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Abstract

Cost partitioning is a general method for admissibly summing
up heuristic estimates for optimal state-space search. Most
cost partitioning algorithms can optimize the resulting cost-
partitioned heuristic for a specific state. Since computing a
new cost-partitioned heuristic for each evaluated state is usu-
ally too expensive in practice, the strongest planners based
on cost partitioning over abstraction heuristics precompute a
set of cost-partitioned heuristics before the search and maxi-
mize over their estimates during the search. This makes state
evaluations very fast, but since there is no better termination
criterion than a time limit, it requires a long precomputation
phase, even for the simplest planning tasks. A prototypical
example for this is the Scorpion planner which computes sat-
urated cost partitionings over abstraction heuristics offline be-
fore the search. Using Scorpion as a case study, we show that
by incrementally extending the set of cost-partitioned heuris-
tics online during the search, we drastically speed up the plan-
ning process and even often solve more tasks.

Introduction and Background
One of the main approaches for solving classical planning
tasks optimally is using the A∗ algorithm (Hart, Nilsson, and
Raphael 1968) with an admissible heuristic (Pearl 1984).
Since a single heuristic usually fails to capture enough de-
tails of the planning task, it is often beneficial to compute
multiple heuristics and to combine their estimates (Holte
et al. 2006). The preferable method for admissibly combin-
ing heuristic estimates is cost partitioning (Haslum, Bonet,
and Geffner 2005; Haslum et al. 2007; Katz and Domshlak
2008, 2010; Pommerening, Röger, and Helmert 2013). By
distributing the original costs among the heuristics, cost par-
titioning makes the sum of heuristic estimates admissible.

Saturated cost partitioning (SCP) is one of the strongest
methods for computing cost partitionings (Seipp, Keller, and
Helmert 2020) and is the main component of the Scorpion
planner (Seipp 2018b). SCP is based on the insight that we
can often evaluate a heuristic under a reduced (action) cost
function without changing any estimates. This notion is cap-
tured by so-called saturated cost functions. A cost function
scf is saturated for a heuristic h, an original cost function
cost and a subset S′ of states in the planning task, if (1)
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Algorithm 1 Compute a saturated cost partitioning over an
ordered sequence of heuristics ω for a cost function cost.

1: function SATURATEDCOSTPARTITIONING(ω, cost)
2: C ← 〈〉
3: for each h ∈ ω do
4: scf← saturateh(cost)
5: append scf to C
6: cost(a)← cost(a)− scf(a) for all actions a
7: return C

scf(a) ≤ cost(a) for each action a and (2) for all states
s ∈ S′ the heuristic estimate by h for s is the same regardless
of whether we evaluate h under cost or scf. For abstraction
heuristics (Helmert, Haslum, and Hoffmann 2007), such as
the ones we consider in the experiments, we can efficiently
compute a unique minimum saturated cost function.

Algorithm 1 shows how the SCP algorithm computes sat-
urated cost functions that form a cost partitioning of a given
cost function cost over an ordered sequence of heuristics ω.
The algorithm starts by computing a saturated cost function
for the first heuristic h in ω (line 4). Afterwards, it itera-
tively subtracts the costs given to h from the original costs
(line 6) and considers the next heuristic until all heuristics
have been treated this way. The sequence of computed satu-
rated cost functions forms the resulting cost partitioning C.
We write hSCP

ω for the cost partitioning heuristic that results
from applying the SCP algorithm to the heuristic order ω.

A saturated cost partitioning can be tailored to a state s
by (1) ordering the heuristics in a way that is favorable for s
(Seipp, Keller, and Helmert 2020), and (2) including s in the
set of states S′ for which we preserve the heuristic estimates,
but otherwise keeping S′ small (Seipp and Helmert 2019).
Since both both of these adjustments are state-of-the-art for
SCP heuristics we use them for all our experiments.1

Offline Diversification of SCP Heuristics Most of the
previous work on the topic precomputes SCPs offline, i.e.,
before the search and then computes the maximum over the
SCP heuristic estimates for a given state during the search.

1In detail, we order the heuristics greedily with the h
stolen scor-

ing function (Seipp, Keller, and Helmert 2020) and use the perim?

saturator (Seipp and Helmert 2019).
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Algorithm 2 Offline diversification. Find a diverse set of
heuristic orders Ω for SCP before the search.

1: function OFFLINEDIVERSIFICATION
2: Ω← ∅
3: Ŝ ← sample 1000 states
4: repeat
5: s← sample state
6: ω← greedy order for s
7: if ∃s′ ∈ Ŝ : hSCP

ω (s′) > supω′∈Ω hSCP
ω′ (s′) then

8: Ω← Ω ∪ {ω}
9: until time spent in function ≥ T

10: return Ω

Algorithm 2 shows the strongest offline SCP algorithm from
the literature (Seipp, Keller, and Helmert 2020). It samples
1000 states Ŝ with random walks (line 3) and then iteratively
samples a new state s (line 5), computes a greedy order ω for
s (line 6) and keeps ω if it is diverse, i.e., hSCP

ω yields a higher
heuristic estimate for any of the samples in Ŝ than all previ-
ously stored orders (lines 7–8). (The supremum of the empty
set is −∞.) The offline diversification procedure stops and
returns the found set of orders Ω after reaching a given time
limit. This last characteristic is the main drawback of the al-
gorithm: the A∗ search can only start after the offline diver-
sification finishes and so far there is no good stopping crite-
rion except for a fixed time limit. Seipp, Keller, and Helmert
(2020) showed that a limit of 1000 seconds leads to solv-
ing the highest number of IPC benchmarks in 30 minutes,
but such a huge time limit obviously bloats the solving time
for many tasks, especially for those that blind search would
solve instantly.

Online Computation of SCP Heuristics Instead of pre-
computing SCP heuristics before the search, we can also
compute them online, i.e., during the search. This approach,
which we call online-all, computes a greedy order and the
corresponding SCP heuristic for each state evaluated dur-
ing the search. By design, online-all can start the A∗ search
immediately and it has access to the states that are actually
evaluated by A∗ and not only to randomly sampled states
like the offline diversification procedure. As a result, the
online-all method has been shown to be the strongest cost
partitioning method for landmark heuristics (Seipp, Keller,
and Helmert 2017). However, computing an SCP over ab-
straction heuristics for each evaluated state slows down the
heuristic evaluation so much that the online variant solves
much fewer tasks than precomputed SCP heuristics (Seipp,
Keller, and Helmert 2020). This kind of result is typical for
optimal classical planning: more work per evaluated state
often results in better estimates but does not outweigh the
slower evaluation speed (e.g., Karpas, Katz, and Markovitch
2011; Seipp, Pommerening, and Helmert 2015).

Online Diversification of SCP Heuristics
In this work, we combine ingredients of the offline and
online-all variants to obtain the benefits of both, i.e., fast

Algorithm 3 Online diversification. Simultaneously diver-
sify a set of orders Ω for SCP and compute the maximum
over all induced SCP heuristic values for a given state s.

1: function COMPUTEHEURISTIC(Ω, s)
2: if SELECT(s) and time spent in function < T then
3: ω← greedy order for s
4: if hSCP

ω (s) > supω∈Ω hSCP
ω (s) then

5: Ω← Ω ∪ {ω}
6: return maxω∈Ω hSCP

ω (s)

solving times and high total coverage. More precisely, we
interleave heuristic diversification and the A∗ search: for a
subset of the evaluated states, we compute a greedy order
and store the corresponding SCP heuristic if it yields a more
accurate estimate for the state at hand than all previously
stored SCP heuristics.

Algorithm 3 shows pseudo-code for the approach, which
adapts the COMPUTEHEURISTIC function used to evaluate
a state. Before COMPUTEHEURISTIC is called for the first
time, we initialize the set of heuristic orders Ω for SCP to be
the empty set.2 When evaluating a state s, we let the state se-
lection function SELECT decide whether to use s for diversi-
fying Ω (line 2). We discuss several state selection functions
below, but all of them select the initial state for diversifi-
cation. If s is selected, we compute a greedy order ω for s
(line 3) and check whether ω induces an SCP heuristic hSCP

ω
with a higher estimate for s than all previously stored or-
ders (line 4). If that is the case, we store ω (line 5). Finally,
we return the maximum heuristic value for s over all SCP
heuristics induced by the stored orders (line 6).

In contrast to offline diversification, this online diversifi-
cation algorithm allows the A∗ search to start immediately.
Also, online diversification can judge the utility of storing an
order based on states that are actually evaluated during the
search instead of basing this decision on randomly sampled
states. Compared to the online-all method, online diversifi-
cation evaluates states much faster.

Time Limit
Even if we compute SCPs for only a subset of evaluated
states, these computations can be very costly. Therefore, we
use a time limit T to ensure that the diversification stops
eventually and only select a state for diversification (line 2) if
the total time spent in COMPUTEHEURISTIC is less than T .
The time limit also allows us to perform two optimizations:
after precomputing all SCP heuristics, we can delete all ab-
stract transition systems, since during the search we only
need the abstraction functions, which map from concrete to
abstract states. Furthermore, for abstractions that never con-
tribute any heuristic information under the set of stored or-
ders, we can even delete the corresponding abstraction func-
tions (Seipp 2018a). While both optimizations often greatly

2Note that we could initialize Ω with a set of orders diversified
offline. However, exploratory experiments showed that this only
has a mild advantage over pure offline and pure online variants, so
we only consider the pure variants here.
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reduce the memory footprint, the latter also speeds up the
heuristic evaluation since we need to map the concrete state
to its abstract counterpart for fewer abstractions.

State Selection Strategies
We now discuss three instantiations of the SELECT function,
i.e., strategies for choosing the states for which to diversify
the set of orders.

Interval The first strategy selects every i-th evaluated state
for a given value of i. The motivation for this strategy is to
distribute the time for diversification across the state space,
in order to select states for diversification that are different
enough from each other to let the corresponding SCP heuris-
tics generalize to many unseen states. Note that for i=1 this
strategy selects all states until hitting the diversification time
limit T . For i=1 and T=∞ the resulting heuristic dominates
the online SCP variant without diversification (online-all),
because both heuristics compute the same SCP heuristic for
the currently evaluated state, but the variant with diversifica-
tion also considers all previously stored orders.

Novelty This strategy makes the notion of “different
states” explicit by building on the concept of novelty
(Lipovetzky and Geffner 2012). Novelty is defined for fac-
tored states spaces, i.e., where each state s is defined by a set
of atoms (atomic propositions) that hold in s. The novelty of
a state s is the size of the smallest conjunction of atoms that
is true in s and false in all states previously evaluated by the
search. For a given value of k, the novelty strategy selects a
state if it has a novelty of at most k.

Bellman The last strategy selects a state s if the maximum
over the currently stored SCP heuristics hSCP

Ω violates the
Bellman optimality equation (1957) for s and its successor
states, i.e., if hSCP

Ω (cost, s) < min
s

a−→s′∈T (hSCP
Ω (cost, s′) +

cost(a)), where T is the set of transitions in the planning
task. Whenever the Bellman optimality equation is violated
for a state s, we know that the current estimate for s is lower
than the true goal distance of s, in which case it seems pru-
dent to select s for diversification.

Experiments
We implemented online diversification for saturated cost
partitioning in the Fast Downward planning system
(Helmert 2006) and used the Downward Lab toolkit (Seipp
et al. 2017) for running experiments on Intel Xeon Silver
4114 processors. Our benchmark set consists of all 1827
tasks without conditional effects from the optimal sequen-
tial tracks of the International Planning Competitions 1998–
2018. We limit time by 30 minutes and memory by 3.5 GiB.
All benchmarks, code and experiment data have been pub-
lished online (Seipp 2021).

For the heuristic set on which SCP operates, we use the
combination of pattern databases found by hill climbing
(Haslum et al. 2007), systematic pattern databases of sizes 1

interval novelty bm

1 10 100 1K 10K 100K 1 2

T=1000s 1152 1157 1157 1157 1159 1156 1153 1158 1146
T=∞ 813 964 1064 1112 1140 1149 1140 1064 1001

T=1000s 596.3 733.5 835.6 892.7 911.5 901.5 853.0 721.8 779.6
T=∞ 571.5 720.5 829.8 890.6 910.5 901.1 851.9 714.2 770.1

Table 1: Coverage (top) and time score (bottom) of different
state selection strategies with and without time limit.

and 2 (Pommerening, Röger, and Helmert 2013) and Carte-
sian abstractions of landmark and goal task decompositions
(Seipp and Helmert 2018). When evaluating a planning al-
gorithm, we focus on its coverage (number of solved tasks)
and its time score (used for the agile track of IPC 2018). The
time score of a planner P for a task that P solves in t sec-
onds is defined as 1 − log(t)

log(1800) . It is 0 if P fails to solve P

within 1800 seconds. The total coverage and time score of a
planner is the sum of its scores over all tasks.

When we diversify the set of orders online, the heuristic
estimate of a state can increase between its generation and
expansion. Since it is slightly preferable to reevaluate states
before expanding them (Seipp 2020), we use this setting in
all experiments below.

Evaluation of State Selection Strategies
In the first experiment, we compare the different instantia-
tions of the SELECT function. Table 1 holds results for the
interval strategy with different intervals, the novelty strat-
egy for k=1 and k=2 and the Bellman strategy (bm). With
a diversification time limit of 1000 seconds, we see that
overall coverage is similar for all interval and novelty vari-
ants (1152–1159 solved tasks) and that the Bellman strat-
egy solves fewer tasks in total than the other strategies. We
obtain the highest total coverage and time score by select-
ing every ten thousandth evaluated state (interval-10K) and
therefore we use this strategy in all other experiments.

Evaluation of Time Limit
Table 1 also confirms that we need a time limit for the online
diversification. For all state selection strategies total cover-
age decreases when the time limit of 1000 seconds for the
diversification is lifted (T=∞). The coverage loss is higher,
the more states we may select for diversification. For exam-
ple, the coverage of the novelty-1 variant only decreases by
13 tasks, because the number of selected states is limited by
the number of atoms A in the planning task. For novelty-2
coverage decreases by 94 tasks, because at most |A|2 states
can be selected.

Offline vs. Online Diversification
We now evaluate different time limits and compare the
resulting algorithms to their offline counterparts. The top
part of Table 2 confirms the result from Seipp, Keller, and
Helmert (2020) that we cannot simply reduce the time for
offline diversification (to 1 or 10 seconds) in order to min-
imize overall runtime, without sacrificing total coverage.
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1s 10s 100s 1000s 1200s 1500s

Coverage offline 1057 1145 1159 1156 1150 1130
online 1102 1136 1155 1159 1157 1146

Time Score offline 794.3 693.4 421.0 87.0 59.4 26.0
online 925.6 934.7 924.1 911.5 912.2 912.1

Table 2: Coverage and time scores for offline and online di-
versification using different time limits for diversification.
The online variants use the interval-10K strategy.
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Figure 1: Number of solved tasks over time.

Offline diversification solves the highest number of tasks
(1159) with a time limit T of 100 seconds and slightly
fewer tasks (1156) with T=1000s. Using lower or higher
time limits leads to solving much fewer tasks. The results
are similar for online diversification, which solves the most
tasks (1159) for T=1000s and slightly fewer tasks (1155 and
1157) for T=100s and T=1200s. Online diversification is
less susceptible to the chosen time limit than offline diver-
sification: while the difference between the maximum and
minimum coverage score for offline diversification is 102
tasks, the corresponding value for online diversification is
only 57 tasks.

Not only does online diversification obtain high coverage
scores, but it also drastically reduces the overall runtime for
many tasks compared to offline diversification. The bottom
part of Table 2 reveals that all time scores of the online vari-
ants are higher than the best time score of all offline variants.
The time score gap between the two variants is 131.3 points
for T=1s and it grows to 886.1 points for T=1500s.

Figure 1 shows the cumulative number of solved tasks
over time by offline and online diversification (with
T=1000s) and the variant that computes an SCP heuristic
for each evaluated state without storing any orders. The lat-
ter variant (online-all) solves the simpler tasks quickly, but
only reaches a total coverage of 766 tasks. The offline vari-
ant achieves a much higher total coverage (1156 tasks), but it
can only start finding solutions after its diversification phase

ended. The online variant with diversification combines the
advantages of the other two approaches and achieves both
short runtimes and high total coverage (1159 tasks). For all
time limits between 1 and 1800 seconds, online diversifi-
cation solves more tasks than offline diversification and the
online-all variant. Also, online-1000s solves 1122 tasks be-
fore offline-1000s even finishes the diversification phase.

Related Work
The work that is most closely related to ours simultane-
ously refines a set of Cartesian abstraction heuristics and a
set of SCP heuristics over them during an A∗ search (Eifler
and Fickert 2018). Whenever the maximum over the SCP
heuristics violates the Bellman optimality equation (1957)
for a state s and its successor states, the authors either re-
fine one of the abstractions until the heuristic estimate for s
increases, merge two abstractions or compute a new greedy
order ω for s (using the h scoring function, Seipp, Keller,
and Helmert 2020) and add hSCP

ω to the set of SCP heuris-
tics. Their strongest algorithm compares favorably against
a version that only refines the abstractions offline and only
computes a single SCP heuristic over them. However, both
the online and the offline version are outperformed by the
version that diversifies a set of SCP heuristics over a fixed
set of Cartesian abstraction heuristics, i.e., the offline SCP
variant we describe in Algorithm 2.

The literature contains additional approaches that im-
prove heuristics online during the search. For example, the
SymBA∗ planner repeatedly switches between a symbolic
forward search and symbolic backward searches in one of
multiple abstractions (Torralba, Linares López, and Borrajo
2016). In the setting of satisficing planning, Fickert and
Hoffmann (2017) refine the hCFF heuristic, an extension
of hFF (Hoffmann and Nebel 2001), during enforced hill-
climbing and greedy best-first searches.

As a final example, Franco and Torralba (2019) interleave
the precomputation of a symbolic abstraction heuristic and
the symbolic search that uses it, by iteratively switching be-
tween the two phases. In each round they double the amount
of time given to each phase. Our work is orthogonal to theirs
since the two approaches focus on interleaving two different
types of precomputation with the search. It will be interest-
ing to investigate whether we can also interleave the decision
which abstractions to build with the search (e.g., patterns for
PDBs), allowing the search to start immediately.

Conclusions
The best previously-known method for computing diverse
SCP heuristics uses a fixed amount of time for sampling
states and computing SCP heuristics for them. It yields
strong heuristics, but needs a long precomputation phase.
Computing an SCP heuristic for each evaluated state yields
even better estimates and needs no precomputation phase,
but it greatly slows down the search. We showed that by
diversifying SCP heuristics online, we can combine the
strengths of both approaches and obtain an algorithm that
needs no sample states nor precomputation phase, evaluates
states quickly and achieves high coverage.
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