
Scheduling with Complete Multipartite Incompatibility Graph on Parallel
Machines

Tytus Pikies,1 Krzysztof Turowski, 2 Marek Kubale 1

1 Department of Algorithms and System Modeling, Gdańsk University of Technology, 80-233 Gdańsk, Poland
2 Theoretical Computer Science Department, Jagiellonian University, 30-348 Kraków, Poland

tytpikie@pg.edu.pl, krzysztof.szymon.turowski@gmail.com, kubale@eti.pg.edu.pl

Abstract

In this paper we consider a problem of job scheduling on par-
allel machines with a presence of incompatibilities between
jobs. The incompatibility relation can be modeled as a com-
plete multipartite graph in which each edge denotes a pair of
jobs that cannot be scheduled on the same machine.
We provide several results concerning schedules, optimal or
approximate with respect to the two most popular criteria of
optimality: Cmax (makespan) and

∑
Cj (total completion

time). We consider a variety of machine types in our paper:
identical, uniform, and unrelated. Our results consist of de-
limitation of the easy (polynomial) and NP-hard problems
within these constraints. We also provide algorithms, either
polynomial exact algorithms for the easier problems, or algo-
rithms with a guaranteed constant worst-case approximation
ratio.
In particular, we fill the gap on research for the problem of
finding a schedule with the smallest

∑
Cj on uniform ma-

chines. We address this problem by developing a linear pro-
gramming relaxation technique with an appropriate rounding,
which to our knowledge is a novelty for this criterion in the
considered setting.

Introduction
Imagine that we are treating some people ill with contagious
diseases. There are quarantine units containing people ill
with a particular disease waiting to receive some medical
services. We also have a set of nurses. We would like the
nurses to perform the services in a way that no nurse will
travel between different quarantine units, to avoid spreading
of the diseases. Also, we would like to provide each patient
with the required services, which correspond to the time to
be spent by a nurse.

Consider two sample goals: The first might be to lift the
quarantine in the general as fast as possible. The second
might be to minimize the average time of patient treatment.

The problem can be easily modeled as a scheduling prob-
lem in our setting. The jobs are the medical services to be
performed. The division of jobs into parts of the incompat-
ibility graph is the division of the tasks into the quarantine
units. The machines are the nurses. The sample goals corre-
spond to Cmax and

∑
Cj criteria, respectively.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This is merely a single example of an application of
scheduling with incompatibility graph on parallel machines.

Notation and Description of the Problems
We follow the notation and definitions from Brucker (1999).
Let the set of jobs be J = {j1, . . . , jn} and the set of ma-
chines be M = {m1, . . . ,mm}. We denote the processing
requirements of j1, . . . , jn as p1, . . . , pn, respectively.

Now let us define a function p : J × M → N, which
assigns a time needed to process a given job for a given ma-
chine. We distinguish three main types of machines, in the
ascending order of generality:
• identical – when p(ji,ml) = pi for all ji ∈ J , ml ∈M ,
• uniform – when there exists a function s : M → Q+,

such that p(ji,ml) =
pi

s(ml)
for any ji ∈ J , ml ∈M ,

• unrelated – when there exists s : J×M → Q+, such that
p(ji,ml) =

pi
s(ji,ml)

, for any ji ∈ J , ml ∈M .
The incompatibility between jobs is a relation that can be

represented as a simple graphG = (J,E), where J is the set
of jobs, and {j1, j2} belongs toE, iff j1 and j2 are incompat-
ible. In this paper we consider complete multipartite graphs,
i.e., graphs whose sets of vertices may be split into disjoint
independent sets J1, . . . , Jk (called parts of the graph), such
that for every two vertices in different parts there is an edge
between them. Due to the fact that the structure is simple,
we identify the graph with the partition of the jobs.

We differentiate between the cases when the number of
the parts is fixed, and when this is not the case. In the former
case we denote the graph as G = complete k-partite, and in
the latter as G = complete multipartite.

A schedule S is an assignment from jobs to the set of ma-
chines and starting times. Hence if S(j) = (ml, t), then job
j is executed on machineml in time interval [t, t+p(j,ml))
and t + p(j,ml) = Cj is completion time of j in S. No
two jobs may be executed at the same time on any machine.
Moreover, no two jobs which are connected by an edge in
the incompatibility graph may be scheduled on the same ma-
chine. By Cmax(S) we denote maximum Cj in S over all
jobs. By

∑
Cj(S) we denote a sum of completion times of

jobs in S. These are two criteria of optimality of a sched-
ule commonly considered in the literature. Note that in both
cases we are interested in the minimization of the respective
measure.

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

262

We recall an observation that a jobs-to-machines assign-
ment is sufficient to determine the optimal values of these
measures. Clearly Cmax is indifferent to permutations of the
tasks on the same machine and for

∑
Cj it is well known

that the best permutation on any machine is given by Smith’s
Rule (Smith 1956), i.e., according to non-decreasing pro-
cessing requirements.

Throughout the paper we use the well-known notation
α|β|γ of Lawler, Lenstra, and Kan (1982). In particular, we
are interested in problems where:
• α is either P (identical machines), or Q (uniform ma-

chines), or R (unrelated machines),
• β contains either G = complete multipartite or G =

complete k-partite, and some additional constraints, e.g.,
pj = 1 (unit jobs only),

• γ is either Cmax or
∑
Cj .

An Overview of the Previous Work
We recall that the P ||Cmax is NP-hard even for two ma-
chines (Garey and Johnson 1979). However, Q||Cmax (and
therefore P ||Cmax as well) does admit a PTAS (Hochbaum
and Shmoys 1988). Moreover, Rm||Cmax admits an FP-
TAS (Horowitz and Sahni 1976). There is a (2 − 1

m)-
approximation algorithm forR||Cmax (Shchepin and Vakha-
nia 2005); however there is no polynomial algorithm with
approximation ratio better than 3

2 , unless P = NP (Lenstra,
Shmoys, and Tardos 1990). On the other hand, Q|pj =
1|Cmax and Q||

∑
Cj , can be solved in O(min{n +

m logm,n logm}) (Dessouky et al. 1990) and O(n log n)
(Brucker 1999, p. 133–134) time, respectively. Moreover,
R||
∑
Cj can be regarded as a special case of an assignment

problem (Bruno, Coffman Jr, and Sethi 1974), which can be
solved in polynomial time.

The problem of scheduling with incompatible jobs
for identical machines was introduced in (Bodlaender,
Jansen, and Woeginger 1994). They provided a series of
polynomial time approximation algorithms for P |G =
k-colorable|Cmax. For bipartite graphs they showed that
P |G = bipartite|Cmax has a polynomial 2-approximation
algorithm, and this ratio of approximation is the best possi-
ble if P 6= NP. They also proved that there exists an FPTAS
in the case when the number of machines is fixed and G has
constant treewidth.

The special case P |G, pj = 1|Cmax was treated exten-
sively in the literature under the name Bounded Indepen-
dent Sets: for given m and t, determine whether G can be
partitioned into at most t independent sets with at most m
vertices in each. More generally, P |G|Cmax is equivalent
to a weighted version of Bounded Independent Sets. We
note also that P |G, pj = 1|Cmax is closely tied to Mutual
Exclusion Scheduling, where we are looking for a sched-
ule in which no two jobs which are connected by an edge
in G are executed at the same time. For the unrestricted
number of machines it is the case that P |G, pj = 1|Cmax

has a polynomial algorithm for a certain class of graphs G
if and only if Mutual Exclusion Scheduling has a poly-
nomial algorithm for the same class of graphs. When all
this is taken into account, there are known polynomial algo-

rithms for solving P |G, pj = 1|Cmax whenG is restricted to
the following classes: forests (Baker and Coffman Jr 1996),
split graphs (Lonc 1991), complements of bipartite graphs
and complements of interval graphs (Bodlaender and Jansen
1995). However, the problem remains NP-hard when G is
restricted to bipartite graphs (even for 3 machines), interval
graphs and cographs (Bodlaender and Jansen 1995).

Recently another line of research was established for G
equal to a union of cliques (bags) by Das and Wiese (2017).
The authors considered Cmax criterion and presented a
PTAS for identical machines together with (log n)1/4−ε-
inapproximability result for unrelated machines.

They also provided an 8-approximate algorithm for un-
related machines with additional constraints. This approach
was further pursued in Grage, Jansen, and Klein (2019),
where an EPTAS for identical machines case was presented.
The last result is a construction of a PTAS for uniform ma-
chines with some additional restrictions on machine speeds
and bag sizes (Page and Solis-Oba 2020). For the definition
of PTAS and other approximation schemes see e.g., Epstein
and Sgall (2004), Kones and Levin (2019), or Jansen and
Maack (2019).

Unfortunately, the case of the complete multipartite in-
compatibility graph was not studied so extensively. It may
be inferred from Bodlaender, Jansen, and Woeginger (1994)
that for P |G = complete multipartite|Cmax there exists
a PTAS, which can be easily extended to EPTAS; and
that there is a polynomial time algorithm for P |G =
complete multipartite, pj = 1|Cmax.

WhenG is complete multipartite, it has to be the case that
each machine serves jobs only from one part of the graph.
Therefore, it is a special case of the model, where each ma-
chine may serve jobs from c different parts. This model
was investigated by Jansen, Lassota, and Maack (2020),
and it follows from their work that there exists a PTAS for
P |G = complete multipartite|Cmax even in this more gen-
eral setting.

In the case of uniform machines Mallek, Ben-
draouche, and Boudhar (2019) proved that Q|G =
complete 2-partite, pj = 1|Cmax is NP-hard, but it may be
solved in O(n) time when the number of machines is fixed.
Moreover, they showed an O(mn + m2 logm) algorithm
for the particular case Q|G = star, pj = 1|Cmax. However,
their result implicitly assumed that the number of jobs n is
not encoded – as it is customary assumed – in unary form,
but in binary on log n bits thus making the size of output
schedules exponential in terms of the input size.

Our Results

In this paper we provide several results for different combi-
nations of machines types (identical, uniform, or unrelated),
graphs (complete multipartite with a number of parts as a
problem parameter or as an input), and optimality criterion
(Cmax or

∑
Cj).

We summarize our results in Table 1. We grouped results
for each types of machine, and then for Cmax and

∑
Cj .

263

P |G = complete multipartite|Cmax
NP-hard (Garey and Johnson 1979)

EPTAS polynomial time (Jansen et al. 2020)
P |G = complete multipartite|

∑
Cj exact O(mn+ n log n) Corollary 1

Q|G = complete multipartite, pj = 1|Cmax
Strongly NP-hard Theorem 2

2-approximation O(mn log(mn)) Theorem 3
Q|G = complete k-partite, pj = 1|Cmax exact O(mnk+1 log(mn)) Theorem 5

Q|G = complete multipartite, pj = 1|
∑
Cj

Strongly NP-hard Theorem 1
4-approximation O(m2n3 logm) Theorem 4

Q|G = complete k-partite, pj = 1|
∑
Cj exact O(mnk+1) Theorem 6

Q|G = complete k-partite|
∑
Cj 4-approximation polynomial time Theorem 7

R|G = complete 2-partite, pj ∈ {a, b}|Cmax no O(1) approximation in polynomial time Theorem 8
R|G = complete 2-partite, pj ∈ {a, b}|

∑
Cj no O(1) approximation in polynomial time Theorem 8

Table 1: Summary of the results proved in this paper.

Identical Machines
We recall that P |G = complete multipartite|Cmax

is a generalization of P ||Cmax (because empty =
complete 1-partite), hence it is also Strongly NP-hard.
However, it admits an EPTAS, as can be inferred from (Bod-
laender, Jansen, and Woeginger 1994). In this section we
prove that there exists an algorithm with polynomial run-
ning time for the same problem, but with another criterion,
namely P |G = complete multipartite|

∑
Cj . It turns out

that a greedy approach is sufficient to solve the problem.
Let us define what we mean by a greedy assignment of

machines to parts:
1. assign to each part a single machine,

2. assign the remaining machines one by one to the parts
in a way that it decreases

∑
Cj in this step as much as

possible.
To see why this approach works we need the following
lemma, which proves non-increasing gains from assigning
consecutive machines to any single part (i.e., to an empty
subgraph of G).

Lemma 1. For any set of jobs J , m identical machines, and
i ≤ m let Si be a schedule of J on i identical machines op-
timal with respect to

∑
Cj . Then

∑
Cj(S1)−

∑
Cj(S2) ≥∑

Cj(S2) −
∑
Cj(S3) ≥ . . . ≥

∑
Cj(Sm−1) −∑

Cj(Sm).

Proof. Assume for simplicity that |J | is divisible by i(i +
1)(i+2). If this is not the case, then we add dummy jobs with
pj = 0; obviously, this does not increase

∑
Cj since we can

always move them to the beginning of their machines.
Fix the ordering of jobs with respect to nonincreasing pro-

cessing times. Now we may associate with each job its mul-
tiplier corresponding to its position on its machine. If a job
jh has a multiplier l, then it contributes lph to

∑
Cj , and it

is scheduled as the l-th last job on a machine.
Now think of the multipliers in the terms of blocks of size

i+ 1. For Si the multipliers with respect to job order are:

1, . . . , 1, 1, 2︸ ︷︷ ︸
The first block

; 2, . . . , 2, 3, 3︸ ︷︷ ︸
The second block

; . . . ; i, . . . , i+ 1, i+ 1, i+ 1︸ ︷︷ ︸
The (i)-th block

; . . .

For Si+1 the multipliers are:

1, . . . , 1, 1, 1︸ ︷︷ ︸
The first block

; 2, . . . , 2, 2, 2︸ ︷︷ ︸
The second block

; . . . ; i, . . . , i, i, i︸ ︷︷ ︸
The (i)-th block

; . . .

For Si+2 the multipliers are:

1, 1, 1, . . . , 1︸ ︷︷ ︸
The first block

; 1, 2, 2, . . . , 2︸ ︷︷ ︸
The second block

; . . . ; i− 1, . . . , i− 1, i, i︸ ︷︷ ︸
The (i)-th block

; . . .

Also, let the sum of multipliers of the k-th block in Si be sik.
By some algebraic manipulations we prove that

sik = (i+ 1)k + k + b(k − 1)/ic,
si+1
k = (i+ 1)k,

si+2
k = (i+ 1)k − k + bk/(i+ 2)c.

It follows directly that sik−1−s
i+1
k−1 ≥ s

i+1
k −si+2

k for k ≥ 2.
The smallest processing time in the k-th block is at least

p(i+1)k, and by the ordering of jobs p(i+1)k ≥ p(i+1)k+1,
therefore the contribution of the k-th block to

∑
Cj(Si) −∑

Cj(Si+1) is at least p(i+1)k+1(s
i
k − s

i+1
k). Similarly, the

largest processing time in the (k + 1)-th block is at most
p(i+1)k+1 so the contribution of the (k + 1)-th block to∑
Cj(Si+1) −

∑
Cj(Si+2) is at most p(i+1)k+1(s

i+1
k −

si+2
k). Thus the contribution of the (k + 1)-th block to∑
Cj(Si+1) −

∑
Cj(Si+2) is at most the contribution of

the k-th block to
∑
Cj(Si) −

∑
Cj(Si+1), for all k ≥ 1.

Also, the first block does not contribute to
∑
Cj(Si+1) −∑

Cj(Si+2), which proves the lemma.

Corollary 1. For a given instance of the problem
P |G = complete multipartite|

∑
Cj a schedule constructed

by the greedy assignment has optimal
∑
Cj . The method

can be implemented in O(mn+ n log n) time.

Proof. Let Salg and Sopt be the greedy and optimal sched-
ules, respectively. If the numbers of machines assigned to
each of the parts are equal in Salg and Sopt, then the theo-
rem obviously holds.

Assume that there is a part Ji that has more machines
assigned in Sopt than in Salg . It means that there is also a part
Jj that has fewer machines assigned in Sopt than in Salg .

264

Let us construct a new schedule Sopt by assigning one more
machine to Ji and one less to Jj . By Lemma 1 and by the
fact that greedy method added a machine to Ji instead of Jj ,
we decreased

∑
Cj on part Ji no less than we increased it

on part Jj . Hence, the claim follows.
The complexity follows from the fact that we may calcu-

late the initial and prospective
∑
Cj for each part and store

the difference (possible saving) in a heap. A greedy assign-
ment is equivalent to taking the highest saving, and recalcu-
lating the possible saving for the corresponding part.

Uniform Machines
In this section we prove a series of results for various prob-
lems on uniform machines. In particular, we start by show-
ing that both Q|G = complete multipartite, pj = 1|Cmax

and Q|G = complete multipartite, pj = 1|
∑
Cj are

Strongly NP-hard. Moreover, we found 2-approximation
and 4-approximation algorithms for the first and the second
problem, respectively.

On the other hand, if we make a number of parts a
part of the problem, not of the input, we find that both
Q|G = complete k-partite, pj = 1|Cmax and Q|G =
complete k-partite, pj = 1|Cmax can be solved in polyno-
mial time. Finally, we extend our analysis beyond the unit
length tasks and provide a 4-approximation algorithm for
Q|G = complete k-partite|Cmax problem, based on linear
programming.

Theorem 1. Q|G = complete multipartite, pj = 1|
∑
Cj is

Strongly NP-hard.

Proof. We proceed by reducing Strongly NP-complete 3-
Partition (Garey and Johnson 1979) to our problem.

Recall that an instance of 3-Partition is (A, b, s′), where
A is a set of 3m elements, b is a bound value, and s′ is
a size function such that for each a ∈ A, b

4 < s′(a) <
b
2 and

∑
a∈A s

′(a) = mb. The question is whether A
can be partitioned into disjoint sets A1, . . . , Am, such that
∀1≤i≤m

∑
a∈Ai

s(a) = b.
For any (A, b, s′) we let G = (J1 ∪ . . . ∪ Jm, E) =

complete m-partite, where |Ji| = b for all i = 1, 2, . . . ,m.
Moreover, let M = {m1, . . . ,m3m} with speeds s(mi) =

s′(ai). Finally, let the limit value be
∑
Cj =

m(b+1)
2 .

Suppose now that an instance (A, b, s′) admits a 3-
partition and let the sets be A1, . . . , Am. Then if ai ∈ Aj ,
we assign exactly s′(ai) jobs from Jj to the machine mi.
Since for every i it holds that

∑
a∈Ai

s′(a) = b, we know
that all jobs are assigned. Moreover, we never violate the in-
compatibility graph conditions, as we assign to any machine
only jobs from a single part.

By assigning s′(ai) jobs to a machine mi we ensure that

∑
Cj =

|M |∑
i=1

(
s′(ai)+1

2

)
s(mi)

=

3m∑
i=1

s′(ai) + 1

2
=
m(b+ 1)

2
.

Conversely, suppose that we find a schedule S with∑
Cj ≤ m(b+1)

2 . Now, let li be the number of jobs assigned

to mi in S. Let us consider the following quantity:

X :=

|M |∑
i=1

(
li + 1

2

)
1

s(mi)
− m(b+ 1)

2

=

|M |∑
i=1

li + s(mi) + 1

2s(mi)
(li − s(mi)).

X is the difference between
∑
Cj(S) and

∑
Cj of a sched-

ule, where each machine mi is assigned s(mi) jobs. Now,
we note that

∑|M |
i=1(li− s(mi)) = 0 as every job is assigned

somewhere. Moreover,

li + s(mi) + 1 > 2s(mi) if li ≥ s(mi),
li + s(mi) + 1 ≤ 2s(mi) if li < s(mi).

By combining the last two facts, we note that every element
li−s(mi) ≥ 0 inX gets multiplied by some number greater
than 1, and every li − s(mi) < 0 gets multiplied by some
number not greater than 1. Therefore

∑|M |
i=1(li−s(mi)) = 0

implies X ≥ 0. Moreover, if there exists any element, such
that li − s(mi) > 0, then X > 0. However, a schedule with∑
Cj ≤ m(b+1)

2 satisfies X ≤ 0, therefore it holds that
X = 0 and li = s(mi) for all machines.

Each machine has jobs from exactly one part assigned.
LetMj be the set of machines on which the jobs from Jj are
executed. By the previous argument, mi has exactly s(mi)
jobs assigned in S. By this and by the bounds on a ∈ A, we
have |Mj | = 3. By the correctness of the schedule all jobs
are run on some machines, so the division into M1, M2, . . . ,
Mm corresponds to a partition.

Theorem 2. Q|G = complete multipartite, pj = 1|Cmax is
Strongly NP-hard.

Proof. The proof is almost identical to that of Theorem 1:
we transform an input 3-Partition instance to our problem
in the same way. Then we use 1 as the limit on Cmax, which
similarly ensures that any machine with speed s(m) gets ex-
actly s(m) unit jobs in a schedule of such a makespan. Such
a schedule again corresponds directly to a solution for the
instance of 3-Partition.

Now we turn to the search for good worst-case ap-
proximations that can be obtained in polynomial time.
It turns out that by using a similar approach we
can construct a 2-approximate algorithm for Q|G =
complete multipartite, pj = 1|Cmax and a 4-approximate al-
gorithm for Q|G = complete multipartite, pj = 1|

∑
Cj .

We begin by defining an auxiliary Number Covering
problem as follows: The instance is given as (A, s1, . . . , sk),
where A is a multiset of natural numbers, and s1, . . . , sk
are natural numbers. The numbers and the set A are such,
that there exists a division of A into k multisets A1, . . . , Ak
for which ∀i∈1,...,k si ≤

∑
a∈Ai

a. Given an instance
(A, s1, . . . , sk) we want to find F : A → {1, . . . , k} with
fi =

∑
a:F (a)=i a such that minki=1

min{si,fi}
si

is maximal.
Note that the optimal solution has the value 1, due to the
condition on A and s1, . . . , sk.

265

However, finding an optimal function is NP-hard as it
can be used to solve 3-Partition problem so we focus on
constructing an approximation algorithm.

Lemma 2. Let the greedy algorithm for Number Cover-
ing be as follows: order si in such a way that s1 ≥ . . . ≥
sk. Then, consider the numbers in a ∈ A ordered non-
increasingly and starting from i = 1 assign F (a) = i (i.e.,
cover si) until fi ≥ 1

2si holds. When it holds proceed to
i+ 1, until k. The greedy algorithm is 1

2–approximation al-
gorithm for Number Covering.

Proof. First, let us prove a particular case: si =
∑
a∈Ai

a.
We establish the invariant that after covering of each si
greedily with fi ≥ 1

2si the sum of the remaining numbers
from A remains no smaller than

∑k
j=i+1 si. If this condi-

tion holds, it is always possible to assign F (a) = i + 1 to
the largest remaining numbers from A until we get fi+1 ≥
1
2si+1 – so by induction this algorithm guarantees fi ≥ 1

2si
for all i.

At the beginning of the algorithm, i.e., for i = 0 the
invariant obviously holds. Now suppose that the invariant
holds for all values 1, . . . , i− 1 and let us use the remaining
numbers from A in a non-increasing fashion to cover si.

If we get si ≥ fi ≥ 1
2si the invariant is preserved since

we decreased the sum of the remaining numbers in A by fi
and we decreased the sum of numbers to be covered by si.

Assume that we get fi > si and let a′ = min{a : F (a) =
i}. Observe that si had to be covered by exactly one element
– for otherwise it would contradict the order of the elements,
as 0 < fi − a′ < 1

2si so fi − a′ < a′. Therefore all remain-
ing elements in A after covering si certainly include all the
numbers fromAi+1∪. . .∪Ak as we did not use any element
from A less than or equal to si, and the sets can consist of
only these elements. Hence, the invariant again holds.

Finally, in the general case si ≤ s′i =
∑
a∈Ai

a it is suffi-
cient to note that we may treat any lowering of s′i to si as an
ordering which does not change their relative ordering. For
example, if for s′ = (10, 8, 6) we have s = (5, 8, 6), then we
process it as (8, 6, 5), which is also a lowering of s′. There-
fore, if the greedy strategy covers 1

2–approximately s′, then
it has to cover s within the same approximation ratio.

Theorem 3. There exists a 2-approximate algorithm for
Q|G = complete multipartite, pj = 1|Cmax.

Proof. For a given bound on Cmax equal to T , we know that
we can schedule on mi at most bs(mi) · T c jobs. Therefore
we construct A = {bs(mi) · T c : i = 1, . . . ,m} and si =
|Ji| for i = 1, . . . k. Note that at this point we do not know
whether it is a proper instance of Number Covering or not.

Now we run greedy algorithm on (A, s1, . . . , sk) and we
may get two results:

1. success – the greedy algorithm returned a 1
2 -covering, i.e.,

F such that fi ≥ 1
2si for all i = 1, . . . k,

2. failure – the greedy algorithm returned a noncovering, i.e.,
F such that fi < 1

2si for some i = 1, . . . k.
By Lemma 2 the second case cannot occur if (A, s1, . . . , sk)
is an instance of Number Covering. Let OPT be Cmax

of an optimum schedule. If T ≥ OPT it is always true
that (A, s1, . . . , sk) is an instance of Number Covering:
all graph parts (with sizes si) can be covered completely by
some disjoint subsets of machines (with capacities aj) – so
we are sure that we get a success. Hence, using binary search
we can find the smallest T for which covering succeeds, and
T is guaranteed to be at most OPT .

Now, let us take 1
2 -covering F for this T . We translate it to

a schedule as follows: for j = 1, . . . ,m if aj = bs(mj) · T c
has F (aj) = i, we schedule up to 2aj jobs from Ji on mj .
In total, there are up to 2fi ≥ si = |Ji| jobs scheduled for
every Ji, which ensures that all jobs are scheduled some-
where. Moreover, each machine gets jobs only from a single
part. Finally, it is clear that the maximum completion time
of this schedule is at most 2T ≤ 2OPT .

Interestingly, the above algorithm can be modified in a
non-trivial way to give 4-approximation for

∑
Cj . If we

knew the number of jobs assigned to each machine in some
optimal schedule, then it would be again reduced to 1

2 -
approximation of Number Covering. However, it turns out
that this implies a special way of assigning machines to parts
of the graph – and we can use it to solve the general problem.

Theorem 4. There exists a 4-approximate algorithm for
Q|G = complete multipartite, pj = 1|

∑
Cj .

Proof. Suppose that we knew in advance the number of jobs
li assigned to a machine mi in some optimal schedule. Then
we could constructA = {li : i = 1, . . . ,m} and si = |Ji| as
an instance of Number Covering. By Lemma 2 there is 1

2 -
covering F . We could translate it to an approximate schedule
as follows: if aj = lj has F (aj) = i, then assign up to 2aj
jobs from Ji to mj . In total, there are up to 2fi ≥ si =
|Ji| jobs scheduled for every Ji, so every job is scheduled
somewhere. Now observe that mi in an optimal schedule
contributes exactly

(
li+1
2

)
1

s(mi)
to
∑
Cj , but in approximate

schedule it contributes
(
2li+1

2

)
1

s(mi)
≤ 4

∑
Cj(mi). So this

would be a 4-approximate schedule.
Assume that the parts and machines are sorted in order of

their nonincreasing sizes and speeds, respectively. Notice,
that without loss of generality the numbers of the jobs the
ordered machines process are nonincreasing in an optimal
schedule. Hence, the previous argument implies that there
exists a 4-approximate schedule in which machines are as-
signed to parts, in exactly this order. Precisely, J1 gets the
fastest l1 machines, J2 gets the next fastest l2 machines, etc.
Let us call by ordered assignment any such assignment from
machines to parts as long as

∑k
i=1 li ≤ m. Notice that, in

a sense, an assignment of machines to parts determines a
corresponding schedule.

This allows us to construct a 4-approximation algorithm
even if we do not know li. We proceed by using dynamic
programming over all ordered assignments. Precisely, let
the states of this program be defined by (j, i, cost). It cor-
responds to an ordered assignment of the first i machines
to the first j parts optimally with respect to

∑
Cj . No-

tice that (1, 1, cost), . . . , (1,m − (k − 1), cost) are well
defined. For k′ ≥ 2, m − (k − k′) ≥ m′ ≥ k′ and

266

m′ − 1 ≥ m′′ ≥ k′ − 1, construct (k′,m′, cost) as the
best with respect to

∑
Cj of the ordered assignments corre-

sponding to (k′ − 1,m′′, cost′′) and the assignment of the
rest of m′ − m′′ first machines to Jk′ . Every such an as-
signment is feasible. Moreover, for any 1 ≤ k′ ≤ k and
k′ ≤ m′ ≤ m − (k′ − k) holds that there is no partial
ordered assignment with smaller

∑
Cj than cost following

from (k′,m′, cost). Consider a counter-example with the
minimum number of the parts and the minimum number of
the machines. In this case, let there be an ordered assign-
ment Oopt of minimum

∑
Cj defined by the numbers of

the machines assigned to J1, . . . , Jk, and let these numbers
be n1, . . . , nk, respectively. Consider an ordered assignment
Oalg determined by (k−1, n1+ . . .+nk−1, cost) and

∑
Cj

determined by the assignment of last nk machines to Jk. No-
tice that the contributions of last nk machines to

∑
Cj are

equal in Oopt and Oalg , hence there is a minimum counter-
example on k − 1 parts and n1 + . . .+ nk−1 machines.

At each step of our dynamic program there are at most
mn states since for every (i, j) we store only the smallest
c. There are up to m possible new assignments generated
from each state, each requiring O(n logm) time to generate.
Therefore each step requires O(m2n2 logm) operations and
the total running time of the algorithm is O(km2n2 logm).

When the number of parts is fixed, we show that there are
polynomial algorithms for solving the respective problems
for both Cmax and

∑
Cj criteria.

Theorem 5. There exists a O(mnk+1 log(mn)) algorithm
for Q|G = complete k-partite, pj = 1|Cmax.

Proof. We adopt the framework of Hochbaum and Shmoys
(1988), i.e., we guess Cmax of a schedule and check whether
this is a feasible value. There are only up to O(mn) possible
values of Cmax to consider, as it has to be determined by the
number of jobs loaded on a single machine, and we can use
binary search to find the optimal value.

Now assume that we check a single candidate value for
Cmax. Fix any ordering of the machines. We store the in-
formation if there exists a feasible assignment of the first
0 ≤ l ≤ m machines such that there are ai unassigned jobs
for part Ji. In each step there is a set of tuples (a1, . . . , ak)
corresponding to the remaining jobs of O(nk) size. We start
the algorithm for l = 0 with (|J1|, . . . , |Jk|) – if no ma-
chines are used, then all jobs are unassigned.

For l ≥ 1 we take all tuples (a1, . . . , ak) from the previ-
ous iteration. For each tuple we try all possible assignments
of ml to the parts, then we try all feasible assignments of
the remaining jobs to this machine. This produces updated
tuples, determining some feasible assignment of the first l
machines. For each (a1, . . . , ak) we construct at most kn
updated tuples, each in time O(1), so for constant k the work
is bounded by O(nk+1). Note that we do need to store only
one copy of each distinct (a1, . . . , ak).

After considering l = m machines it is sufficient to check
if the tuple (0, 0, . . . , 0) is feasible. Clearly the total running
time for a single guess of Cmax is O(mnk+1).

Theorem 6. There exists a O(mnk+1) algorithm forQ|G =
complete k-partite, pj = 1|

∑
Cj .

Proof. Let us process machines in any fixed ordering. Let
the state of the partial assignment be identified by a tuple
(a1, . . . , ak, c), where ai denotes the number of vertices re-
maining to be covered and c denotes

∑
Cj of the jobs that

have been scheduled so far.
Assume that two partial assignments P1 and P2 on m′

first machines are described by the same state (a1, . . . , ak);
and two values c1 and c2, respectively. If c2 ≥ c1, then any
extension of P2 on m′′ > m′ first machines cannot be better
than the exactly the same extension of P1 on m′′ machines.
Therefore for any (a1, . . . , ak) it is sufficient to store only
the tuple (a1, . . . , ak, c) with the smallest c.

We may proceed with a dynamic program similar to the
one used for Cmax. That is, we start with a single state
(|J1|, . . . , |Jk|, 0). In the l-th step (l = 1, . . . ,m) we take
states (a1, . . . , ak, c), corresponding to feasible assignments
for the first l−1 machines. We try all k possible assignments
of ml to parts. If ml is assigned to Ji, for some i, then we
try all choices of the number n′ ∈ {0, . . . , ai} of remaining
jobs from Ji. Such a choice together with the assignment of
ml determines an assignment of n′ unassigned jobs to ml.
If the tuple constructed (a′1, . . . , a

′
k, c
′) has

∑
Cj inferior to

the already produced we do not store it. Finally, after consid-
ering all machines we obtain exactly one tuple of the form
(0, . . . , 0, c), which determines the optimal schedule.

At each step there are at most nk states since for every
(a1, . . . , ak) we store only the smallest c. There are up to n
possible new assignments generated from each state. Each
try requires O(k) time. Therefore, for any fixed k the time
complexity of the algorithm is O(mnk+1).

Now we turn our attention to the problem with a bounded
number of parts of the graph, but where tasks have arbitrary
processing requirements. First, we prove that given a set of
machines with particular speeds we can merge them to one
faster machine not increasing

∑
Cj of an optimal schedule.

Using this observation, exhaustive search, linear program-
ming, and rounding we are able to prove Theorem 7.
Lemma 3. Let J be any set of jobs. Let M be a set of uni-
form machines. Then it holds that

∑
Cj of an optimal sched-

ule of J on M is at least as big as the optimal
∑
Cj for J

and a single machine with speed equal to
∑
m∈M s(m).

Proof. We prove the case for M = {m1,m2} with speeds
s1 ≥ s2. For a higher number of machines the lemma fol-
lows by induction on the number of the machines.

Consider an optimal schedule on the machines. It is equiv-
alent to two steps. First, the selection of n smallest multipli-
ers of processing requirements. Second, an assignment of
the jobs ordered non-increasingly with respect to processing
requirements, to positions on the machines, corresponding
to the multipliers. Notice that the sequence of the n smallest
multipliers are w.l.o.g. (by 1

s1
≤ 1

s2
) of the following form:

1

s1
, . . . ,

n1
s1︸ ︷︷ ︸

n1

;
1

s2
;
n1 + 1

s1
, . . . ,

n1 + n2
s1︸ ︷︷ ︸

n2

;
2

s2
; . . .

267

The number ni is the maximum number of multipliers from
the m1, that were not used previously, and that are less than
or equal to i-th multiplier from m2. The multipliers form a
sequence of blocks of sizes n1 +1, n2 +1, . . ., respectively.
For m′ with s(m′) = s(m1) + s(m2) = s1 + s2 the multi-
pliers are of the following form:

1

s1 + s2
, . . .︸ ︷︷ ︸

n1

;
n1 + 1

s1 + s2
;
n1 + 2

s1 + s2
, . . .︸ ︷︷ ︸

n2

;
n1 + n2 + 2

s1 + s2
; . . .

It is sufficient to prove that the i-th multiplier in the first
sequence is at least as large as in the second one.

Let us prove that it holds for k-th block for any k =
1, 2, . . .: for the first multiplier in the block it holds

that
∑k−1

i=1 ni+1

s1
≥

∑k−1
i=1 ni+(k−1)+1

s1+s2
, by the fact that∑k−1

i=1 ni+1

s1
≥ k−1

s2
. Here we used the fact that if a ≥ b, then

a ≥ pa+(1−p)b for any 0 ≤ p ≤ 1. For all the next nk−1
multipliers it holds by a simple inductive argument, since we
add at each step 1

s1
> 1

s1+s2
. Finally, for the last element in

the block, k
s2
≥

∑k
i=1 ni+k

s1+s2
holds, since k

s2
≥

∑k
i=1 ni

s1
– by

the same argument as for the first element.

Roughly speaking, the main idea of the following algo-
rithm lies in the fact that for each of the parts, we may guess
the speed of the fastest machine and the number of such ma-
chines. Then we construct a linear (possibly fractional) re-
laxation of the assignment of the machines to the parts and
round down the numbers of the machines assigned to the
nearest integer. To show that rounding down does not in-
crease

∑
Cj more than 2 times, we use Lemma 3 and prop-

erties of geometric series, to bound the profit from hypothet-
ical rounding up. This together with the rounding of speeds
of the machines proves the following theorem.

Theorem 7. There exists a 4-approximation algorithm for
Q|G = complete k-partite|

∑
Cj .

Proof. Consider Algorithm 1. First notice that the proposed
program is an LP relaxation of the scheduling problem. Pre-
cisely, npr,tp means how many machines from a group tp
are assigned to the part pr; xjb,lr,tp means what part of a
job jb is assigned as the lr-th last on a machine of type tp.
Notice that jobs assigned to machines of a given type form
layers, i.e., jobs assigned as last contribute their processing
times once, as the last by one contributes twice, etc.

About the conditions:
• Condition (1) guarantees that all the machines are as-

signed, fractionally at worst.
• Condition (2) provides that no machine with speed higher

than maximum possible (i.e., guessed) is assigned to the
part.

• Condition (3) guarantees that each of the parts can be
given any number of not preassigned (not assigned by
guessing) machines of a given type.

• Condition (4) guarantees that the given number of ma-
chines of guessed type is assigned to a given part as the
fastest ones.

Algorithm 1 4-approximate algorithm for the problem
Q|G = complete k-partite|

∑
Cj

Require: J = (J1, . . . , Jk), M = {m1, . . . ,mm}.
1: Round the speeds of the machines up to the nearest mul-

tiple of 2.
2: Let the nonempty group of the machines, ordered by the

speeds be M1, . . . ,Ml.
3: For each part Jpr, guess the speed s′pr and the num-

ber n′pr of fastest machines assigned to it in an optimal
schedule. Discard unfeasible guesses.

4: Solve the linear program with variables:
• npr,tp, where pr ∈ {1, . . . , k}, tp ∈ {1, . . . , l},
• xjb,lr,tp, where jb ∈ J1 ∪ . . . ,∪Jk, lr ∈ {1, . . . , n},
tp ∈ {1, . . . , l}.

5: Let the LP conditions be:∑
pr

npr,tp = |Mtp| ∀tp (1)

npr,tp = 0 ∀pr∀tp > s′pr (2)

npr,tp ≤ |Mtp| −
∑

i∈{i|s′i=tp}

n′i ∀pr∀tp < s′pr (3)

npr,tp = n′pr ∀pr, tp = s′pr (4)∑
lr,tp

xjb,lr,tp = 1 ∀jb (5)

∑
jb∈Jpr

xjb,lr,tp ≤ npr,tp ∀pr∀tp∀lr (6)

0 ≤ xjb,lr,tp ∀jb∀lr∀tp (7)
0 ≤ npr,tp ∀pr∀tp (8)

6: Let the LP cost function be:
∑
jb,lr,tp xjb,lr,tp ·lr ·p(jb)·

1
s(tp) , where p(jb) is the processing requirement of job
jb and s(tp) is the speed factor of machine of type tp.

7: Solve the jobs assignment for each part separately using
the optimal solution of LP.

• Condition (5) ensures that any job is assigned completely,
in a fractional way at worst.

• Condition (6) guarantees that for a given layer, part, and
machine type there are no more jobs assigned than the
machines of this type to the part.

The cost function corresponds to an observation that a job jb
assigned as the l-th last on the machine of type tp contributes
exactly l·p(jb)

s(tp) to
∑
Cj .

An optimal solution to LP (x∗, n∗) corresponds to a frac-
tional assignment of machines to the parts.

We now construct for each part Ji separately a part frac-
tional scheduling problem in the following way:
• The new set of variables yjb,lr,m indicating a fractional

assignment of jb ∈ Ji as the lr-th last job on machine
m ∈M ′.

• The cost function
∑
jb,lr,m yjb,lr,m ·

lr·p(jb)
s(m) .

• The conditions:

268

– ∀jb,lr,m yjb,lr,m ≥ 0,
– ∀jb

∑
lr,m yjb,lr,m = 1 – each job has to be assigned

completely,
– ∀lr,m

∑
jb yjb,lr,m ≤ 1 – each layer on each machine

cannot contain more than a full job in total.
Here the set of machines M ′ consists of exactly dn∗i,tpe ma-
chines for each 1 ≤ tp ≤ l. Hence, for each type we add
at most one ,,virtual” machine due to rounding, except the
machine with the highest speed per part, which were preas-
signed exactly.

Now we rearrange jobs within layers for machines of the
same speed to construct some feasible solution to part frac-
tional scheduling. Hence, let Y = {yjb,lr,m : s(m) =
tp, jb ∈ Ji}, for any fixed lr and tp. We redistribute xjb,lr,tp
in the following way: ∀lr,tp we set yjb,lr,m = xjb,lr,tp for the
consecutive variables xjb,lr,tp. If such an assignment would
set some variable yjb,lr,m = y′ such that

∑
jb yjb,lr,m > 1,

then we set yjb,lr,m = xjb,lr,tp − (y′ − 1), instead. And we
continue with the next machine of speed tp and the unas-
signed fraction of xjb,lr,tp. Notice that by condition (6) we
have ∀lr,tp

∑
jb xjb,lr,tp ≤ n∗i,tp ≤ |Y |. Since we only rear-

range jobs preserving their layers the cost of y in part frac-
tional scheduling is equal to the contribution of variables
from Ji to the cost of x∗ in LP. Hence an optimal solution
can have only at most this cost.

Let us model this LP as a flow network. We construct:
a set of vertices V = Jj ∪ (M ′ × |Jj |), a set of arcs
Jj × (M ′ × |Jj |) with capacity 1 each, and with the cost
of the flow by an arc (jb, (m, lr)) equal to lr · p(jb) · 1

s(m) .
Any fractional solution corresponds to a fractional flow by
the network, i.e., a value of yjb,m,lr is exactly the flow by
the arc (jb, lr,m). It is known that e.g., Successive Shortest
Path Algorithm (Ahuja, Magnanti, and Orlin 1993) finds an
integral minimum cost flow in such a network.

A flow in the constructed network corresponds directly to
the solution to part fractional scheduling - we can treat the
flow as an assignment for all the jobs in Ji. This solution is
at least as good as the solution for the global relaxation of
the scheduling problem.

Due to rounding of n∗ there might be some non-fastest
virtual machines assigned to each part, at most one per type.
Using Lemma 3 combined with the fact that speeds of the
machines are equal to powers of 2 we can always merge all
of them and any real (preassigned) fastest machine (of speed
s′i) to a single virtual machine with a speed no greater than
2s′i. Hence, by scheduling all the jobs assigned to this vir-
tual machine on the corresponding real machine of speed s′i
we increase

∑
Cj of these jobs at most 2 times. This to-

gether with rounding of machine speeds allows to bound the
approximation ratio by 4.

Unrelated Machines
In this section we prove that there is no good approximation
algorithm possible in the case of unrelated machines.

Theorem 8. There is no constant approximation ratio al-
gorithm for R|G = complete 2-partite|

∑
Cj (R|G =

complete 2-partite|Cmax), unless P = NP.

Proof. Assume that there is a d-approximation algo-
rithm for R|G = complete 2-partite|

∑
Cj (R|G =

complete 2-partite|Cmax). Consider an instance of 3-SAT
with the set of variables V and the set of clauses C, where
for each v ∈ V there are at most 5 clauses containing
v. This version is still NP-complete (Garey and John-
son 1979). We construct the corresponding scheduling in-
stance as follows. Let M = {vT , vF : v ∈ V }. Also,
let G = complete 2-partite with parts J1 = {jv,1 : v ∈
V } ∪ {jc : c ∈ C} and J2 = {jv,2 : v ∈ V }. Hence
n = 2|V |+ |C| ≤ 7|V |, by |C| ≤ 5|V |.

Let pj = 1 for all jobs. Let s1 ≥ 1 be a value determined
by an instance of 3-SAT, but polynomially bounded by the
size of the instance. Let now s(jv,1, v

T) = s(jv,2, v
T) =

s(jv,1, v
F) = s(jv,2, v

F) = s1, for any v ∈ V . Let for any
c ∈ C s(jc, v

T) = s1 if v appears in c, and s(jc, vF) = s1
if ¬v appears in c. Set all the others s(j,m) to 1.

Consider an instance of the scheduling problem, corre-
sponding to an instance of 3-SAT with answer YES. Then
we can schedule J on the machines according to fulfilling
valuation, in the following way: If v has value T then we as-
sign vT to J1 and vF to J2, otherwise we assign vF to J1 and
vT to J2. Hence any job in J2 can be processed with speed
s1 similarly for any job in J1. Hence,

∑
Cj ≤

(
n+1
2

)
1
s1
≤

7|V |(7|V |+1)
s1

(Cmax ≤ n
s1
≤ 7|V |

s1
), for an optimal sched-

ule. Now it is sufficient to set s1 = 7d|V |(7|V | + 1) + 1
(s1 = 7d|V |+ 1) to prove the theorem.

On the other hand, assume that the answer for an instance
of 3-SAT is NO. Assume that there exists a schedule with∑
Cj < 1 (Cmax < 1). Assume that there is a part such

that both vT and vF have no jobs from it assigned in the
schedule. Then

∑
Cj ≥ 1 (Cmax ≥ 1), a contradiction.

Thus assume that jc ∈ J1 is a job assigned to some machine
m with s(jc,m) = 1. Clearly, also in this case we have a
contradiction. Hence, each jc ∈ J1 is assigned to a machine
corresponding to a valuation of the variable fulfilling c, so
there exists a fulfilling valuation, a contradiction. Hence, for
such an instance for any schedule

∑
Cj ≥ 1 (Cmax ≥ 1).

Clearly, by using a d-approximation algorithm on an in-
stance of the scheduling problem corresponding to a YES
instance of 3-SAT we would be able to obtain a schedule
with

∑
Cj < 1 (Cmax < 1). For an instance corresponding

to NO, for any schedule
∑
Cj ≥ 1 (Cmax ≥ 1). Hence, we

would be able to distinguish between them.

Open Problems
The complexity status of Q|G = complete k-partite|

∑
Cj

and the best polynomial-time approximability of both
Q|G = complete multipartite|

∑
Cj and Q|G =

complete multipartite|Cmax remain open problems. These
investigations seem to be natural extensions of our research.

Recall that the status of R|G = complete 2-partite|
∑
Cj

and its Cmax counterpart was settled. However, it is worth
considering if there are some interesting subproblems for
unrelated machines that admit exact or approximate poly-
nomial time algorithms, assuming P 6= NP.

269

Acknowledgments
This work was supported by Polish National Science Cen-
tre 2018/31/B/ST6/01294 grant and Gdańsk University of
Technology, grant no. POWR.03.02.00-IP.08-00-DOK/16.

References
Ahuja, R.; Magnanti, T.; and Orlin, J. 1993. Network Flows:
Theory, Algorithms and Applications. Prentice Hall.
Baker, B.; and Coffman Jr, E. 1996. Mutual Exclusion
Scheduling. Theoretical Computer Science 162(2): 225–
243.
Bodlaender, H.; and Jansen, K. 1995. Restrictions of Graph
Partition Problems. Part I. Theoretical Computer Science
148(1): 93–109.
Bodlaender, H.; Jansen, K.; and Woeginger, G. 1994.
Scheduling with Incompatible Jobs. Discrete Applied Math-
ematics 55(3): 219–232.
Brucker, P. 1999. Scheduling Algorithms. Springer.
Bruno, J.; Coffman Jr, E.; and Sethi, R. 1974. Scheduling
Independent Tasks to Reduce Mean Finishing Time. Com-
munications of the ACM 17(7): 382–387.
Das, S.; and Wiese, A. 2017. On Minimizing the Makespan
When Some Jobs Cannot Be Assigned on the Same Ma-
chine. In 25th Annual European Symposium on Algorithms
(ESA 2017), volume 87 of LIPIcs, 31:1–31:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.
Dessouky, M.; Lageweg, B.; Lenstra, J. K.; and van de
Velde, S. 1990. Scheduling Identical Jobs on Uniform Par-
allel Machines. Statistica Neerlandica 44(3): 115–123.
Epstein, L.; and Sgall, J. 2004. Approximation Schemes for
Scheduling on Uniformly Related and Identical Parallel Ma-
chines. Algorithmica 39(1): 43–57.
Garey, M.; and Johnson, D. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman.
Grage, K.; Jansen, K.; and Klein, K.-M. 2019. An EPTAS
for Machine Scheduling with Bag-Constraints. In The 31st
ACM Symposium on Parallelism in Algorithms and Archi-
tectures, 135–144. ACM.
Hochbaum, D.; and Shmoys, D. 1988. A Polynomial Ap-
proximation Scheme for Scheduling on Uniform Processors:
Using the Dual Approximation Approach. SIAM Journal of
Computing 17(3): 539–551.
Horowitz, E.; and Sahni, S. 1976. Exact and Approximate
Algorithms for Scheduling Nonidentical Processors. Jour-
nal of the ACM 23(2): 317–327.
Jansen, K.; Lassota, A.; and Maack, M. 2020. Approxima-
tion Algorithms for Scheduling with Class Constraints. In
Scheideler, C.; and Spear, M., eds., SPAA ’20: 32nd ACM
Symposium on Parallelism in Algorithms and Architectures,
Virtual Event, USA, July 15-17, 2020, 349–357. ACM.
Jansen, K.; and Maack, M. 2019. An EPTAS for Scheduling
on Unrelated Machines of Few Different Types. Algorith-
mica 81(10): 4134–4164.

Kones, I.; and Levin, A. 2019. A Unified Framework for
Designing EPTAS for Load Balancing on Parallel Machines.
Algorithmica 81(7): 3025–3046.
Lawler, E.; Lenstra, J. K.; and Kan, A. R. 1982. Recent De-
velopments in Deterministic Sequencing and Scheduling: A
Survey. In Dempster, M.; Lenstra, J. K.; and Kan, A. R.,
eds., Deterministic and Stochastic Scheduling, volume 84 of
NATO Advanced Study Institutes Series (Series C – Mathe-
matical and Physical Sciences), 35–73. Springer.

Lenstra, J. K.; Shmoys, D. B.; and Tardos, É. 1990. Ap-
proximation Algorithms for Scheduling Unrelated Parallel
Machines. Mathematical Programming 46(1-3): 259–271.
Lonc, Z. 1991. On Complexity of Some Chain and An-
tichain Partition Problems. In International Workshop
on Graph-Theoretic Concepts in Computer Science, vol-
ume 570 of Lecture Notes in Computer Science, 97–104.
Springer.
Mallek, A.; Bendraouche, M.; and Boudhar, M. 2019.
Scheduling Identical Jobs on Uniform Machines with a Con-
flict Graph. Computers & Operations Research 111: 357–
366.
Page, D.; and Solis-Oba, R. 2020. Makespan Minimization
on Unrelated Parallel Machines with A Few Bags. Theoret-
ical Computer Science 821: 34–44.
Shchepin, E.; and Vakhania, N. 2005. An Optimal Round-
ing Gives a Better Approximation for Scheduling Unrelated
Machines. Operations Research Letters 33(2): 127–133.
Smith, W. E. 1956. Various Optimizers for Single-Stage Pro-
duction. Naval Research Logistics Quarterly 3(1-2): 59–66.

270

