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Abstract

It has been shown recently that duality mapping is a viable
strategy to turn progression (forward search) into regression
(backward search), but the experimental results suggest that
the dual versions of standard IPC benchmarks are quite dif-
ficult to solve for heuristic search planners. We aim to study
the performance of width-based planners over regression. Our
experiments show that width-based search can solve dual
problems efficiently when the goal state is restricted to single
fluent, but it becomes challenging when the goal state con-
tains conjunctive fluents. We then show that the backward
version of best-first width-search (BFWS) with the evalua-
tion function f5, BFWS(f5), and its polynomial variant, k-
BFWS(f5), are not competitive with their forward versions,
but can be orthogonal over the IPC benchmarks. Hence, we
propose a front-to-end bidirectional search k-BDWS-e and its
front-to-front variant by integrating forward and backward k-
BFWS(f5) with the additional intersection check between ex-
panded states whose novelty is 1 in the opposite Close list.
Practical findings on the challenges of regression in classical
planning are briefly discussed.

Introduction
Forward heuristic search from the initial state towards one
of the goal states is one of the most successful search strate-
gies for satisficing classical planning (Bonet and Geffner
2001; Hoffmann and Nebel 2001; Helmert 2006; Richter
and Westphal 2010). Backward heuristic search has been
explored to a lesser extent due to asymmetries between
forward and backward search (Bonet and Geffner 2001;
Alcázar et al. 2013), and the lack of informed heuristics
for the latter. Recently, forward width-based search algo-
rithms have shown state-of-the-art performance in the last
International Planning Competition (IPC) (Frances, Geffner,
and Lipovetzky 2018). These algorithms employ an explo-
ration mechanism based on a structural goal-agnostic no-
tion, novelty, which assigns value to the states based on
how novel they are with respect to the states already vis-
ited by the search strategy (Lipovetzky and Geffner 2012).
When novelty is used with goal-aware heuristics in a greedy
best-first search, the resulting search algorithms are known
as best-first width-search (BFWS) (Lipovetzky and Geffner
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2017a,b), the backbone of some of the best performing al-
gorithms in the last IPC. The integration of novelty with for-
ward heuristic search algorithms is an active research area
(Katz et al. 2017; Fickert 2018, 2020).

Suda (2013) described a duality translation over STRIPS
planning tasks to turn progression into regression, but the
dual versions of the IPC domains are quite difficult to
solve for modern heuristic and SAT planners such as FF
(Hoffmann and Nebel 2001), LAMA (Richter and Westphal
2010), and Mp (Rintanen 2010). Backward search has also
been exploited in the context of bidirectional search expand-
ing states in both directions with the aim to solve problems
“meeting-in-the-middle”, where the search succeeds and ter-
minates when there is an intersection between the frontier
of each search direction (Politowski and Pohl 1984; Felner
et al. 2010; Alcázar et al. 2013; Alcázar, Fernández, and
Borrajo 2014; Kuroiwa and Fukunaga 2020).

Width-based search algorithms have not been used in the
context of backward and bidirectional search. The aim of
this paper is to explore the impacts of duality in the compu-
tation of novelty, and the performance of backward and bidi-
rectional width-based search over the IPC domains. For this,
we introduce the modifications needed to run width-based
algorithms in regression, and explore different strategies to
combine BFWS in bidirectional search.

Background
A STRIPS problem P = 〈F,O, I,G〉 is made up of a set
of boolean facts F , a set of actions O each with a triple
〈pre, add, del〉, an initial I ⊆ F and goal G ⊆ F speci-
fication. P represents the state model of a classical planning
problem in a compact form (Haslum et al. 2019). The pro-
gression state model SP = 〈S, s0, SG, A, f, c〉 consists of
a set of states S = 2F , the initial state s0 = I , the set
of goal states SG = {s | G ⊆ s ∈ S}, the subset of ac-
tions A(s) = {a | pre(a) ⊆ s, a ∈ O} applicable in s,
the transition function f(s, a) = s ∪ add(a) \ del(a) and
the cost function c. A solution is a sequence of actions map-
ping the initial state s0 into one of the goal states s ∈ SG.
The regression state model SR = 〈S, s0, SG, A, f, c〉 of a
STRIPS problem P differs from the progression model SP ,
as the set of states S can be made of partial states entailing
multiple states from the forward model. In the SR model,
the initial state s0 = G is the goal G; the set of goal states
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SG = {s | s ⊆ I} are the partial states entailed by I; the sub-
set of actions A(s) = {a | del(a)∩ s = ∅, add(a)∩ s 6= ∅}
applicable in s are actions consistent and relevant with s,
where no fluent in the delete list appears in s and at least one
fluent in the add list appears in s. Finally, the transition func-
tion f(s, a) = s \ add(a) ∪ pre(a) regresses a partial state
s given an applicable action a ∈ A(s) (Bonet and Geffner
2001).

Duality The dual of a STRIPS problem P is defined as
P d = 〈F,Od, Id, Gd〉. In the dual problem, the precondition
and delete lists of each action a ∈ O are swapped to form
the dual action ad ∈ Od where ad = 〈del, add, pre〉. The
dual initial state Id = F \G is set to the complement of the
original goal G, and finally the dual goal state Gd = F \ I is
set to the complement of the initial state I (Suda 2013). The
dual mapping transforms SP into the regression state model
SR by changing the encoding of the problem P directly.

Width-Based Search Lipovetzky and Geffner (2012) in-
troduced a width parameter w(P ) which can characterize
the complexity of classical planning instances through the
structural goal-agnostic notion of novelty. The novelty of a
state s is set to the size of the smallest tuple of fluents t ⊆ s
where s is the first state that makes t true in the search. If s
does not contain any new tuples t, the novelty of s is |F |+1.

The simplest width-based algorithm to exploit novelty is
Iterated Width (IW). IW runs a sequence of bounded IW(i),
for i = 1, . . . , |F | until the problem is solved, where each
IW(i) is a breadth-first search pruning states whose novelty
is greater than i. For a given problem P , the minimum bound
i needed to solve it is called the effective width, we(P ),
which is a lower bound of the real width w(P) character-
izing the complexity of the problem. IW has been shown to
be competitive when G is restricted to |G| = 1 single atoms
(Lipovetzky and Geffner 2012), and has excelled over classi-
cal planning problems specified by simulators (Lipovetzky,
Ramirez, and Geffner 2015).

Lipovetzky and Geffner (2017a) introduced best-first
width-search (BFWS), a best-first search combining width-
based exploration and goal-directed heuristics through the
evaluation function f = 〈wh′ , h〉, where h are one or more
heuristic functions, and wh′ is the novelty measure. Novelty
wh′(s) is only computed with respect to states s′ seen be-
fore whose h′(s) = h′(s′). The evaluation function breaks
ties lexicographically, preferring novel states first, and then
breaking ties by goal-directed heuristics.

One of the best performing BFWS variants is BFWS(f5)
where the heuristic h is the number of unrealized goals in a
state (#g), and the novelty measure wh′ is computed under
h′ = 〈#g,#r〉 where #r is a counter keeping track of how
many relevant fluents R have been achieved along the path
to the current state s from s0. The relevant set R is defined
as the fluents that appear in a relaxed plan (Hoffmann and
Nebel 2001). R is computed in s0 and in states that achieve
one more goal than their parent state. A state s uses the lat-
est R computed in the path from s0. BFWS(f5) is complete,
but can be easily turned into a polynomial but incomplete
search algorithm by just pruning the states s whose nov-
elty wh′(s) exceeds a bound k, named as k-BFWS(f5). Both

I we=1 we=2 we>2
P PD P PD P PD P PD

37,921 88,856 37% 96% 51% 0% 12% 4%

Table 1: Percentage of single-goal instances with effective
width we 1, 2, or greater than 2 over STRIPS problems P
and their Dual version PD. I stands for the number of in-
stances.

planners manage to outperform the state-of-the-art planner
LAMA (Lipovetzky and Geffner 2017a,b), while BFWS(f5)
won the agile track of the last IPC.

Bidirectional Search Standard bidirectional search based
on best-first search uses Openf (Openb) and Closef (Closeb)
to store generated and expanded states in the forward (back-
ward) direction. Bidirectional search can be categorized into
one of the following search strategies: 1) front-to-end guides
the search forward with hf , which evaluates the distance
from states in Openf to the closest goal state s′ ∈ SG, and
searches backwards evaluating the distance from states in
Openb to the initial state s0; 2) front-to-front estimates the
heuristic value of a state s according to how close it is to the
opposite search frontier (Open list). Bidirectional search ter-
minates when the goal or the initial state has been reached.
The search can terminate earlier if the frontiers meet-in-the-
middle, which requires checking if Closef ∩ Closeb 6= ∅
(Felner et al. 2010; Kuroiwa and Fukunaga 2020).

Duality in Width-Based Search
There are 42 domains (1095 instances) using the latest ver-
sion of each domain from the satisficing tracks of IPCs
1998–2018. All following experiments were conducted on
a cloud computer with clock speeds of 2.0 GHz Xeon pro-
cessors, and processes time or memory out after 30 minutes
or 8 GB. All search algorithms are implemented on LAPKT
using Metric-FF as an ADL to Propositional STRIPS com-
piler (Ramirez, Lipovetzky, and Muise 2015).

We run IW on dual and original instances to compare
their average effective width we(P ). Each original and dual
instance with N goal fluents is split into N instances with
atomic goal fluents. Instances whose goal fluent is already
true in the initial state are excluded. We summarize below
the overall we(P ) of original and dual problems over single
goals. we(P ) provides an approximation of the actual width
w(P ), where problems are solved generating O(|F |we(P ))
states. Lipovetzky and Geffner (2012) indicated that most
benchmark domains appear to have a bounded and small
width when goals are restricted to single fluent.

Overall, 37,921 original and 88,856 dual single-goal in-
stances are generated. For original instances, there are 37%
with we = 1, 51% with we = 2, and 12% with we > 2, while
for dual instances there are 96% with we = 1, 0% with we =
2, and 4% with we > 2 (Table 1). The only dual single-goal
instances whose effective width is greater than 2 are from
Agricola and Settlers where all dual instances in Agricola
have effective width greater than 2, and 76% of 131 dual
instances in Settlers have effective width greater than 2.
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IW BFWS(f5)
|G| = 1 |G| > 1

P PD P PD

Instances 37,921 88,856 1095 1095
Solved Instances 35,918 87,830 765 67
Percentage 95% 99% 70% 6%

Table 2: Solved instances by IW over original P and dual
PD single-goal |G| = 1 instances, as well as BFWS(f5)
over real conjunctive goals |G| > 1.

In Table 2, we also compare the number of solved in-
stances by IW over original and dual single-goal instances,
and BFWS(f5) over 1095 original and dual instances with
their real conjunctive goal where |G| > 1. IW solves 95%
of the single-goal original instances and 99% dual; while
BFWS(f5) solves 70% (765 out of 1095) of the original in-
stances but only 6% (67 out of 1095) of the dual instances.

These results suggest that the width of dual instances is
changed as the duality transformation alters the structure
of the search space. More precisely, the effective width of
single-goal dual instances is much lower than the original
ones. Such dual instances can be easily solved by IW, as
all single dual goals with we(P ) = 1 can be solved with a
single action. However, the dual instances with conjunctive
goals are difficult to solve for BFWS(f5) as plans are longer
and the size of the dual initial state (F \ G) is much larger
than the original one (I), making it hard to find novel states.
In fact, only O(|G|) states can have novelty 1, and in general
only O(|G| × |F |i−1) states can have novelty i. The results
over conjunctive goals are in line with the degradation re-
ported by Suda (2013) with LAMA, FF and Mp.

Backward Best-First Width-Search
Given the poor results over the dual conjunctive problems,
we instead adapt BFWS to solve the regression state model
SR directly. The definition of novelty is the same in both
directions, as it only depends on the syntax of the states,
i.e. the state variables. We compute the critical paths heuris-
tic h2 (Haslum and Geffner 2000; Alcázar and Torralba
2015) from s0 to extract the set of forward mutex fluent
pairs (Blum and Furst 1997). Mutexes are used to prune
partial states in SR unreachable from s0 in SP , and hence
a generated state s is pruned if it contains a mutex pair
h2(p, q) = ∞, p, q ∈ s. The goal counter instead of keep-
ing track of the number of unrealized forward goals g ∈ G
in progression, #g(s) = |s ∩ I| + |s \ I| keeps track of
the number of initial state fluents I achieved, as well as the
number of fluents that still have to be removed from s to
reach one of the regression goal states. The goal counter
is further strengthened by creating an I-ordering p < q of
fluents p, q ∈ I when all actions requiring p edelete q. In
regression, an action a edeletes a fluent q if q ∈ add(a)
or ∃p∈pre(a)∪del(a)h2(p, q) = ∞. This I-ordering graph re-
fines the goal counter #g(s) by counting as achieved fluents
p ∈ s, p ∈ I whose precedences are satisfied in s. Finally,
in order to compute the counter #r used in novelty w#g,#r,
the set of hmax forward best supporters (Keyder and Geffner

Domain F-k B-k F B
Childsnack14 (20) 0 6 2 4
Cybersec (30) 15 10 0 10
Floortile14 (20) 2 20 2 20
Parcprinter11 (20) 13 18 13 18
Scanalyzer11 (20) 18 20 18 20
Termes18 (20) 1 2 10 8
Trucks (30) 7 14 9 14
Total coverage (1095) 734 372 765 391
Average time 13.39 46.26 13.10 69.53
Average quality 154.93 176.78 167.13 189.55

Table 3: Solved instances by backward (B) vs. forward (F)
k-BFWS(f5) and BFWS(f5). Only domains where (B) out-
perform (F) are shown.

2008) are computed once from s0 in SP in contrast with pro-
gression, where BFWS recomputes the best supporters every
time a new set of relevant fluents R is required. R is defined
in a state s by computing a relaxed plan that uses s0 best
supporters to reach s, marking as relevant the fluents that
appear in the preconditions of actions in the relaxed plan.

Table 3 compares backward BFWS(f5) and k-BFWS(f5)
with their forward versions, where k = 2. Backward k-
BFWS(f5) solves 372 problems, a large improvement over
the coverage of forward BFWS(f5) on dual problems, which
solves only 67. Forward k-BFWS(f5) solves 734 of 1095
instances, but significant differences occur in Childsnack,
Parcprinter, Scanalyzer, Termes, and Trucks where back-
ward search solves more instances than forward search. The
largest difference occurs in Floortile, where forward search
solves 2 instances while backward search solves 20. For-
ward BFWS(f5) solves 31 more instances than forward k-
BFWS(f5), and backward BFWS(f5) solves 19 more in-
stances than backward k-BFWS(f5). In terms of average
time and plan quality over the instances solved by forward
and backward search, backward search performs worse than
forward. The difference in time is large, mainly due to Visi-
tall domain.

These results show that backward BFWS algorithms still
perform worse than their forward counterparts, but they can
be orthogonal over 6 domains that are typically hard for
state-of-the-art planners. The question that we address next
is how to integrate forward and backward search to offset
the weaknesses of each search direction.

Width-Based Bidirectional Search
We propose two k-BFWS(f5) bidirectional search algo-
rithms, a front-to-end bidirectional search strategy (k-
BDWS-e) and a front-to-front version (k-BDWS-f) where
the last expanded state of one direction is regarded as the
goal of the opposite direction, triggering a recomputation of
the evaluation function over nodes in the Open list. Both ver-
sions, collectively referred to as k-BDWS, alternate 1-step in
each direction, but if one direction stops searching the other
takes all the turns. k-BDWS returns no solution if both direc-
tions stop with no solution, maintains independent novelty
measures for each direction, and terminates with a solution
if any direction expands a state s ∈ SG in the goal region
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Domain F B FB Dual Dual-FB k-BDWS-e k-BDWS-e Random k-BDWS-e Head k-BDWS-e Close
S S S F / B S S B S F / B / M MM S F / B / M MM S F / B / M MM S F / B / M MM

Airport (50) 37 25 46 37 / 9 49 49 - 27 1 / - / 26 0.18 27 5 / 5 / 17 0.20 27 7 / 15 / 5 0.35 24 - / - / 24 0.17
Barman14 (20) 20 - 20 20 / - 20 20 - 20 19 / - / 1 0.01 3 3 / - / - - 20 20 / - / - - 1 - / - / 1 0.03
Blocks World (50) 30 30 45 30 / 15 30 30 - 30 - / - / 30 0.11 30 8 / 2 / 20 0.21 24 14 / 5 / 5 0.34 25 - / - / 25 0.17
Childsnack14 (20) - 6 2 - / 2 10 10 - 6 - / 6 / - - 2 - / 2 / - - 6 - / 6 / - - 2 - / 2 / - -
Cybersec (30) 15 10 19 15 / 4 30 30 - 12 - / 2 / 10 0.03 4 - / 2 / 2 0.08 12 2 / 10 / - - 4 - / 2 / 2 0.08
Data-netw18 (20) 8 - 8 8 / - 8 8 - 8 7 / - / 1 0.01 5 5 / - / - - 7 7 / - / - - 4 2 / - / 2 0.02
Depot (20) 20 3 20 20 / - 20 20 - 20 16 / - / 4 0.15 20 18 / - / 2 0.14 20 20 / - / - - 20 15 / - / 5 0.08
Driverlog (20) 20 20 20 20 / - 20 20 - 20 15 / - / 5 0.10 20 19 / - / 1 0.36 20 20 / - / - - 20 15 / - / 5 0.10
Elevators11 (20) 20 13 20 20 / - 20 20 - 20 14 / - / 6 0.01 10 10 / - / - - 20 20 / - / - - 10 9 / - / 1 0.02
Floortile14 (20) 2 20 20 2 / 18 2 20 18 20 - / 19 / 1 0.01 20 - / 20 / - - 20 - / 20 / - - 20 - / 19 / 1 0.01
Ged14 (20) 19 - 19 19 / - 17 17 - 16 16 / - / - - 15 15 / - / - - 18 18 / - / - - 15 15 / - / - -
Gripper (20) 20 20 20 20 / - 20 20 - 20 - / - / 20 0.02 20 - / 15 / 5 0.03 20 - / 20 / - - 20 - / - / 20 0.02
Hiking14 (20) 3 2 3 3 / - 11 11 - 3 1 / 2 / - - - - / - / - - 5 3 / 2 / - - 1 - / - / 1 0.10
Logistics (50) 44 21 44 44 / - 44 44 - 30 28 / - / 2 0.03 30 27 / 1 / 2 0.01 37 35 / 2 / - - 17 1 / - / 16 0.05
Mprime (35) 33 1 33 33 / - 35 35 - 31 29 / - / 2 0.03 27 26 / - / 1 0.06 31 31 / - / - - 29 26 / - / 3 0.05
Mystery (30) 19 7 19 19 / - 19 20 1 18 11 / - / 7 0.16 15 15 / - / - - 18 18 / - / - - 16 11 / - / 5 0.19
Nomystery11 (20) 13 10 13 13 / - 17 17 - 11 - / - / 11 0.05 10 5 / 4 / 1 0.01 11 6 / 5 / - - 9 - / - / 9 0.08
Openstacks14 (20) 15 - 15 15 / - 19 19 - - - / - / - - - - / - / - - - - / - / - - - - / - / - -
Parcprinter11 (20) 13 18 18 13 / 5 14 18 4 18 - / - / 18 0.02 16 3 / 11 / 2 - 18 3 / 15 / - - 16 - / - / 16 0.02
Parking14 (20) 20 - 20 20 / - 20 20 - 20 20 / - / - - 20 20 / - / - - 20 20 / - / - - 20 19 / - / 1 0.03
Pathways (30) 24 5 24 24 / - 29 29 - 23 - / - / 23 0.07 22 5 / - / 17 0.09 24 21 / 1 / 2 0.25 22 - / - / 22 0.09
Pegsol11 (20) 9 1 9 9 / - 20 20 - 10 7 / - / 3 0.06 9 9 / - / - - 9 9 / - / - - 11 2 / - / 9 0.09
Pipesworld06 (50) 30 6 30 30 / - 32 32 - 30 26 / - / 4 0.22 30 27 / - / 3 0.22 30 29 / 1 / - - 30 25 / - / 5 0.19
Pipes-notan (50) 50 15 50 50 / - 49 49 - 50 43 / - / 7 0.06 49 49 / - / - - 49 48 / 1 / - - 45 38 / - / 7 0.06
Pipes-tan (50) 30 6 30 30 / - 32 32 - 30 26 / - / 4 0.11 30 28 / - / 2 0.20 30 29 / 1 / - - 30 25 / - / 5 0.12
Rovers (20) 20 19 20 20 / - 20 20 - 20 12 / - / 8 0.10 20 13 / 3 / 4 0.29 20 13 / 6 / 1 0.34 20 12 / - / 8 0.12
Scanalyzer11 (20) 18 20 20 18 / 2 20 20 - 20 7 / 5 / 8 0.02 20 5 / 7 / 8 0.19 20 5 / 9 / 6 0.25 20 4 / 2 / 14 0.13
Snake18 (20) 11 - 11 11 / - 7 7 - 6 6 / - / - - 3 3 / - / - - 6 6 / - / - - 3 2 / - / 1 0.02
Sokoban11 (20) 5 1 5 5 / - 18 18 - 6 - / - / 6 0.06 2 - / - / 2 0.18 5 4 / - / 1 0.24 2 - / - / 2 0.18
Spider18 (20) 13 - 13 13 / - 14 14 - 10 9 / - / 1 - 8 8 / - / - - 9 9 / - / - - 7 6 / - / 1 -
Storage (30) 29 14 29 29 / - 28 28 - 29 27 / - / 2 0.26 27 25 / - / 2 0.25 29 27 / 1 / 1 0.20 27 24 / - / 3 0.26
Termes18 (20) 1 2 2 1 / 1 9 9 - 2 - / - / 2 0.01 2 - / 2 / - - 2 - / 2 / - - - - / - / - -
Thoughtful14 (20) 20 5 20 20 / - 20 20 - 20 12 / - / 8 0.01 17 17 / - / - - 20 20 / - / - - 16 5 / - / 11 0.02
Tpp (30) 30 10 30 30 / - 30 30 - 30 24 / - / 6 0.08 24 20 / - / 4 0.37 30 29 / - / 1 0.07 20 14 / - / 6 0.17
Transport14 (20) 7 - 7 7 / - 8 8 - 6 6 / - / - - 2 2 / - / - - 6 6 / - / - - 2 2 / - / - -
Trucks (30) 7 14 10 7 / 3 14 14 - 13 2 / - / 11 0.06 12 2 / 9 / 1 0.02 13 2 / 11 / - - 10 1 / - / 9 0.09
Visitall14 (20) 19 17 20 19 / 1 20 20 - 18 - / - / 18 0.34 18 - / - / 18 0.33 18 8 / - / 10 0.33 18 - / - / 18 0.32
Woodwork11 (20) 20 11 20 20 / - 20 20 - 20 19 / 1 / - - 20 19 / 1 / - - 20 19 / 1 / - - 20 19 / 1 / - -
Zenotravel (20) 20 20 20 20 / - 20 20 - 20 7 / 6 / 7 0.09 20 7 / 11 / 2 0.02 20 8 / 12 / - - 20 6 / 5 / 9 0.15
Summary (1095) 734 372 794 -/60 841 864 23 713 -/41/262 - 629 -/95/116 - 714 -/146/32 - 596 -/31/267 -

Table 4: Results over Width-Based Bidirectional Search planners. S stands for solved instances; F/B stand for forward/backward
coverage; M is the number of solved instances where search meets in the middle, and MM is the Meet Metric.

or s ∈ Closex, x ∈ {f, b} meets the opposite direction,
i.e. when the frontiers meet. Checking if frontiers meet is
an expensive operation, as every expanded state has to be
tested for membership over an increasing set. Therefore, in
k-BDWS we only check with respect to the novelty 1 frontier
of the opposite direction, states s′ ∈ Close s.t. w(s′) = 1.

We report experiments with several variants of bidirec-
tional search and omit Agricola, Caldera, and Settlers do-
mains as no solutions can be found. In Table 4, F stands for
forward k-BFWS(f5), B for the backward counterpart; FB
is a simple integration where F is run first and then B runs
only if F stops with no solution; k-BDWS-e Head checks
if the search meets-in-the-middle by only checking intersec-
tion with the last expanded state in the opposite direction;
k-BDWS-e Random checks with a random state in the Close
list; k-BDWS-e Close checks with respect to the full Close

list. We also test k-BDWS-f, k-BDWS-f Head and k-BDWS-
f Close but omit them from the table. The meet-metric re-
ports the minimum ratio of actions in a plan that belong to
either direction (Kuroiwa and Fukunaga 2020). E.g. if both
directions contribute equally the metric is 0.5, if one direc-
tion contributes 0.2 and the other 0.8, the metric is 0.2.

k-BDWS-e solves 713 instances, one fewer than the Head
version, 84 more than Random and 117 more than the Close
version. Among the solved instances, k-BDWS-e meets-in-
the-middle on 36.75 % of instances, 8 times higher than
Head, 2 times higher than Random while Close meets-in-
the-middle on 44.80%. These results confirm that checking
over only the w(s) = 1 states in Close is a good trade-off
in terms of coverage and meeting-in-the-middle. k-BDWS-
e coverage is higher than k-BFWS(f5) (first column) in 8
domains, carrying the advantage witnessed in previous sec-
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tion. k-BDWS-f solves 291 instances, Head 271, and Close
276. Among the solved instances, k-BDWS-f meets-in-the-
middle on 88.66 % of instances, 3 times higher than Head,
while Close meets-in-the-middle on 95.29 % of instances.
Clearly, front-to-front increases the possibility of meeting-
in-the-middle, but the computational overhead decreases the
coverage substantially. FB solves the most instances, 794,
60 problems more than F over 10 different domains. Con-
sidering all variants, if coverage is preferred, FB is the best
option, whereas k-BDWS-e represents the best trade-off be-
tween coverage and meeting-in-the-middle. These results
clearly show that forward and backward search can be or-
thogonal. This is witnessed further by the results over Dual-
BFWS, runner-up on the last satisficing-track (IPC-2018).
Dual-BFWS runs first a forward F with k = 1, and a second
complete BFWS (Lipovetzky and Geffner 2017a) if no solu-
tion is found (Dual column). We show how running FB with
k = 1 first instead improve the state-of-the-art (Dual-FB).
FB with k = 1 can be thought of as a quick preprocessing
step that could be integrated in every state-of-the-art planner
as it either solves a problem or fails fast.

Discussion
The IPC benchmarks have been modeled with forward
search in mind as certain domains are artificially challeng-
ing for backward search. The open-world assumption over
G means the goal can be left underspecified even when the
modeler might be interested in a single-goal state. We exper-
imented with closure techniques over G which decreased the
generated nodes over Blocks World, Parking and Elevators.
Invariants are extremely important to prune unreachable re-
gression states, but they are seldom specified in PDDL. El-
evators becomes challenging in backward search, as h2 mu-
texes cannot detect unreachable partial states where the total
passengers in elevators and at each floor, exceeds the total
number of passengers defined in the problem. Finding all
mutexes is NP-hard (Fišer and Komenda 2018), but spec-
ifying useful invariants should be easily achieved through
object fluents (Haslum et al. 2019) and Functional STRIPS
(Geffner 2000; Francès and Geffner 2015). Finally, action
schemas are also underspecified for backward search, in
Parking, the action move-car-to-car has the precondition
(behind ?car1 ?car2), but the action does not specify (not (=
?car1 ?car2)), which creates plenty of spurious states where
a car is behind itself. This does not affect forward search as
this fluent cannot be added.

Conclusion
We showed that the effective width of single-goal dual prob-
lems is reduced significantly because most plans have length
one, however width-based search cannot solve the majority
of dual problems with conjunctive goal fluents due to the in-
creased width and longer plans. Then we showed that width-
based algorithms can be adapted to work over the regression
model directly, and despite solving fewer problems than pro-
gression, they are orthogonal when integrated over different
bidirectional algorithms and state-of-the-art planners, as the
combinatorial structure of certain domains exists only in the

forward direction, e.g. Floortile. Although current research
suggests that regression is harder than progression, regres-
sion still plays an important role in classical planning that is
absent in satisficing planners since HSPr (Bonet and Geffner
2001), 20 years ago. We hope to investigate further modeling
guidelines for backward search, and push for wider adoption
in existing state-of-the-art planners.
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