
Non-Deterministic Conformant Planning Using a Counterexample-Guided
Incremental Compilation to Classical Planning

Enrico Scala,1 Alban Grastien2

1University of Brescia, Italy
2Australian National University, Australia

enricos83@gmail.com, alban.grastien@anu.edu.au

Abstract

We address the problem of non-deterministic conformant
planning, i.e., finding a plan in a non-deterministic context
where the environment is not observable. Our approach uses
an unsound but complete reduction from non-deterministic
conformant planning to classical planning to find a candidate
plan; the validity of this plan is then verified by a SAT solver;
if the plan is invalid, the reduction is revised to guarantee
that the invalid plan will not be valid in the classical plan-
ning problem. This procedure is executed until a valid plan is
found, or it is shown that there is no plan. Experiments show
that this approach provides a nice trade-off between fast but
unsound, and complete but slow approaches.

Introduction
Conformant planning is the problem of finding a sequence
of actions that enables an agent to reach some goal despite
uncertainty on the initial state or the effects of the actions,1
and without the help of observations (Smith and Weld 1998).
This problem has applications in contexts where observa-
tions are either hard to make or unreliable, and where the
mission is expensive or potentially dangerous, and therefore
requires some guarantees on success.

Conformant planning can be formulated as a search prob-
lem over the belief space, where a belief is a set of pos-
sible states (Bonet and Geffner 2000). As a consequence,
conformant planning is a computationally expensive prob-
lem, specifically EXPSPACE-complete (Haslum and Jonsson
1999). Different approaches have been proposed to tame this
complexity (see Related Work section). One of the main is-
sues of the existing approaches is that they either try to solve
the problem in a complete manner (which is hard) or they
use an incomplete method.

Instead, we follow the general principles of Counter-
Example Guided Abstraction Refinement (CEGAR (Clarke
et al. 2000)). Our approach uses an unsound but complete
method to generate candidate plans, which means that the
candidate plan may be invalid (however, if a valid plan ex-
ists, then a candidate plan will be produced). The validity

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The term “non-deterministic” is used to emphasise the fact that
uncertainty also applies to the actions.

of this plan is then tested. If the plan is invalid, this infor-
mation is added to our method and a new candidate plan is
generated that is guaranteed to be different. The procedure
continues until either a valid plan is found or the problem is
proved unsolvable.

More precisely, the candidate plan is found by solving a
planning problem defined as the combination of two objects:

1. A “one-outcome determinisation” of the conformant plan-
ning problem, i.e., a planning problem in which the uncer-
tainty is broken at random.

2. A “counter-automaton”, which stores the reasons why the
previous candidates are invalid.

The resulting planning problem is a relaxation of the orig-
inal one in the sense that it accepts more solutions. Impor-
tantly, this relaxed problem is a classical one, i.e., it does
not include any uncertainty, and it is therefore easy to solve,
relatively to the original problem.

The validity of the plan is verified by a SAT solver. Given
a plan, the goal is to find a sequence of states that could
result from the execution of the plan, such that one of the
actions is inapplicable in the corresponding state.

This approach aims at finding a sweet spot between 1)
searching in the belief space, which is very hard because this
space is exponentially larger than the state space and does
not have good heuristics, and 2) compiling the conformant
planning problem into a deterministic one, which can fail
at the pre-processing phase. By incrementally learning the
aspects of the planning problem that are relevant, we avoid
unnecessary work during the search.

In the next section we present the background defini-
tions on conformant planning. We then give an example and
present a high-level view of our algorithm. We present how
we reduce conformant planning to classical planning and, in
particular, the notion of an adversarial NFA. Next, we ex-
plain how to verify the validity of a plan and how this infor-
mation is stored in the adversarial NFA. We then show the
correctness of the algorithm. We discuss how to exploit the
structure to improve the generalisation. After a discussion
on related work, we provide an experimental analysis.

Background
Our definition of the conformant planning problem with
non-deterministic effects is similar to other definitions that

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

299

can be found in the literature. We only report here the
salient aspects. A conformant planning problem P is the tu-
ple 〈A, I,G〉, where A are actions, I is the initial state2, G
is a goal action name3. All structures in P predicate over
some universe of propositional facts F that we leave im-
plicit; with L we indicate all literals from F , and with Γ the
set of propositional formulas over L. An action a ∈ A is a
tuple 〈name(a), pre(a), eff(a)〉 where:
• name(a) is a label identifying the action name. When ob-

vious, this part of the action will be ignored.
• pre(a) maps the action into a precondition from Γ and
• eff(a) maps the action into a set of conditional effects
{CE1, . . . , CEm} such that each CEi is a relation φ �

{e1, . . . , ek} where φ is a formula in Γ and e1, . . . , ek are
subsets of L.
An action is said to be deterministic if ∀(φ � E) ∈

eff(a). |E| = 1. The all-outcome determinisation of an ac-
tion a is a set of actions O(a) where each o ∈ O(a) is a
particular choice for the non-deterministic effects over a.

Semantics. A state s is a set of facts, i.e., s ∈ 2F . A
fact f is true in s if f ∈ s, false otherwise (Closed World
Assumption). A belief is a set of states, i.e. B ∈ 2S where
S = 2F is the set of states. A state s satisfies the formula ψ
if eval(ψ, s) evaluates to true, where eval(ψ, s) is the eval-
uation of the formula obtained by substituting with true or
false all facts that are true or false in s.

An action a is applicable in a state s if s satisfies pre(a).
The result of applying a in s is a state s′ such that there ex-
ists a deterministic action o ∈ O(a) and s′ = s[o], where
s[o] is the state obtained by executing o following the se-
mantics of classical planning. Notice how s′ is not decided
deterministically. A plan π is a sequence of action names
π = 〈name(a1), . . . , name(an)〉, sometimes more simply
replaced by the sequence of actions 〈a1, . . . , ak〉.4 An exe-
cution of π from state s0 is a sequence of states s1, . . . , sn
where each si is one of the states resulting from the execu-
tion of ai in si−1. The execution is valid iff ai is applicable
in each state si−1 and an is the goal action.

An action a is said to be applicable in a belief B ∈ 2S

iff all states in B satisfy pre(a). The execution of an action
a in a belief B, B[a], is a new belief that is obtained as fol-
lows: Let 〈B1, . . . ,Bn〉 be the beliefs obtained by applying
iteratively the actions named in π starting from B0 = I , we
say that π is valid iff each ai is applicable in Bi−1 and its
last action is the goal action. The set of valid plans to the
problem P = 〈A, I,G〉, i.e., valid from the belief B = {I},
is denoted Π(P).

2Because the uncertainty in the initial state can be simulated
by an initial non-deterministic action, we assume in the definitions
that there is only one initial state.

3G is usually a set of goal states, but it is convenient for us to
interpret it as an action whose precondition is satisfied precisely by
the goal states.

4Our approach reduces non-deterministic conformant planning
to classical planning and, consequently, modifies the precondition
and effects of each action; to be able to compare the sets of valid
plans of either problem, we need to define a plan as a sequence of
action names rather than a sequence of actions.

?
?
?

?
?
?

?
?
?

Figure 1: A graphical representation of the TRICKYGRID for
a 5 × 5 grid. The robot can move in all 4 directions: down
(D), up (U), left (L), right (R), but going right might move
it up as well. Red cells are forbidden; the yellow cell is the
target; the question marks are the possible starting states. A
possible solution that can be generalised to larger maps is:
D × 3, U, L× 3, (R,D)× 2, D, U × 2.

Example
We illustrate the definitions with an example that is the basis
for the new domain TRICKYGRID, which we also use in the
experiments.

In this example (Figure 1), a robot is traveling on an 5×5
grid. The top row of the grid, as well as the other two cor-
ners are dangerous locations and, for this reason, the robot is
forbidden to enter them. The robot can move in all four di-
rections (down, up, left, right). The robot however is slightly
impaired. As a consequence, the right move has a chance of
turning into a diagonal up-right move. If the robot hits the
edge of the grid, the move does not change its position. The
initial position of the robot is one of the 9 central cells. The
goal is to get the robot to the center of the map. The robot is
unable to observe its position.

We now show how this problem is modeled in our for-
malism. The state of the robot is modeled through the facts
x(1), . . . , x(5) and y(1), . . . , y(5) that represent the x and
Y position of the robot.

An action such as left will have four conditional effects
such as: x(3) � {e1} where e1 = {x(2),¬x(3)}. This con-
ditional effect is deterministic (it has only one set of effects,
namely e1), and has two consequences: if the fact x(3) is
true is the current state, this fact becomes false after the ac-
tion is applied and x(2) becomes true instead.

The action right affects the x facts in a manner similar to
left, but it also includes conditional effects such as y(2) �
{e1, e2} where e1 = ∅ and e2 = {y(3),¬y(2)}. This means
that performing the right move when y(2) is true has the
following non-deterministic effect: either the fact remains
true, or y(2) becomes false while y(3) becomes true.

The verification that the robot did not enter a forbidden
cell is made by forcing the robot to perform a check action
after every move action (thanks to the facts can_move and
has_to_check). The precondition of the check action is
precisely that the robot is not in a forbidden cell.

A possible solution (only listing the move actions) is pre-
sented in Figure 1.

Presenting the Algorithm
We give a short description of our algorithm, and explain the
details of each subroutine in the next sections.

300

Algorithm 1 Complete Non-Deterministic Conformant
Planning Algorithm

1: procedure ND-CPCES
2: input: conformant planning problem P
3: output: a Plan π for P, or UNSAT
4: A := A∅
5: loop
6: π := Plan(PAD)
7: if π is ⊥ then
8: return UNSAT . Plan can’t be found
9: end if

10: τ := check(π,P)
11: if τ = ⊥ then
12: return π . Plan found
13: end if
14: A := Ref(A, τ)
15: end loop
16: end procedure

Our procedure is presented in Algorithm 1. Following
the CEGAR framework, it constructs an abstraction of the
conformant planning problem that it gradually refines un-
til a solution is found or the problem is proved unsolvable.
Specifically, the abstraction is a determinisation of the plan-
ning problem; the refinement is obtained by synchronising
this determinised problem with a non-deterministic finite au-
tomaton (NFA) that prevents the solutions that are known
to be invalid. Importantly, the resulting planning problem is
deterministic, which means it can be solved with a classical
planner.

The procedure starts with an empty NFA and creates the
deterministic planning problem PAD, which is the synchro-
nisation of the determinisation with the NFA. If no plan
is found, it proved that there is no solution. Otherwise, it
searches for an execution that invalidates the plan returns it
if it is proved valid. If not, the execution is added to the NFA
and a new iteration begins.

Determinisation and Adversarial NFA
We now make explicit the elements of the algorithm. We
first discuss the discretisation which allows us to use deter-
ministic (classical) planners. Then we present the notion of
adversarial NFA which is used to exclude some solutions.
How this NFA is built in practice is discussed in the follow-
ing section.

One-Outcome Determinisation of P
The determinisation of a planning problem that we are in-
terested in is a classical planning problem obtained by arbi-
trarily picking only one effect from the non-deterministic ef-
fects. We call such a determinisation the One-Outcome De-
terminisation and formally define it as follows:

Definition 1 (One-Outcome Determinisation). Let P =
〈A, I,G〉 be a conformant planning problem and let PD =
〈AD, ID, GD〉 be a deterministic planning problem defined
over the same set of facts. PD is a determinisation of P if

I = ID, G = GD, and AD consists exactly of one deter-
minisation of a (∀a ∈ A. ∃!aD ∈ AD. aD ∈ O(a)).

Note that the set of valid plans of the resulting classical
planning problem is a superset of the valid conformant plans
of the original conformant problem, i.e., the one-outcome
determinisation is a proper relaxation of the conformant
planning problem.
Lemma 1 (PD is a relaxation of P). Any plan of P is a plan
of PD, yet there may be plans of PD that are not plans of P.

For brevity we will refer to the One-Outcome Determini-
sation as just Determinisation.

Adversarial NFA
The second element of our reduction is a finite state ma-
chine that is used to disqualify invalid plans. We write A =
〈Q,Σ, T, qI , F 〉 a non-deterministic finite automaton (NFA)
where
• Q is a set of states, qI ∈ Q is the initial state, F ⊆ Q is

the set of failure states,
• Σ is a set of labels identifying transitions,
• T ⊆ (Q× Σ×Q) is the set of state transitions.
An NFA accepts a sequence of transition labels if such a
sequence links the initial state to one of the failure states.
The set of accepted sequences is represented by L(A).

Given the NFA A and some label a, predA,a is the func-
tion that, given a state q′ returns its predecessor states, i.e.,
predA,a(q′) = {q ∈ Q | 〈q, a, q′〉 ∈ T}.

We use the NFA to represent the non-deterministic and
adversarial nature of our non-deterministic planning prob-
lem. The construction of the NFA is described in the next
section, but we now give a short interpretation: i) the NFA
labels correspond to actions in our planning problem; ii) the
failure state is used to represent the fact that an action was
executed in a state that does not satisfy its precondition. So
given a sequence of action names σ1, . . . , σk that leads to a
failure state, this sequence is an invalid plan.
Definition 2 (Adversarial Automaton). An NFA A =
〈Q,Σ, T, qI , F 〉 is said to be adversarial w.r.t. a conformant
planning problem P = 〈A, I,G〉 iff i) Σ = {name(a) | a ∈
A} is the set of action names, ii) all failure states are sink
states (∀q ∈ F. ∀a ∈ Σ. 〈q, a, q〉 ∈ T), and iii) L(A) in-
cludes only sequences of actions that are not valid in P, i.e.,
Π(P) ∩ L(A) = ∅.

For now, we assume the NFA is given and focus on how
we encode such an NFA using a classical planning problem
formulation. In other words, we show how we can encode a
classical planning problem in a way that the obtained plan is
not disproved by the NFA.

Given a (classical) planning problem P = 〈A, I,G〉 (for
instance, PD) and given an NFA A = 〈Q,Σ, T, qI , F 〉, we
generate a new classical planning problem PA = 〈A′, I ′, G〉
whose valid plans are Π(P) \ L(A). The main idea is to i)
encode each state of the automaton q using a fact pq , ii) dis-
allow actions going to failure states, and iii) advancing the
automaton in parallel to the action execution. The synchro-
nisation of the planning problem with the automaton can be
defined formally as the following:

301

Definition 3 (Adversarial Automaton Synchronisation).
Let P = 〈A, I,G〉 be a planning problem and A =
〈Q,Σ, T, qI , F 〉 be an NFA whose transition labels are the
names of the actions in P. The adversarial automaton syn-
chronisation of P is denoted by PA and is a new classical
planning problem 〈A′, I ′, G〉 defined as the following:

• A′ = {aA | a ∈ A}
• I ′ = I ∪ {pqI}

where aA = 〈name(a), pre(a)∧preA(a), eff(a)∪effA(a)〉
such that

• preA(a) =
∧
q′∈F

∧
q∈predA,a(q′)

{¬pq}

• effA(a) =
⋃
q′∈Q

{∨
q∈predA,a(q′)

pq � pq′
}

∪⋃
q′∈Q

{
¬
∨
q∈predA,a(q′)

pq � ¬pq′
}

.

The definition simulates the progress in the NFA by
changing the values to the predicates that represent the au-
tomaton state. Each action a features a conditional effect
for each state in q ∈ Q that systematically establishes
whether a can reach some other state from this state or
not (i.e.

⋃
q′∈Q

{∨
q∈predA,a(q′)

pq � pq′
}

). If this is indeed
the case, the successor q′ through a is set to true (it suf-
fices to have just one state satisfying this); yet this does
not make q false. The only way to make a state q′ not
part of the belief of the agent is when there is no transi-
tion from some other state q to it. This last aspect is en-
coded by using the second set of conditional effects (i.e.,⋃
q′∈Q

{
¬
∨
q∈predA,a(q′)

pq � ¬pq′
}

). Each of these con-
ditional effects indeed ensures that there is no way of mak-
ing the relative pq hold in the next state.

Lemma 2. The plans in Π(PA) are solutions for P, and are
not accepted by the NFA A. That is Π(PA) = Π(P) \ L(A).

Proof Sketch. (Reductio ad absurdum) Let π =
〈a0, · · · , an〉 be a plan solution for PA and assume
this sequence can be mapped into a failing trajectory of
the NFA A. From π we can extrapolate a sequence of
states in A such that 〈s0, · · · , sm〉 with m ≤ n + 1 and
sm = ⊥. Note that, by construction, PA keeps track of any
transition occurring in the NFA. Therefore, the only way
for this to happen is because the action applied in sm−1
had its precondition not satisfied. And this obviously is a
contradiction with π being a solution for PA.

Incremental Adversarial NFA Construction
In this section, we discuss how the adversarial automaton
can be constructed from a set of counter-examples. We then
show how this adversarial automaton can be built incremen-
tally, until it is precise enough that it allows us to solve the
conformant planning problem.

Definition 4 (Counter-example). A counter-example for P is
a sequence of states actions τ = q0

a1−→ . . .
ak−1−−−→ qk−1

ak−→
⊥ such that:

• q0 is the initial state,

• each action ai is applicable in qi−1 for i < k,
• q0, . . . , qk−1 is an execution of a1, . . . , ak−1,
• the action ak is not applicable in qk−1.

If a1, . . . , ak is a prefix of a plan π, we also say that τ is a
counter-example to π.

Definition 5. Let P = 〈A, I,G〉 be a planning problem,
and let C = {τ1, . . . , τ`} be a set of counter-examples of P.
The counter-automaton for P based on C is the NFA AC =
〈Q,Σ, T, qI , F 〉 defined as:

• Q = {I,⊥}∪
⋃
τ∈C states(τ), where states(τ) is the set

of states in the counter-example τ ;
• Σ = {name(a) | a ∈ A};
• T = {〈⊥, name(a),⊥〉 | a ∈ A}∪

⋃
τ∈C trans(τ) where

trans(τ) is the set of transitions in the counter-example τ ;
• qI = I; and F = {⊥}.

While the language L(AC) includes all the words that la-
bel the counter-examples in C, it generally contains addi-
tional elements when the same states are visited multiple
times (in the same counter-example or in different ones).
Still, one can prove that all the words in the language of
the counter-automaton are adversarial:

Lemma 3. A counter-automaton for P is an adversarial au-
tomaton wrt P.

Proof Sketch. Consider a trajectory q0
σ1−→ . . .

σk−→
qk

σk+1−−−→ ⊥ from the NFA. This trajectory is one of the
possible executions of 〈σ1, . . . , σk+1〉 since every transition
qi−1

σi−→ qi appears in one of the counter-examples from C.
This execution ends in ⊥, which proves that the execution is
not valid. QED.

Interestingly, the counter-automaton AC can be built it-
eratively, starting with A∅, and adding the states and tran-
sitions of each counter-example incrementally. Given the
counter-automaton AC and a counter-example τ that is not
represented by the language L(AC), we call refinement, de-
noted Ref(AC , τ), the operation that computes the NFA
AC∪{τ}. This operation is indeed a refinement if the counter-
automaton is considered as an abstraction of the NFA that
represents the invalid plans. Notice that it is not possible to
perform an arbitrary number of refinement to the NFA, as
each refinement adds at least one transition (and the number
of transitions is O(|S|2 × |A|)).

The Check Procedure: Finding Counter-examples
The procedure to find counter-examples uses a translation to
SAT. The SAT encoding collocates states and actions along
a discrete timeline that starts with index 0, that is the initial
state, and terminates with the last state produced by the last
action. The role of the SAT encoding is to find an assign-
ment for the action effects that makes one of the actions’
precondition unsatisfied.

Our SAT encoding is based on a series of substitutions
and manipulations of the formulas belonging to the action
preconditions, and effect. To frame a given SAT variable to
a particular instant of time, we substitute each fact f in some

302

formula with the SAT variable whose name is obtained by
concatenating f with @(i). We attach the symbol @(i) to
any formula where this substitution is performed.

Let π = 〈a0, . . . , an−1〉 be the plan to be checked. Our
encoding uses SAT variables V = {f@i | f ∈ F, i ∈
{0, . . . , n}} andD = {dc,e@i | i ∈ {0, . . . , n−1}, 〈c, E〉 ∈
eff(ai), e ∈ E}. The SAT variable dc,e@i indicates that if c
is satisfied in the ith state, then e is the set of effects that
are executed as part of the non-deterministic effects (if c is
not satisfied, the SAT variable is simply ignored). Then we
denote with ach(`, i) what needs to hold in order for literal
` (positive or negative) to be achieved in the next step:

ach(`, i) =
∨

c,e such that
∃E. (c,E)∈ai∧e∈E∧`∈e

(
c@i ∧ dc,e@i

)
.

Similarly to other works in finding counter-examples via
SAT (Grastien and Scala 2020), our encoding is based on 3
main axioms: the initial state axiom (IA), the frame axiom
(FA), and the effect axiom (EA). Let P = 〈A, I,G〉 be our
non-deterministic conformant planning problem, the axioms
are shaped as following:

IA =
∧
f∈I

f@0 ∧
∧

f∈F\I

¬f@0

FA = FA
+ ∧ FA−where

FA
+

=
∧

i∈{0,...,n}
f∈F

{(¬f@(i) ∧ f@(i+ 1))→ ach(f, i)}

FA
−

=
∧

i∈{0,...,n}
f∈F

{(f@(i) ∧ ¬f@(i+ 1))→ ach(¬f, i)}

EA =
∧

i∈{0,...,n}
f∈F

ach(f, i)→ f@(i+ 1) ∧ ach(¬f, i)→ ¬f@(i+ 1)

Intuitively the formula looks for some allocation of the
d variables for all actions in the plan that makes some
precondition unsatisfied. This is represented by UP =∨
i∈{1,n}

¬ pre(ai)@i.

Lemma 4. There exists a counter-example to the plan π iff
the SAT formula described IA∧FA∧EA∧UP is satisfiable.

The lemma derives naturally from the definition of a
counter-example: Given a counter-example, it is easy to see
to derive a satisfying assignment to the formula. Conversely,
from a satisfying assignment, it is easy to derive a counter-
example.

Correctness of the Algorithm
Our procedure has already been presented in Algorithm 1.
We discuss its correctness.

Theorem 1 (Soundness and Completeness). If the underly-
ing classical planner is sound and complete, and the check
procedure is sound, Algorithm 1 produces a valid confor-
mant plan when there is one, and terminates with UNSAT
after a finite number of steps otherwise.

Proof Sketch. First notice that if Algorithm 1 returns a plan,
then this plan is valid since it passed the check (Lemma 4).

From Lemmas 1, 2, and 3, we know that the PAD is a re-
laxation of P, which means that Algorithm 1 returns UNSAT
only when there is no valid plan for P.

Finally, each step of the iteration refines the counter-
automaton, which, as we already noticed, can only be done a
bounded number of times. Therefore, the procedure always
terminates given enough time.

Decomposing Automaton States through
Contexts

As we have seen in the previous section, the number of it-
erations of our algorithm is bounded by the number of tra-
jectories that can prove our classical planning attempts fail-
ing. Albeit finite, this number can be quite large. In order to
tackle this problem, this section show how to use the struc-
ture of the planning problem (in particular, through the no-
tion of context (Bonet and Geffner 2014)) to improve the
convergence.

Definition 6. The context ctx(f) of a fact f is the smallest
set that satisfies:

• f ∈ ctx(f);
• For all f ′ 6= f , if there is some action a with conditional

effect φ�E ∈ eff(a), such that i) f ′ appears in φ and ii)
there exists e ∈ E where either f ∈ e or ¬f ∈ e, then
f ′ ∈ ctx(f);

• If f ′′ ∈ ctx(f ′) and f ′ ∈ ctx(f) then f ′′ ∈ ctx(f).

Given a counter-example, it is possible to determine the
context of the precondition that was not satisfied. We can
then project the counter-example on the context, and define
a counter-example for each automaton.

In practice, if the counter-example τ is τ = q0
a1−→

. . .
ak−1−−−→ qk−1

ak−→ ⊥, and the precondition of the last
action is pre(ak) = ϕ1 ∧ · · · ∧ ϕ` (where ` may equal
1), let i be one of the indices such that qk−1 does not sat-
isfy ϕi. Then the context of this precondition is ctx(ϕi) =⋃
f∈V(ϕi)

ctx(f) where V(ϕi) is the list of facts of ϕi.
The projection of τ on the context of ϕi is ctx(ϕi) ∩

q0
a1−→ . . .

ak−1−−−→ ctx(ϕi) ∩ qk−1
ak−→ ⊥. It is possible

to maintain a counter-automaton for each context and to
add the projected counter-example onto the right counter-
automaton.

Example Consider the example of TRICKYGRID dis-
played on Figure 1. Assume that the candidate plan is DUG
(down, up, then goal action). This plan is invalid since, e.g.,
when starting in position 〈2, 2〉 (bottom-left-most possible
starting location), the robot is unable to perform the two
conditions of the G action (x should be 3, is currently 2; y
should be 3, is currently 2). If we focus on the precondition
ϕ = x(2), the context of ϕ is {x(1), . . . , x(5)} since the y
position never affects the x position of the robot (that would

303

be different if there were walls for instance). The counter-
example is therefore

{x(2), y(2)} D−→ {x(2), y(1)} U−→ {x(2), y(2)} G−→ ⊥,
and its projection on {x(1), . . . , x(5)} is

{x(2)} D−→ {x(2)} U−→ {x(2)} G−→ ⊥.
The projected counter-example is much more useful than

the non-projected one for two simple reasons. First, it helps
generalising the result. In particular, the counter-example
cannot be avoided by simply using more D and U actions:
it is necessary to perform other actions, such as L and R.
The second benefit is that fewer additional facts fq need to
be introduced when synchronising the adversarial automa-
ton with the deterministic domain.

Related Work
There are mainly two approaches to solve conformant plan-
ning problems that have been investigated so far. The first
approach casts the problem as a search over the belief state
(Bonet and Geffner 2000) that is carried out by progressing
(or regressing) a frontier of beliefs each given by a particular
choice of actions (e.g., (Cimatti, Roveri, and Bertoli 2004;
Hoffmann and Brafman 2006; To, Son, and Pontelli 2015;
Albore, Ramı́rez, and Geffner 2011)). The second is a trans-
lation based approach, i.e., it transforms the problem into
one which is easier to solve (Albore, Palacios, and Geffner
2010; Nguyen et al. 2012; Palacios and Geffner 2007).

A direct search over the belief space has to deal with the
problem of efficiently representing and manipulating the be-
lief. In this regard, several approaches have been proposed,
among which Binary Decision Diagrams (Cimatti, Roveri,
and Bertoli 2004; Bryant 1986) and SAT formulations (Hoff-
mann and Brafman 2006; Albore, Ramı́rez, and Geffner
2011). Among these works, to the best of our knowledge,
only the system presented by Cimatti, Roveri, and Bertoli
(2004) supports non-deterministic effects.

Translation-based approaches can take the powerful rea-
soning techniques developed for solving a specific targeted
problem directly off-the-shelf; however, this comes at the
cost of providing guarantees, such as completeness and
soundness. In particular, completeness can usually be en-
sured only under severe restrictions on the structure of the
problem (Palacios and Geffner 2007; Albore, Palacios, and
Geffner 2010). There exist several translations from con-
formant to classical planning and from non-deterministic
conformant to (deterministic) conformant planning. Yet, the
only translation that supports the use of non-deterministic
conformant is the one described by Albore, Palacios, and
Geffner (2010). The main idea pursued by the authors is that
of anticipating the non-deterministic choices of the actions
into uncertainty in the initial belief of the agent. The au-
thors present different encodings starting from this idea, but
none of them is complete. Indeed, it is difficult to anticipate
how many non-deterministic choices the agent will need to
deal with; and this problem is related to the difficulty of an-
ticipating reasonable upper-bounds on the number of action
occurrences in a plan. Our work is similar in the spirit to

the work by Albore, Palacios, and Geffner (2010): we also
perform a translation from one problem to the other. Yet, we
translate the problem directly into a classical planning for-
mulation. This allows us a much finer control of the implicit
belief state, and results in a schema that can be proved not
only sound but also complete.

Another related approach to our technique, is the CPCES
planning system (Grastien and Scala 2020). They provide a
counter-example guided mechanism to incrementally solve
the conformant planning problem, but restrict themselves
to the case with only deterministic effects. Our approach
extends it in a substantial manner. We indeed propose a
novel reduction to classical planning, and a novel notion of a
counter-example, with profound implications. Our counter-
examples are plan executions, not just initial states.

As us, other people have used automata in planning, but
with quite a different purpose. For instance, the work by
Torres and Baier (2015); Patrizi, Lipovetzky, and Geffner
(2013) do so for synchronising the planning model with LTL
formulas. The main difference with us is that we build the
automaton from counter-examples, i.e., we do not require to
provide any user specifications that need to be met.

In the much more general problem of planning under un-
certainty, related are all the extensions that assume some
form of observability of the agent state, e.g., (Muise, Belle,
and McIlraith 2014; Geffner and Geffner 2018) or works
that rely on an online replanning step (Yoon, Fern, and Gi-
van 2007; Scala and Torasso 2015). In particular, the work
by Geffner and Geffner (2018) uses a SAT encoding to find
compact policies in a fully-observable scenario. Understand-
ing synergies between this SAT formulation and ours to ex-
tend the reach of our approach is definitely interesting for
future work. Replanning methods use determinisation as we
do although completeness in that case can only be ensured
under very restrictive assumptions, e.g., ergodic state-space
(Brafman and Shani 2012).

The work by Bonet and Geffner (2014) has been also of
great inspiration for us. The authors indeed propose the no-
tion of contexts for planning to make explicit potentially in-
dependent sets of variables. Indeed, we exploit to great ex-
tent this definition, and use it as a means to simplify belief
tracking problem in our system, too. The state space of our
adversarial automaton can indeed be made smaller exactly
for the reason that we do need to consider all the combina-
tions of variable values, but can decompose the state space in
a context-based manner. As we will see in the experiments,
this greatly speeds up our approach.

Implementation and Experimental Analysis
We implemented the ideas of this paper in a new non-
deterministic conformant planner. Our planner makes use
of two components: an SMT solver playing the role of our
SAT solver5, and as a classical planner a PDDL Planner. We
tried several SMT solvers, among which MathSat (Cimatti,
Roveri, and Bertoli 2004) and Z3 (De Moura and Bjørner

5We use SMT as we find the language supported by many SMT
planners more convenient to use for our purposes. We use PYSMT
(Gario and Micheli 2015) to wrap the SMT solvers.

304

Figure 2: Number of solved instances over time.

Complete Methods
Domain I Contexts VANILLA DECO MBP k1k0
UTS 3 (9-15) 0 1 1 3
COINS 3 (21-45) 0 2 2 3
TRAIL 3 (2) 1 3 0 0 (3∗)
MOVE-PKG 4 (18-31) 3 4 4 0 (4∗)
BOMB-1-T 40 (2) 21 40 19 40
BOMB-N-T 40 (4) 14 40 17 40
MOUSE-CAT 3 (1925-7845) 3 3 0 2
TRICKYGRID 24 (5) 4 12 21 0
Total 120 46 105 64 88 (95∗)

Table 1: Coverage Analysis. ‘’Bold’‘ stands for best per-
former. ‘’I’‘ stands for number of instances, ‘’Contexts‘’
stands for number of contexts using (min,max) when they
differ across the instances of a given domain.

2008). We opted for MathSat as it turned out to be the most
efficient solution for our problems. We also investigated
a number of PDDL planners, among which FF, LAMA,
BFWS and Madagascar (Hoffmann and Nebel 2001; Rin-
tanen 2014; Richter and Westphal 2010; Lipovetzky and
Geffner 2017). Despite being the oldest among such sys-
tems, FF was the only solution that worked well and robustly
with our expressive formulations.

Our system reads as an input a PDDL description of the
problem as for the specification of the last IPC on planning
under uncertainty6. The interaction with the classical plan-
ner is also done using PDDL, of which we use many pow-
erful constructs in the action representation. Recall that a
PDDL problem is defined compactly using two different rep-
resentations: the domain theory and the planning instance.
We used both universal and existential quantifiers in the ac-
tion description, and this gave us the possibility to define the
domain file just once; the actual structure of the actions in
our implementation is in fact determined by the objects and
the variables instantiated into the problem file.

Our experimental analysis aims at understanding whether
the approach that we have presented in this paper can be
practical. To verify this we tested both the version without
the context-decomposition, hereinafter called VANILLA, and
the version with it, hereinafter called DECO. We measured:
coverage as the number of instances solved by the system,
the number of iterations done by the CEGAR loop before
finding a solution, and run-time. Quality wise, we measured

6https://ipc08.icaps-conference.org/probabilistic/wiki/

the length of the resulting plans. Note that the time for both
VANILLA and DECO is the time spent by the SMT solver,
the PDDL planner and all the various modules. The sys-
tem is implemented in Python, and can be downloaded at
https://bit.ly/38na9Rq.

As a comparative analysis, we considered another prov-
ably complete conformant planner, that is the Model Based
Planner by Cimatti, Roveri, and Bertoli (2004), and the
fastest translation-based approach by Albore, Palacios, and
Geffner (2010), that is the k1k0 translation. The k1k0 trans-
lation uses FF as classical planner, as in our case.

Our benchmark suite encompasses domains and instances
from the work by Albore, Palacios, and Geffner (2010). To
the best of our knowledge, these are the more recent bench-
mark domains. For the sake of fairness, all the planners used
in our comparison run over the very same problem rep-
resentation, which is, as hinted at above, written in non-
deterministic PDDL7. For BOMB-1-TOILET and BOMB-
N-TOILET we generated smaller instances (the larger ones
were only solvable by the k1k0). These instances scale on
the number of bombs, from 1 to 40. For the BOMB-N-
TOILET version, which uses multiple toilets, we fixed the
number of toilets to 3. All the other instances are exactly
the same problems used by Albore, Palacios, and Geffner
(2010). Ultimately, we remove from our comparison both
GRIPPER and the NON-DET-RING domain because none of
the planners was able to solve any instance. We also consider
the new domain TRICKYGRID introduced earlier.

All the experiments have run on an Intel Xeon Gold
6140M CPUs with 2.30 GHz. For each instance we set a cut-
off time of 7200 seconds, and memory was limited to 8 GB.

Comparative Analysis Results. Table 1 reports the num-
ber of instances solved by all the systems under compari-
son, on a per domain basis. As it is possible to observe, only
the techniques that exploit, to some extent, the structure of
the problem, k1k0 and DECO, are able to scale-up over the
instances from BOMB-1-TOILET and BOMB-N-TOILET.
The advantage of coverage of DECO over VANILLA is pro-
nounced even when the decomposition induced by the con-
texts is not prominent. For instance, in both the versions
of BOMB-1-TOILET and BOMB-N-TOILET, DECO scales
much better than VANILLA even though we have only 2
and 5 contexts, respectively (Figure 3). Interestingly, DECO
translation takes the advantage of both a complete approach
and that of an approach that exploits the power of classical
planners. Indeed, it managed to solve all instances of TRAIL
and MOVE-PKG, where instead k1k0 was not able to provide
any solution. Actually k1k0 reports that all these instances
unsolvable, and this can unfortunately be expected because
k1k0 is not complete in general. On the other hand, when
k1k0 solves a problem, it is order of magnitude faster than
all the other systems under comparison. This is evident if we

7This way, our experimental findings depart from what ob-
served by Albore, Palacios, and Geffner (2010). In their exper-
iments (personal communication by Alexandre Albore) all plan-
ners make use of a custom problem representation. More precisely,
MBP is run with its native language, and several domains used by
the k1k0 translation delegate to some handcrafted special action
the reasoning over the uncertain variables.

305

Cpu-Time Iterations Plan Length NFA States
Domain I VANILLA DECO VANILLA DECO VANILLA DECO VANILLA DECO
TRAIL 1 4556.48 568.45 105.00 10.00 149.00 198.00 448.00 162.00
MOVE-PKG 3 775.82 94.42 233.33 96.00 14.33 14.67 103.33 41.67
BOMB-1-TOILET 21 320.49 11.60 93.33 73.33 22.00 22.00 20.00 11.90
BOMB-N-TOILET 14 595.88 20.44 751.07 141.14 15.00 15.00 51.71 12.07
MOUSE-CAT 3 375.16 367.92 0.00 0.00 57.00 57.00 0.00 0.00
TRICKYGRID 4 880.61 40.74 138.75 68.25 40.50 42.00 107.50 66.75

Table 2: Focus on VANILLA and DECO, over intersection of instances solved by both configurations. Column ‘I’ indicates the
number of instances under consideration. All results, for each indicator, are an average of the performance.

Figure 3: BOMB-1-TOILET (left), BOMB-N-TOILET
(right). Instances scale with the number of bombs. We fix to
3 the number of toilets in the multiple toilets instances.

have a look at the survival plot presented in Figure 2, and
the instance by instance analysis over BOMB-1-TOILET and
BOMB-N-TOILET (Figure 3). Interesting is also the compar-
ison between the VANILLA schema and MBP. Indeed, they
seem to scale quite similarly, and to some extent this is also
expected. Both VANILLA and the MBP techniques make few
assumptions on the structure of the problem. Ultimately, Ta-
ble 1 provides information (next to a few domain, in paren-
thesis) on how many instances would be solved by k1k0 with
extra-handcrafted knowledge in the PDDL file. Without that
information, k1k0 does not manage to solve any instance in
those domains.

Our results should be nevertheless be considered with
extremely care. On the one hand, MBP is a much more
general planning system, which handles far beyond only
non-deterministic conformant planning problem. And on the
other hand, the k1k0 is known to be incomplete, so the zero
coverage in several domains are not due to the technique per
se, but to the system that employs it. It would be interesting
to see as a future work, how these three quite different ap-
proaches can be put in harmony in a unified approach aimed
at really getting the best of all these three worlds.

In-Depth: VANILLA vs DECO. Our experimental anal-
ysis concludes with an in-depth look at the performance of
our two translations. In particular, Table 2 reports averaged
performance over those instances that have been solved by
our compilation-based planner with both the VANILLA and
the DECO setting. Obviously we focus on domains where
there is at least one instance solved by both configurations.
As it is possible to observe, the technique that exploits the
decomposition of the automaton through contexts is able to

decrease substantially the number of iterations done by Al-
gorithm 1; this indeed correlates with an average smaller
number of automaton states that are needed to solve the
problem. Less iterations translate in speed-ups up to one or-
der of magnitude. We also notice that the plans are similar,
except for TRAIL where the decomposition leads the plan-
ner to find a plan which is substantially longer. Interesting
are the results for domain MOUSE-CAT. In this domain in
fact, the one-outcome determinisation alone is able to find
the plan at the very first iteration, so there is no need to refine
the automaton and the process can terminate earlier. There-
fore there is no difference between the two techniques.

Conclusion and Discussion
In this paper, we introduce a novel approach to non-
deterministic conformant planning. The main idea of the ap-
proach is to compute candidate plans based on a simplified
(abstracted) domain, and to refine the domain in order to re-
ject the invalid candidate plans. The simplified domains are
classical (i.e., with no uncertainty) so that powerful classical
planners can be used to generate the candidate plans.

The experimental evaluation shows that our approach is
a nice trade-off between two existing types of planners: the
planners that search over the belief space and the planners
that use the structure of the problem.

This approach can be further extended, and we work in
this direction. We have made many decisions that need to be
explored. For instance, we select the one-outcome determin-
isation at random. However, in order to avoid considering
plans that are “obviously” invalid, it would be beneficial to
start with the “worst” possible outcome for the actions. Sim-
ilarly, we presented an operation to incorporate the learnt
information into the planning model (specifically, the adver-
sarial automaton synchronisation); are there better ways to
include this information? For instance, the current operation
create a large number of conditional effects, which limits
the list of heuristics function that can be used. We also used
the forall and exists constructs from PDDL, but these
constructs prevent us from using more recent planning sys-
tems such as LAMA because the pre-processor struggles to
ground the model. It should be possible to bypass this is-
sue, which would give us access to many more heuristics.
Finally, there is the question of finding the “best” counter-
example as suggested by Zhang, Grastien, and Scala (2020),
where the best counter-example is one that makes the plan-
ning task terminate faster.

306

Acknowledgements
We thank the reviewers for their great feedback.

References
Albore, A.; Palacios, H.; and Geffner, H. 2010. Compiling
Uncertainty Away in Non-Deterministic Conformant Plan-
ning. In ECAI, volume 215 of Frontiers in Artificial Intelli-
gence and Applications, 465–470. IOS Press.
Albore, A.; Ramı́rez, M.; and Geffner, H. 2011. Effective
Heuristics and Belief Tracking for Planning with Incomplete
Information. In ICAPS. AAAI.
Bonet, B.; and Geffner, H. 2000. Planning with Incomplete
Information as Heuristic Search in Belief Space. In AIPS,
52–61. AAAI.
Bonet, B.; and Geffner, H. 2014. Belief Tracking for Plan-
ning with Sensing: Width, Complexity and Approximations.
J. Artif. Intell. Res. 50: 923–970. doi:10.1613/jair.4475.
URL https://doi.org/10.1613/jair.4475.
Brafman, R. I.; and Shani, G. 2012. Replanning in Domains
with Partial Information and Sensing Actions. J. Artif. Intell.
Res. 45: 565–600.
Bryant, R. 1986. Graph-based algorithms for Boolean func-
tion manipulation. IEEE Transactions on Computer (TC)
35(8): 677–691.
Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Conformant
planning via symbolic model checking and heuristic search.
Artif. Intell. 159(1-2): 127–206.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-guided abstraction refinement. In
Twelfth International Conference on Computer-Aided Veri-
fication (CAV-00), 154–169.
De Moura, L.; and Bjørner, N. 2008. Z3: An efficient
SMT solver. In International conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, 337–
340. Springer.
Gario, M.; and Micheli, A. 2015. pySMT: a Solver-Agnostic
Library for Fast Prototyping of SMT-Based Algorithms. In
SMT Workshop.
Geffner, T.; and Geffner, H. 2018. Compact Policies for
Fully Observable Non-Deterministic Planning as SAT. In
ICAPS, 88–96. AAAI Press.
Grastien, A.; and Scala, E. 2020. CPCES: A planning
framework to solve conformant planning problems through
a counterexample guided refinement. Artif. Intell. 284:
103271.
Haslum, P.; and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In Fifth
European Conference on Planning (ECP-99), 308–318.
Hoffmann, J.; and Brafman, R. I. 2006. Conformant plan-
ning via heuristic forward search: A new approach. Artif.
Intell. 170(6-7): 507–541.
Hoffmann, J.; and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14: 253–302.

Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In AAAI, 3590–3596. AAAI Press.
Muise, C. J.; Belle, V.; and McIlraith, S. A. 2014.
Computing Contingent Plans via Fully Observable Non-
Deterministic Planning. In AAAI, 2322–2329. AAAI Press.
Nguyen, K.; Tran, V.; Son, T. C.; and Pontelli, E. 2012.
On computing conformant plans using classical planners:
a generate-and-complete approach. In 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-12), 190–198.
Palacios, H.; and Geffner, H. 2007. From conformant into
classical planning: efficient translations that may be com-
plete too. In Seventeenth International Conference on Auto-
mated Planning and Scheduling (ICAPS-07), 264–271.
Patrizi, F.; Lipovetzky, N.; and Geffner, H. 2013. Fair
LTL Synthesis for Non-Deterministic Systems using Strong
Cyclic Planners. In IJCAI, 2343–2349. IJCAI/AAAI.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks. J.
Artif. Intell. Res. 39: 127–177.
Rintanen, J. 2014. Madagascar: Scalable planning with SAT.
Proceedings of the 8th International Planning Competition
(IPC-2014) 21.
Scala, E.; and Torasso, P. 2015. Deordering and Numeric
Macro Actions for Plan Repair. In IJCAI, 1673–1681. AAAI
Press.
Smith, D.; and Weld, D. 1998. Conformant graphplan. In
Fifteenth Conference on Artificial Intelligence (AAAI-98),
889–896.
To, S. T.; Son, T. C.; and Pontelli, E. 2015. A generic ap-
proach to planning in the presence of incomplete informa-
tion: Theory and implementation. Artif. Intell. 227: 1–51.
Torres, J.; and Baier, J. A. 2015. Polynomial-Time Reformu-
lations of LTL Temporally Extended Goals into Final-State
Goals. In IJCAI, 1696–1703. AAAI Press.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
Baseline for Probabilistic Planning. In ICAPS, 352. AAAI.
Zhang, X.; Grastien, A.; and Scala, E. 2020. Computing
Superior Counter-Examples for Conformant Planning. In
Thirty-Fourth AAAI Conference on Artificial Intelligence,
10017–10024. AAAI Press.

307

