Lψ0
)

ka

w0 − s[v]
· count(π, a) =

∑
a∈lbl(Lψ0

)

count(π, a)

ma(s, ψ0)
≤

∑
a∈lbl(L)

count(π, a)

mL
a

.

From Thm. 2, we derive the following OC constraint:∑
a∈lbl(L)

Xa

mL
a

≥ 1, (6)

where L is a cut obtained by the LM-cut heuristic.

Experimental Evaluation
In all the experiments, we evaluate the heuristics by using
them in A∗ search imposing a 30-minute time-limit and 4
GB memory limit on an Intel(R) Xeon(R) CPU E5-2620 @

215

2.00GHz processor. We implemented the heuristics in Nu-
meric Fast Downward (NFD) (Aldinger and Nebel 2017)5

using C++11 with GCC 7.5.0 on Ubuntu 18.04 and using
CPLEX 12.10 as a mathematical programming solver.

Domains with simple numeric conditions are taken from
the literature (Scala et al. 2016, 2017, 2020). We exclude
ZENOTRAVEL because some conditions are not simple nu-
meric conditions (Piacentini et al. 2018b). From COUN-
TERS, we exclude three instances that are in SMALLCOUN-
TERS. For SAILING, in addition to the original instances
(Scala et al. 2016), we include the instances with a single
boat (Scala et al. 2017), removing duplicates. Since multi-
ple configurations solve all instances in FARMLAND, GAR-
DENING, and SAILING, we also added satisficing versions of
these domains (FARMLAND-SAT, GARDENING-SAT, and
SAILING-SAT) excluding instances appearing in the opti-
mal versions. A task is translated into an RT when computing
the numeric LM-cut. We implemented the numeric LM-cut
and LP/IP-based heuristics. For the numeric heuristics, we
add the redundant constraints to the goal conditions and pre-
conditions of actions in the same way as Scala et al. (2016).

Comparison with Propositional LM-Cut
To evaluate the benefit of considering numeric conditions
in LM-cut, we compare the numeric and propositional ver-
sions. In the numeric domains, the propositional LM-cut ig-
nores numeric conditions, i.e., all numeric conditions are
achieved with zero cost when computing heuristic values.

We omit the domains COUNTERS, FARMLAND-SAT, and
CHILDSNACK because both versions of LM-cut solve no in-
stances. The results in the top of Table 2 show that the nu-
meric version of hLM-cut outperforms the propositional.

In addition, we consider a set of domains containing re-
source variables from the optimal IPC track, translated into
RP tasks (Wilhelm, Steinmetz, and Hoffmann 2018). If there
are multiple versions for the same domain, we use the lat-
est one. Search is performed on the original space, while the
numeric heuristic is computed using the transformed task.
The results of this comparison are shown in the bottom of
Table 2. The translation into numeric version increases the
coverage on three domains while reducing the number of the
expanded states and search time on seven domains. How-
ever, the propositional version solves more instances than
the numeric version on four domains.

Comparison with Numeric Heuristics
We compare the numeric LM-cut heuristic (hLM-cut) with the
following numeric heuristics: the interval relaxation based
max heuristic hirmax (Aldinger and Nebel 2017), the nu-
meric max heuristic ĥrmax

hbd+ (Scala et al. 2020), the numeric
landmark heuristic hlm+

hbd (Scala et al. 2017), and the general-
ized sub-goaling heuristic hgen

hbd (Scala et al. 2020). For ĥrmax
hbd+,

hlm+
hbd , and hgen

hbd, in addition to our implementations in NFD,
we evaluate the original implementations in ENHSP-196 us-
ing OpenJDK 11.0.9.1.

5https://github.com/Kurorororo/numeric-fast-downward
6https://sites.google.com/view/enhsp/

propositional numeric
c. t. e. c. t. e.

SMALLCOUNTERS (8) 6 8.75 160932 7 0.46 5738
COUNTERS-INV (11) 2 0.04 1734 2 0.00 34
COUNTERS-RND (33) 6 0.01 476 9 0.00 6
FARMLAND (30) 11 21.39 219468 30 0.05 456
GARDENING (63) 63 7.78 198429 63 1.57 18622
GARDENING-SAT (51) 10 93.12 2308994 12 15.39 163362
SAILING (40) 9 92.17 2283679 40 0.19 1619
SAILING-SAT (40) 3 64.76 3085470 14 0.98 23241
DEPOTS (20) 7 95.36 49827 7 97.37 49873
ROVERS (20) 4 6.91 125692 4 7.44 130760
SATELLITE (20) 2 36.70 78620 2 23.34 47351
TOTAL (364) 123 - - 190 - -
ELEVAT-11 (20) 18 159.35 54559 18 136.18 31038
FREEC (80) 15 174.41 82292 18 61.23 376
MPRIME (35) 22 48.16 5091 22 16.44 449
MYSTRY (30) 17 68.89 2763 16 16.12 46
NOMYST-11 (20) 14 28.73 4868 20 12.72 488
OPENST-14 (20) 0 - - 3 - -
PARCPR-11 (20) 13 11.83 23101 13 21.50 22969
PATHWAY (30) 5 14.03 14621 5 38.60 14609
PIPEST (50) 17 88.66 75427 16 173.95 76620
PIPESNOT (50) 12 76.52 64296 6 466.06 64425
ROVERS (40) 7 2.82 15767 7 8.55 16258
TPP (30) 6 0.97 4935 6 6.80 4403
TRANSP-14 (20) 6 104.73 85366 6 85.94 82886
WOODWOR-11 (20) 12 170.20 78288 12 123.26 19620
ZENOT (20) 13 39.53 8764 12 122.38 8764
TOTAL (505) 177 - - 180 - -

Table 2: Coverage (‘c.’), average time (‘t.’), and # of states
expanded (‘e.’) by the propositional and numeric LM-cut
heuristics. The time and # of states are averaged over in-
stances solved by both versions. The numeric domains are
in the upper and the classical domains are in the lower half.

We show the experimental results in the left-hand side
of Table 3. On FARMLAND-SAT, since instances are large,
NFD runs out of memory when translating PDDL files to
SAS+ files and does not solve any instance. Our LM-cut
heuristic improves coverage by 17 tasks compared to the
next best heuristic and attains the smallest run-time on 8 of
the 11 domains, while expanding more states than at least
one competitor in all domains except DEPOTS.

Comparison in the OC Framework
In classical planning, the combination of the LM-cut con-
straints and SEQ outperforms the individual components
(Pommerening et al. 2014). To examine whether this is also
the case with numeric planning, we evaluate the following
OC heuristics using LP: hLM-cut

LP which uses the LM-cut con-
straints (Eq. (6)), hSEQ

LP which uses the numeric planning ver-
sion of SEQ, and hLM-cut, SEQ

LP which uses both. In addition,
we compare these heuristics with hcIP, an OC heuristic that
uses IP with the delete-relaxation constraints and SEQ (Pi-
acentini et al. 2018b). The results of this comparison are
shown in the right-hand side of Table 3.

While hLM-cut
LP and hSEQ

LP are complementary on most of the
domains, the coverage of hLM-cut, SEQ

LP is equal to the maxi-

216

hirmax ĥrmax
hbd+ ĥrmax

hbd+ hlm+
hbd hlm+

hbd hgen
hbd hgen

hbd hLM-cut hcIP hcLP hSEQ
LP hLM-cut

LP hLM-cut, SEQ
LP

implementation N E N E N E N N N N N N N
domain Coverage
SMALLCOUNTERS (8) 6 7 7 7 7 7 7 7 8 8 8 7 8
COUNTERS (8) 0 0 0 0 0 0 0 0 4 5 8 0 8
COUNTERS-INV (11) 2 2 2 2 2 9 11 2 6 7 11 2 11
COUNTERS-RND (33) 6 6 7 10 9 32 33 9 21 23 33 9 33
FARMLAND (30) 11 30 30 30 30 20 30 30 30 30 30 30 30
FARMLAND-SAT (20) 0 7 0 6 0 0 0 0 0 0 0 0 0
GARDENING (63) 63 63 63 63 63 53 63 63 63 63 63 63 63
GARDENING-SAT (51) 12 12 12 12 12 1 11 12 14 14 12 12 15
SAILING (40) 8 22 25 20 20 6 9 40 40 20 9 40 40
SAILING-SAT (40) 3 7 9 3 6 1 5 14 24 3 3 14 12
DEPOTS (20) 5 4 5 4 3 1 1 7 1 2 6 7 7
ROVERS (20) 4 3 4 3 4 1 2 4 2 4 4 4 4
SATELLITE (20) 1 1 1 1 1 0 1 2 1 1 1 2 2
TOTAL (364) 121 164 165 161 157 131 173 190 214 180 188 190 233
domain Time (s)
SMALLCOUNTERS (8) 10.43 1.76 0.87 2.75 2.00 25.55 2.98 0.46 0.92 0.16 0.02 37.96 0.03
COUNTERS-INV (11) 0.06 0.18 0.01 0.23 0.01 0.34 0.01 0.00 0.23 0.03 0.01 0.02 0.01
COUNTERS-RND (33) 0.02 0.08 0.00 0.21 0.01 0.25 0.01 0.00 1.59 0.34 0.04 196.64 0.05
FARMLAND (30) 15.32 0.32 0.04 0.71 0.22 6.71 0.37 0.05 43.01 6.98 1.30 89.20 1.50
GARDENING (63) 1.23 1.53 0.42 3.59 2.29 205.52 12.78 0.29 12.26 3.73 1.78 5.69 0.31
GARDENING-SAT (51) 0.91 2.73 0.49 4.86 2.48 234.60 14.27 0.31 51.05 17.72 13.04 95.55 1.05
SAILING (40) 4.64 0.73 0.07 1.08 0.08 659.57 22.47 0.04 5.03 3.17 430.31 0.18 0.21
SAILING-SAT (40) 28.73 1.89 0.68 14.04 0.23 205.05 16.31 0.61 66.29 8.69 478.74 2.09 2.47
DEPOTS (20) 0.01 0.23 0.01 0.68 0.15 82.07 12.65 0.01 35.83 0.76 0.06 0.03 0.04
ROVERS (20) 1.10 1.14 0.99 1.99 7.72 382.17 323.81 0.52 233.33 47.33 6.31 4.98 7.10
SATELLITE (20) - - - - - - - - 8.37 13.75 10.09 0.26 0.17
domain # States expanded
SMALLCOUNTERS (8) 118909 12665 12668 2904 2906 2011 2012 5738 13 13 13 93963 13
COUNTERS-INV (11) 1390 160 160 8 8 8 8 34 8 8 8 26 8
COUNTERS-RND (33) 316 6 5 5 6 6 5 6 15 15 15 359847 15
FARMLAND (30) 217074 463 456 463 421 462 449 456 441 441 441 16854 441
GARDENING (63) 16477 5724 5762 3849 4010 8628 5810 4042 139 140 6367 18249 235
GARDENING-SAT (51) 8499 3444 3461 1839 1802 4958 3148 2254 420 412 27856 307511 576
SAILING (40) 130300 1130 1130 630 62 61980 31815 632 90 306 2283679 150 150
SAILING-SAT (40) 967917 15052 15052 15052 175 15052 15052 15052 8544 9032 3085470 8845 8845
DEPOTS (20) 55 55 55 98 134 147 150 29 17 59 134 29 29
ROVERS (20) 12716 3842 12680 370 12712 348 12629 16003 7683 7683 15982 18360 17540
SATELLITE (20) - - - - - - - - 113 1080 51366 274 113

Table 3: Coverage, average time in seconds, and # of states expanded by different numeric heuristics on SC domains. ‘N’ and
‘E’ mean the implementations in NFD and ENHSP-19, respectively. The time and # of states are averaged over instances solved
by all of hirmax, ĥrmax

hbd+, hlm+
hbd , hgen

hbd, and hLM-cut in the left-hand side, and by all of the OC heuristics in the right-hand side. The
coverage is highlighted in bold if it is the highest among its heuristics family (right- and left-hand sides of the table).

mum of hLM-cut
LP and hSEQ

LP . Furthermore, on three domains,
hLM-cut, SEQ

LP expands fewer states and finds solutions faster
than both of the components. In terms of the total coverage,
hLM-cut, SEQ

LP dominates all of the evaluated heuristics includ-
ing hcIP. While hcIP expands fewer states than hLM-cut, SEQ

LP , the
latter is faster to compute. hcLP, the LP version of hcIP, is also
slower than hLM-cut, SEQ

LP , indicating that the delete-relaxation
constraints are informative, but slow to compute.

Conclusion
This paper presents an extension of the LM-cut heuristic to
numeric planning problems with simple numeric conditions.
In order to obtain an admissible estimate, we introduce a
new variant of hmax and theoretically analyze the effect of

different relaxations both on hmax and hLM-cut. Although
our admissible version of hLM-cut does not show any theo-
retical dominance over the existing numeric heuristic hmax

hbd ,
empirically it better approximates the plan cost, improving
on the coverage. The strong performance is even more ev-
ident when combining LM-cut with SEQ constraints using
the operator-counting framework, as it achieves state-of-the-
art performance in most numeric domains. The explicit use
of numeric state variables also produces more accurate LM-
cut heuristic estimations in most cases.

References
Aldinger, J.; and Nebel, B. 2017. Interval Based Relaxation
Heuristics for Numeric Planning with Action Costs. In Proc.
SOCS, 155–156.

217

Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11(4): 625–
655.
Bonet, B. 2013. An Admissible Heuristic for SAS+ Planning
Obtained from the State Equation. In Proc. IJCAI, 2268–
2274.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. AIJ 129(1): 5–33.
Bonet, B.; and Helmert, M. 2010. Strengthening Landmark
Heuristics via Hitting Sets. In Proc. ECAI, 329–334.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A
Hybrid LP-RPG Heuristic for Modelling Numeric Resource
Flows in Planning. JAIR 46: 343–412.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
Context-Enhanced Additive Heuristic for Temporal and Nu-
meric Planning. In Proc. ICAPS, 130–137.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. AIJ 2: 189–208.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. JAIR
20: 61–124.
Gerevini, A.; Saetti, A.; and Serina, I. 2008. An approach to
efficient planning with numerical fluents and multi-criteria
plan quality. AIJ 172(8-9): 899–944.
Helmert, M. 2002. Decidability and Undecidability Results
for Planning with Numerical State Variables. In Proc. AIPS,
303–312.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proc. ICAPS, 162–169.
Hoffmann, J. 2003a. The Metric-FF Planning System:
Translating ”Ignoring Delete Lists” to Numeric State Vari-
ables. JAIR 20: 291–341.
Hoffmann, J. 2003b. Utilizing Problem Structure in Plan-
ning, A Local Search Approach, volume 2854 of LNCS.
Springer.
Illanes, L.; and McIlraith, S. A. 2017. Numeric Planning
via Abstraction and Policy Guided Search. In Proc. IJCAI,
4338–4345.
Imai, T.; and Fukunaga, A. 2015. On a Practical, Integer-
Linear Programming Model for Delete-Free Tasks and its
Use as a Heuristic for Cost-Optimal Planning. JAIR 54: 631–
677.
Katz, M.; and Domshlak, C. 2008. Optimal Additive Com-
position of Abstraction-based Admissible Heuristics. In
Proc. ICAPS, 174–181.
Kuroiwa, R.; Shleyfman, A.; Piacentini, C.; Castro,
M. P.; and Beck, J. C. 2021. Supplement for LM-
cut and Operator Counting Heuristics for Numeric Plan-
ning with Simple Conditions: Counter Examples and Ad-

ditional Proofs. https://tidel.mie.utoronto.ca/pubs/Kuroiwa
ICAPS2021 supplement.pdf.
Li, D.; Scala, E.; Haslum, P.; and Bogomolov, S. 2018.
Effect-Abstraction Based Relaxation for Linear Numeric
Planning. In Proc. IJCAI, 4787–4793.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
Constrained Planning: A Monte Carlo Random Walk Ap-
proach. In Proc. ICAPS, 181–189.
Piacentini, C.; Castro, M. P.; Ciré, A. A.; and Beck, J. C.
2018a. Compiling Optimal Numeric Planning to Mixed In-
teger Linear Programming. In Proc. ICAPS, 383–387.
Piacentini, C.; Castro, M. P.; Ciré, A. A.; and Beck, J. C.
2018b. Linear and Integer Programming-Based Heuristics
for Cost-Optimal Numeric Planning. In Proc. AAAI, 6254–
6261.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Proc. AAAI, 3335–3341.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-Based Heuristics for Cost-Optimal Planning. In
Proc. ICAPS, 226–234.
Scala, E.; Haslum, P.; Magazzeni, D.; and Thiébaux, S.
2017. Landmarks for Numeric Planning Problems. In Proc.
IJCAI, 4384–4390.
Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics for
Numeric Planning via Subgoaling. In Proc. IJCAI, 3228–
3234.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2020.
Subgoaling Techniques for Satisficing and Optimal Numeric
Planning. JAIR 68: 691–752.
Scala, E.; Ramı́rez, M.; Haslum, P.; and Thiébaux, S. 2016.
Numeric Planning with Disjunctive Global Constraints via
SMT. In Proc. ICAPS, 276–284.
Shin, J.; and Davis, E. 2005. Processes and continuous
change in a SAT-based planner. AIJ 166(1-2): 194–253.
Wilhelm, A.; Steinmetz, M.; and Hoffmann, J. 2018. On
Stubborn Sets and Planning with Resources. In Proc.
ICAPS, 288–297.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A General Theory of Additive State Space Abstrac-
tions. JAIR 32: 631–662.

218

