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Abstract
The field of bidirectional heuristic search has recently seen
great advances. However, the subject of memory-restricted
bidirectional search has not received recent attention. In this
paper we introduce a general iterative deepening bidirectional
heuristic search algorithm (IDBiHS) that searches simultane-
ously in both directions while controlling the meeting point
of the search frontiers. First, we present the basic variant of
IDBiHS, whose memory is linear in the search depth. We then
add improvements that exploit consistency and front-to-front
heuristics. Next, we move to the case where a fixed amount of
memory is available to store nodes during the search and de-
velop two variants of IDBiHS: (1) A∗+IDBiHS, that starts
with A∗and moves to IDBiHS as soon as memory is ex-
hausted. (2) A variant that stores partial forward frontiers un-
til memory is exhausted and then tries to match each of them
from the backward side. Finally, we experimentally compare
the new algorithms to existing unidirectional and bidirec-
tional ones. In many cases our new algorithms outperform
previous ones in both node expansions and time.

1 Introduction and Overview
Search algorithms can be classified into three main cate-
gories with regards to the amount of memory they consume.

1. Linear memory (LM). An algorithm may only store a
single branch of the search tree (a path), and its memory
consumption is O(d) where d is the depth of the search.

2. Fixed memory (FM). An algorithm is given a fixed
amount of memory M (on top of the memory required
for storing a single path) and must never exceed it. Cases 1
and 2 are denoted hereafter as Restricted Memory (RM).

3. Unrestricted memory (UM). Such algorithms are not re-
stricted and usually use memory proportional to the size
of the search tree that they explored. For example, A∗
(Hart, Nilsson, and Raphael 1968) stores all the nodes
it generates in memory (either in OPEN or in CLOSED),
which could grow polynomially or exponentially with the
search depth. UM algorithms enable duplicate detection,
which can potentially accelerate the search, but they can-
not solve problems when memory is exhausted. There-
fore, numerous RM algorithms have been developed for
unidirectional heuristic search (UniHS).
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In bidirectional heuristic search (BiHS) the search is per-
formed simultaneously from the start and from the goal
until the two search frontiers meet. Significant advance-
ments in BiHS were (recently) achieved in the UM cate-
gory. A novel line of research was initiated with MM (Holte
et al. 2016), a BiHS algorithm that meets in the middle, i.e.
it will never expand a node whose g-value exceeds C∗/2
(where C∗ is the optimal solution cost). Fractional MM
(fMM) (Shaham et al. 2017) is a generalization of MM.
Given a fraction p (0 < p < 1), fMM(p) is guaranteed not
to expand nodes in the forward side whose g-value exceeds
p · C∗, and nodes in the backward side whose g-value ex-
ceeds (1 − p) · C∗ (MM is fMM with p = 1/2). General
Breadth-first Heuristic Search (GBFHS) (Barley et al. 2018)
is a similar algorithm that sets the meeting points between
the frontiers using a parameterized split function that limits
which nodes are expanded from each side.

Nevertheless, unlike UniHS, the work on RM bidirec-
tional search (RMBiS) is very limited (see Section 3.2). The
aim of this paper is to start closing this gap. The main chal-
lenge for RMBiS is connecting the two frontiers, as they
cannot both be fully stored without external memory (Sturte-
vant and Chen 2016). In an attempt to overcome this chal-
lenge, we propose several methods, all of which adapt the
flexible meeting-point approach of fMM and GBFHS.1

We introduce a general iterative deepening bidirectional
heuristic search algorithm (IDBiHS) that searches simulta-
neously from both directions while controlling the meeting
point of the search frontiers. The basic variant of IDBiHS
only stores a single path in memory (LM). It generalizes
IDA∗ (Korf 1985) by running DFS from both search direc-
tions. For every forward frontier node nF , a DFS is exe-
cuted from the backward side in an attempt to find an opti-
mal path to nF . Next, we introduce two new fixed-memory
BiHS algorithms (FM). Our first FM BiHS algorithm gen-
eralizes A∗+IDA* (Bu and Korf 2019) by first running A∗
until M is exhausted. Then, it moves to IDBiHS, where
the forward direction DFS starts from OPEN; this algorithm
is therefore called A∗+IDBiHS. Our second algorithm is
called IDBiHS-Trans. It stores a partial set of forward fron-

1While there are other BiHS algorithms such as NBS (Chen
et al. 2017) and DVCBS (Shperberg et al. 2019), they do not control
the meeting point as needed in our approach.
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tier nodes based on the memory available and tries to match
the entire set with a backward DFS. We study variants and
add improvements to all these algorithms.

Finally, we empirically evaluate all algorithms on several
domains and compare them to existing ones. We show that
IDBiHS outperforms IDA∗ in runtime and node expansions
by up to a factor of 5.3. Furthermore, both A∗+IDBiHS and
IDBiHS-Trans improve upon IDBiHS and outperform exist-
ing FM methods by up to a factor of 3.

2 Definitions and Terminology
A shortest-path problem instance, I , is defined as a n-tuple
(G = (V,E), start, goal, hF , hB), where G is a graph, and
start, goal ∈ V . In the shortest-path problem the aim is to
find the least-cost path (with cost C∗) between start and
goal. UniHS algorithms search forward from start to goal,
while BiHS algorithms interleave two separate searches, a
search forward from start and a search backward from goal
until the search frontiers meet. d(x, y) denotes the shortest
distance between x and y, so d(start, goal) = C∗.

Front-to-end (F2E) algorithms use two heuristic func-
tions, a forward heuristic hF and a backward heuristic hB ,
where for any node u, hF (u) estimates d(u, goal), and
hB(u) estimates d(start, u). The forward heuristic, hF , is
forward admissible iff hF (u) ≤ d(u, goal) for all u in V (of
G) and is forward consistent iff hF (u) ≤ d(u, u′) + hF (u

′)
for all u and u′ in G. The backward heuristic, hB , is de-
fined analogously. Front-to-front (F2F) BiHS algorithms use
heuristics between any pair of states. In particular, h(x, y)
estimates d(x, y) for any pair of states x, y. Finally, fF , and
gF indicate f - and g-costs of nodes in the forward search,
and fB and gB are similarly defined for the backward search.

3 Background
3.1 Restricted Memory UniHS Algorithms
IDA∗ (Korf 1985) is a benchmark LM UniHS algorithm.
IDA∗ iterates on a threshold T , which is a lower-bound on
C∗ (initialized to be fF (start)). At each iteration, IDA∗ per-
forms a DFS from start and prune nodes with f > T . The
minimum f -value of the pruned nodes becomes the T value
of the next iteration. The process repeats until T = C∗ and
IDA∗ finds an optimal solution.

Many enhancements have been proposed for
IDA∗ (Sarkar et al. 1991; Wah and Shang 1994; Burns
and Ruml 2013; Stern et al. 2010; Bu et al. 2014; Sharon,
Felner, and Sturtevant 2014; Hatem, Burns, and Ruml
2018), as well as other LM algorithms such as Dual IDA*
(Zahavi et al. 2008), and IBEX (Helmert et al. 2019). These
algorithms only store a single path and do not utilize the
available memory.

To better utilize the available memory, many FM UniHS
algorithms have been developed. A non-exhaustive list in-
cludes MREC (Sen and Bagchi 1989; Reinefeld and Mars-
land 1994), MA* (Chakrabarti et al. 1989), SMA* (Russell
1992), DBIDA* (Eckerle and Schuierer 1995), FPS (Schütt,
Döbbelin, and Reinefeld 2013), breath-first heuristic search
(Zhou and Hansen 2004) and A∗+IDA* (Bu and Korf 2019).

3.2 Restricted Memory BiHS Algorithms
SFBDS. A notable LM BiHS algorithm is the IDA* vari-
ant of SFBDS (Felner et al. 2010; Lippi, Ernandes, and Fel-
ner 2016). A node in SFBDS is composed of two states, a
forward state and a backward state, and a solution is found
when both states are identical. When expanding a node ei-
ther the forward state is forward expanded or the backward
state is backward expanded. The decision of which state to
expand is determined by a jumping policy. Given a fixed
jumping policy, a tree is induced which can be searched us-
ing any admissible search algorithm. The IDA* variant of
SFBDS applies IDA* on the induced tree to search for solu-
tions. Since in SFBDS a search tree is induced by a jump-
ing policy, when comparing to SFBDS, one should compare
to specific existing jumping policies. The most promising
jumping policy reported (Felner et al. 2010; Lippi, Ernan-
des, and Felner 2016) was the jump if larger policy (JIL(K))
that calculates the forward and backward heuristics after per-
forming a lookahead to depth k. Then, JIL(k) chooses to
expand the side with the larger h-value.

Perimeter Search Algorithms. Perimeter search (Dillen-
burg and Nelson 1994) is a class of FM BiHS algorithms.
First, a perimeter around start or around goal is con-
structed. Then, a DFS is executed from the opposite direc-
tion until the perimeter is reached. Two variants of perimeter
search are BIDA* and BAI which are covered next.

BIDA* (Manzini 1995), assumes a consistent F2F heuris-
tic h(u, v) between any two states and builds a perime-
ter Pd with a depth of d around the goal. BIDA* runs
IDA∗ towards Pd and as a heuristic for a node n it uses
hd(n) = minm∈Pd

(h(n,m) + d(m, goal)). Due to the con-
sistency of the heuristic, BIDA* matches against a rele-
vant nodes list within the perimeter. When a node n is ex-
plored by IDA∗, nodes m within the perimeter for which
d(start, n) + h(n,m) + d(m, goal) > T are removed from
the perimeter when exploring any of n’s children. Therefore,
BIDA* performs fewer heuristic evaluations as the depth of
the search grows.

BAI (Kaindl et al. 1995) builds the perimeter by running
reversed A∗ from the goal and searches towards the perime-
ter by a forward IDA∗. BAI-Trans is a variant of BAI that
allocates some memory to IDA∗ as well, to be used as trans-
position table, as done by Reinefeld and Marsland (1994).
Finally, if the heuristic is consistent, BAI can be enhanced
with the KKMax method from Kaindl and Kainz (1997).
Let fminB be the minimum f -value among all nodes in
the perimeter. Nodes n with gF (n)− hB(n)+ fminB > T
are pruned by IDA∗. This enhancement results in Max-BAI
and Max-BAI-Trans.2

Finally, Wilt and Ruml (2013) proposed a perimeter-
based algorithm that dynamically maintains a perimeter
from the backward side and runs IDA∗ from the forward side
using the KKAdd method from Kaindl and Kainz (1997).

2Kaindl and Kainz (1997) also introduced Max-IDA*, which
runs IDA* (without a perimeter) and switch the search direction ev-
ery time T is increased, to apply the Max method. However, Max-
IDA* was not significantly better than IDA*.
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However, this algorithm increases the size of the perimeter
during the search and is therefore not an RM algorithm.

3.3 The GBFHS Algorithm
General breadth-first heuristic search (GBFHS, Barley et al.
(2018)) is a UM bidirectional heuristic search algorithm that
iteratively increases the depth of the search. For each depth,
denoted by fLim , GBFHS uses a split function (given as a
parameter) that determines how deep to search on each side.
The split function splits fLim to gLimF and gLimB , such
that fLim = gLimF + gLimB + ε − 1, where ε is the min-
imum edge cost (in unit edge cost domains ε − 1 = 0). For
a given iteration (i.e., a given value of fLim) all nodes with
fD(n) ≤ fLim and gD(n) < gLimD are called expandable.
GBFHS expands all the expandable nodes from both direc-
tions. GBFHS terminates if there exists a node n in both
open lists with gF (n) + gB(n) ≤ fLim . Otherwise, fLim is
incremented (a new iteration begins) and the split function
updates either gLimF or gLimB . The frontiers of GBFHS
can be controlled to meet anywhere using a proper split func-
tion. fMM shares this property, as the two algorithms are of-
ten equivalent (Shperberg and Felner 2020). Our algorithms
below adapt this principle of controlling the meeting points.

4 Linear Memory BiHS
We now introduce our new algorithm, iterative-deepening
bidirectional heuristic search, or IDBiHS. We first present
the LM variant and then proceed to FM variants.

IDBiHS uses thresholds similar to those of GBFHS, but
IDBiHS is based on DFS iterations rather than using a best-
first search mechanism through the use of open lists (as in
GBFHS), thus it uses memory linear in the depth (LM).

The pseudo-code of IDBiHS is given in Algorithm 1.
First, fT (the current iteration threshold, identical to fLim
in GBFHS) is initialized as h(start, goal) (line 2). Then, an
iterative process repeats until a solution is found, where each
iteration corresponds to a new fT value (lines 4-8).

In each iteration the task is to find a solution of cost
fT . If such a solution is not found, fT is incremented (us-
ing nextT as described below), and a new iteration begins.
Given fT , the meeting point of the current iteration is ob-
tained by calling the split function which is given to the al-
gorithm as a parameter. The split function determines the
meeting point of the current iteration by setting a forward g-
threshold (gTF ). The split function must be monotonically
non-decreasing over successive iterations and must never re-
turn values greater than fT . Specific split functions that were
used in our experiments are described in Section 7.

4.1 Forward DFS
Once gTF is obtained, a forward DFS procedure (F DFS)
is called from start (lines 9-24). When F DFS encounters a
node nF , it has three cases (line numbers in parentheses):

1. Expand (20-24). If fF (nF ) ≤ fT and gF (nF ) ≤ gTF ,
then expand nF and move to one of its children.

2. Prune (10-12). If fF (nF ) > fT , prune nF and backtrack.

Algorithm 1: pseudo-code for IDBiHS
1 IDBiHS (s,g,h,split,ε)
2 fT , nextT ← h(start, goal)
3 path← ∅
4 while true do
5 gTF ← split(fT )
6 if F DFS(s,g,fT ,gTF ,h,path,nextT ,ε)
7 return path
8 fT ← nextT

9 F DFS (nF ,g,fT ,gTF ,h,path,nextT ,ε)
10 if fF (nF ) > fT
11 updateNextBound(nextT ,fF (nF ),fT )
12 return false

13 if gF (nF ) > gTF

14 b path← ∅
15 gTB ← fT − gF (nF )− ε
16 if B DFS(nF ,g,fT ,gTB ,h,b path,nextT )
17 path← path · b path.reverse
18 return true

19 return false

20 foreach neighbour n of nF do
21 path.push(state(nF ))
22 if F DFS(n,g,fT ,gTF ,h,path,nextT ,ε)
23 return true

24 path.pop()

25 B DFS (nF ,nB ,fT ,gTB ,h,b Path,nextT )
26 if state(nB) = state(nF ) and gF (nF )+ gB(nB) ≤ fT
27 return true

28 if fB(nB) > fT or gB(nB) > gTB

29 updateNextBound(nextT ,max(fB(nB), gF (nF ) +
gB(nB) + ε),fT )

30 return false

31 foreach neighbour n of nB do
32 b Path.push(state(nB))
33 if B DFS(nF ,n,fT ,gTB ,h,bPath,nextB)
34 return true
35 else
36 b Path.pop()

37 updateNextBound (nextT ,f ,fT )
38 if f > fT
39 nextT ← min(nextT, f)

3. Suspend and Match (13-18). If fF (nF ) ≤ fT and
gF (nF ) > gTF , suspend F DFS and call the backward
DFS (B DFS) in an attempt to match nF from the back-
ward side. As illustrated in Figure 1a, B DFS is called for
every forward frontier node nF until either a solution is
found or all forward frontier nodes have been explored.

When calling B DFS on candidate nodes nF , the g-
threshold for the backward direction (gTB ) needs to be de-
fined. Unlike GBFHS, where gLimB is known given fLim
and gLimF (gLimB = fLim − gLimF − 1 + ε), in IDBiHS
gTB is defined specifically for each node nF to be matched.
For example, assume that fT = 10, gTF = 5 and ε = 1.
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Figure 1: Illustration of all IDBiHS variants

Further assume that F DFS found a node nF to be matched
with fF (nF ) ≤ 10 and gF (nF ) = 7 > 5. Then B DFS
needs only to expand nodes up depth 2 (gTB= 2), thus gen-
erating nodes with cost 3 and matching nF . However, if
gF (nF ) = 6, then nodes whose gB = 3 also need to be
expanded (gTB= 3). This example shows that different gTB

values can be defined for the same fT and gTF . Hence, we
define: gTB (nF ) = fT − gF (nF )− ε (line 15).

4.2 Backwards DFS
Upon reaching a candidate meeting node nF in F DFS and
setting gTB , B DFS performs a DFS iteration from goal
(lines 25-36). When B DFS encounters a node nB , it has
three options (line numbers in parentheses):

1. Expand (31-36). If fB(nB) ≤ fT and gB(nB) ≤ gTB ,
then expand nB and move to one of its children.

2. Prune (28-30). If fB(nB)> fT , prune nB and backtrack.

3. Match (26-27). If fB(nB) ≤ fT and gB(nB) > gTB ,
match nF against nB . If they represent the same state, a
solution has been found. Otherwise, nB can be immedi-
ately pruned. 3

After B DFS finishes without matching nF , B DFS returns
false and F DFS resumes by backtracking from nF . Note
that in every iteration F DFS is called once, while B DFS is
called many times, once for each frontier node.

As soon as all forward paths have been explored by
F DFS and no solution has been found, F DFS returns false
and a new iteration begins. Finally, the minimum f -value
among all nodes pruned (from either direction) with f >
fT is a lower-bound on the cost of any solution that goes
through them. Moreover, solutions that go through nodes
nB , that were pruned due to their g-value in an attempt
to match a forward node nF , are bounded by gF (nF ) +
gB(nB) + ε. Therefore, next f -threshold is updated to be
the minimum between all bounds (line 8).

4.3 Theoretical Analysis of IDBiHS
We now show that IDBiHS returns optimal solutions.

Lemma 1. IDBiHS is guaranteed to return an optimal so-
lution when given admissible heuristics.

3When ε = 0 nodes with gB(nB) = gTB should also be
matched against nF , but should not be pruned.

Proof. First, observe that IDBiHS cannot terminate before a
solution of cost fT is found (while true loop at line 4) and
that at every iteration of the while loop, fT is incremented.
Assume by contradiction that IDBiHS did not find an op-
timal solution when fT = C∗. When fT = C∗, IDBiHS
considers for expansion all nodes u, with fF (u) ≤ C∗

and gF (u) ≤ gTF . Assume that a node u belongs to an
optimal path start, . . . , u, v, w, . . . , goal, and that u is the
last node in the path such that d(start, u) ≤ gTF . If the
heuristic is admissible, the f -value of every node in the
path cannot exceed C∗, therefore fF (u) ≤ C∗. Thus, the
forward direction expands u and the backward search at-
tempts to match v. Then, all nodes n′ with fB(n′) ≤ C∗

and gB(n′) ≤ C∗ − gF (v) − ε are considered for expan-
sion by the backward search. Since v is on an optimal path,
gB(v) = C∗ − gF (v). In addition, fT = C∗. Since (v, w)
is an edge in the search graph, we know that d(v, w) ≤ ε,
and therefore gB(w) ≤ gB(v)− ε. Moreover, due to admis-
sibility, fB(w) ≤ C∗, thus w fulfills both conditions, and is
expanded by the backward search. Then, v is matched, and
an optimal solution is found, a contradiction.

In exponential unit edge cost domains where no heuristic
is available, IDBiHS will generate b(gTF ) forward frontier
nodes for each iteration (fT ), where b is the branching factor.
For every forward frontier node, B DFS expands all nodes
up to depth gTB . Since we consider unit edge cost problems,
ε = 1 and gF (nF ) = gTF + 1 for every node nF searched
for by the backward search. Thus,

gTB = fT − gF (nF )− ε = fT − gTF (1)

This means that for every iteration, IDBiHS expands
b(gTF ) · b(gTB ) = b(gTF ) · b(fT−gTF ) = b(fT ) nodes,
similar to IDA∗. However, IDBiHS has worse performance
in polynomial unit edge cost problems in which no heuris-
tic is available. Assume that the number of expansions per-
formed by a DFS up to depth d is bounded by dC for some
constant C. Therefore, IDA∗ will perform (fT )C expan-
sions for each threshold fT . By contrast, IDBiHS expands
(gTF )

C · (fT − gTF )
C nodes. For example, in a meet-

in-the-middle policy where gTF = fT/2, IDBiHS expands
(fT/2)2C nodes, significantly more than the fTC nodes ex-
panded by IDA∗. Nonetheless, we show that when a heuris-
tic is available, IDBiHS can often outperform IDA∗ when
applying the improvements described next.
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H F2F (Imp1) / Consistency (Imp2)
None Imp1 Imp2 Both

G 10,767 85 3,728 85
G-1 8,808,663 6,571 110,171 3,417
G-2 597,465,611 218,698 5,891,237 75,205
G-3 7,699,462,563 8,272,225 139,889,666 1,540,325

Table 1: Node expansions with and without imp1 and imp2

5 Improving IDBiHS
The basic variant of IDBiHS can be further improved.
Improvement 1 (Imp1): If a front-to-front (F2F) heuristic
is available, B DFS can use it. In particular, given a for-
ward frontier node nF , when B DFS reaches a backward
node nB the heuristic between nF and nB can be used.
Thus, fB(nB) in line 28 can be computed as gB(nB) +
h(nB , nF ) + gF (nF ).
Improvement 2 (Imp2): If the heuristic is known to be con-
sistent then another improvement is possible. Kaindl and
Kainz (1997) defined DiffF (nF ) = gF (nF )− hB(nF ), and
DiffB(nB) = gB(nB) − hF (nB), corresponding to the er-
ror of hB(nF ) and hF (nB) respectively. When trying to
connect a node nB generated by B DFS to a given for-
ward frontier node nF , it holds that fB(nB)+DiffF (nF ) ≤
d(nB , start) and that DiffB(nB) ≤ d(nB , goal). There-
fore, the maximum of fB(nB) + DiffF (nF ) and fF (nF ) +
DiffB(nB) can be used instead of fB(nB) to improve the
pruning (line 28). 4

Since Imp1 and Imp2 are orthogonal, they can be com-
bined if h is known to be both F2F and consistent.

5.1 Improvements Evaluation
We evaluated the effectiveness of these improvements over
the original IDBiHS (given a meet-in-the-middle split pol-
icy) on the Pancake Puzzle with n pancakes (P[n]). We
used the the GAP (G) heuristic (Helmert 2010). In addi-
tion, to get a range of heuristic strengths, we also used the
G-k heuristics (for k ∈ {1, 2, 3}) where the k smallest
pancakes are deleted from the GAP heuristic computation
(Holte et al. 2016). For each combination of n and k, we
used 100 random problems. The results are reported in Ta-
ble 1, which presents the the average number of nodes ex-
panded by IDBiHS for n = 12 pancakes. The results show
that applying either Imp1 or Imp2 speeds up the search by
up to a factor of 2,700 in terms of node expansions (See G-2
and Imp1) and by up to a factor 2,000 in terms of run-time
compared to the basic variant. This difference becomes more
significant as the heuristic deteriorates. However, combining
both Imp1 and Imp2 has a diminishing effect. For GAP, it
didn’t contribute at all (85 for Imp1 and for both), while for
GAP-3 using both improvements further reduced the num-
ber of expansions by a factor of 5.

In terms of runtime, IDBiHS is very efficient and has an
overhead similar to IDA∗. Imp1 runtime depends on the dif-
ficulty of obtaining a heuristic estimation between nodes.

4Shaham et al. (2018) used similar ideas to define must-expand
pairs for BiHS algorithms that assume heuristic consistency.

For example, in GAP-k, Manhattan distance (MD), and pat-
tern databases (PDBs) (Culberson and Schaeffer 1998) on
permutation problems such as Rubik’s cube, there is no ad-
ditional overhead for using F2F heuristic over F2E heuris-
tic. However, using PDBs on the sliding-tile puzzle (STP)
for F2F heuristics requires more memory and several more
heuristic evaluations for each F2E evaluation due to the
asymmetry introduced by the blank (Zahavi et al. 2008). For
some problems (e.g., 4-peg Towers of Hanoi), it is not clear
how to create efficient F2F heuristics and Imp1 is not appli-
cable. Applying Imp2 requires two additional heuristic eval-
uations for each backward frontier node. When combining
Imp1 and Imp2, the overhead from these extra evaluations
is not significant, as most nodes are pruned by Imp1 and
Imp2 is rarely applied. For example, the average runtime
(seconds) in G-3 when using only Imp1 was 4.8 compared
to 1.14 when using both improvements (x5.4 fewer node ex-
pansions and x4.2 less time).

The trends reported above are also evident when evalu-
ating Imp1 and Imp2 on other domains (the domains used
in in Section 7). Based on all this, it is certainly worthwhile
to apply both improvements whenever possible. Therefore,
only IDBiHS with both improvements is further evaluated
and compared to other algorithms in Section 7.

6 Allowing Additional Memory
IDBiHS and its suggested improvements use memory linear
in C∗. We now introduce two FM variants of IDBiHS.

6.1 A∗+IDBiHS
The first algorithm, A∗+IDBiHS (illustrated in Figure 1b),
is a variation of IDBiHS inspired by A∗+IDA* (Bu and
Korf 2019). Given a memory budgetM , A∗+IDA* first runs
A∗ until either a solution is found, or the memory used by
A∗ exceeds M . Then, it continues by running IDA∗ start-
ing from the OPEN nodes, denoted hereafter as NF . Simi-
larly, A∗+IDBiHS executes A∗ from start until it runs out
of memory. Then, IDBiHS is executed sequentially from the
nodes in NF as follows. fT is initialized to be the mini-
mal f -value in NF . Next, F DFS is executed on all nodes
n ∈ NF for which fF (n) = fT in increasing order of h-
values (the same ordering used by A∗+IDA*). For each ex-
ecution of F DFS starting from a node n ∈ NF , the next
threshold variable (nextT ) is initialized to be fT and is up-
dated during F DFS as explained above. Then, once F DFS
fails to find an optimal solution from n, h(n) is updated to
be the current nextT − g(n).

Imp1 and Imp2 can also be applied to the IDBiHS
searches in A∗+IDBiHS. In addition, F DFS can employ
duplicate-detection (DD) and prune duplicate nodes that al-
ready appear in the closed list of A∗ or in NF . However,
DD induces additional overhead, as it requires computing
hash functions for states, which can be expensive. Nonethe-
less, DD improved the performance of A∗+IDBiHS and was
therefore used in the experiments reported in Section 7.

Note that IDBiHS can also be bootstrapped using GBFHS
instead of A∗. The available memory is split between the
two sides. But, doing this will weaken the strength of Imp1.

335



Assume that IDBiHS is bootstrapped by a BiHS, and that
NF , NB are the forward and backward nodes in OPEN, re-
spectively, after memory was exhausted. Now, F DFS is exe-
cuted from each node inNF , and when a frontier node nF is
discovered, B DFS must match nF to every node in NB . In
practice, most nodes inNB are pruned right away, since their
F2F heuristic to nF makes their f -value exceed fT . Thus,
B DFS iterations from such nodes are initiated and halt right
away. In contrast, a B DFS from goal (e.g., IDBiHS and
A∗+IDBiHS) prunes common ancestors of these nodes with-
out the need to visit them. While the unnecessary iterations
over the nodes in NB do not require additional node expan-
sions, they consume a significant amount of time. In fact,
we experimented with first running MM and then moving to
IDBiHS when the memory budget is exhausted. Indeed, this
algorithm required fewer node expansions than A∗+IDA*
and A∗+IDBiHS, but it had a much larger runtime.

6.2 IDBiHS-Trans
We now introduce IDBiHS-Trans, a variant of IDBiHS
that uses a transposition table to store nodes (illustrated
in Figure 1c). While A∗+IDA* stores nodes near start to
minimize the number of duplicate nodes on lower depths,
IDBiHS-Trans stores frontier nodes in order to match
against multiple nodes at once, and thus calling B DFS
fewer times (from the other frontier). In particular, if the
available memory is sufficient to storeK frontier nodes, then
the number of B DFS calls will be reduced by a factor ofK.
The pseudo-code of IDBiHS-Trans is very similar to basic
IDBiHS (Algorithm 1), with a few small differences. Instead
of calling B DFS on line 16, in an attempt to match nF (a
forward frontier node), nF is inserted into a transposition ta-
ble. B DFS is called only when the transposition table is full.
Then, instead of matching against a single forward frontier
node, B DFS tries to match any of the nodes of the transpo-
sition table at once. If a solution was not found by B DFS,
the transposition table is discarded and F DFS resumes.

Finally, Imp1 and Imp2 can be applied to IDBiHS-Trans.
However, while Imp2 can be efficiently computed by using
the minimal DiffF (k) value among all nodes k ∈ K, Imp1
is costly as F2F heuristic evaluation needs to be performed
against each one of the K forward frontier nodes. There-
fore, imp1 makes each B DFS more expensive. Nonethe-
less, given a consistent heuristic, BIDA*’s method of saving
heuristic evaluations can be applied (see Section 3). Specifi-
cally, when B BFS considers a node nB , every node k ∈ K
for which gF (k) + h(k, nB) + gB(nB) > fT can be dis-
carded when calling B BFS on children of nB .5

7 Empirical Evaluation
We performed experiments on three domains: (1) The Pan-
cake Puzzle as described in Section 5.1. (2) The standard

5Alternatively, F2E search bounds (Alcázar, Riddle, and Bar-
ley 2020) such as KKMax, KKAdd (Kaindl and Kainz 1997), and
the b search bounds (Sadhukhan 2012) can be used instead of F2F
heuristic evaluations (Imp1) against every node in K. Naturally,
these search bounds may be faster to compute than imp1 but they
have a weaker pruning power.

100 instances of the 15 puzzle (STP) problem (Korf 1985)
using the MD heuristic. (3) 8-Grid-based pathfinding us-
ing the octile heuristic: 16 brc maps from Dragon Age Ori-
gins (DAO) with canonical ordering (Sturtevant 2012), each
with 350 different start and goal points (a total of 5,600 in-
stances). The edge cost of diagonal moves is 1.5. In all of
these domains ε = 1. Note that all of the above heuristic are
consistent and can be used both as F2E and F2F.

All experiments were run on a machine with an AMD
Ryzen 9 3900X CPU, on a single core and a 64GB RAM.

Our implementation is integrated into HOG2, a well-
known, open-source, search platform. HOG2 implements
common domains, heuristics and algorithms, and is used in
numerous papers by many authors.6

7.1 Comparison of LM Algorithms
First, we compare the following LM algorithms: IDA∗, SF-
BDS with JIL(1) as a jumping policy,7 and IDBiHS. IDBiHS
was evaluated using two different split policies. The first
policy, denoted as IDBiHS-0.5 splits each fT in the mid-
dle (gTF = (fT/2)− ε). The second policy was inspired by
Pohls cardinallity criterion (Pohl 1971; Barley et al. 2018).
The idea is to balance the workload (BW) between the
two frontiers. IDBiHS-BW counts the number of nodes ex-
panded in the previous iteration in the forward search, and
those expanded in the backward search, and increments the
g-threshold of the direction that expanded fewer nodes. The
increment is the difference between the next iteration’s fT
and the current iteration’s fT . In IDBiHS this means either
increasing gTF or leaving gTF unchanged, which will auto-
matically cause gTB to increase, since fT is increased. We
also experimented with a policy that considers the number
of pruned nodes, but the results were similar to that of the
BW split function.

Table 2 presents the averages number of node expansions
before finding an optimal solution and the runtime for the
LM algorithms. The task of finding an optimal solution is
composed of two sub-tasks: finding a solution, and prov-
ing its optimality. In order to measure the effort invested in
each of these two sub-tasks, we also report, in parenthesis
next to the node expansions, what percentage of the over-
all expansions was performed in the last C-layer (i.e. after
the algorithm proved that there is no solution of cost less
than C∗). For reference, we also provide results in the “Best
UM” column for the best among the results of A∗, reverse-
A∗ (A∗ from goal to start) and MM. We used these algo-
rithms because they are well-known and simple. In addition,
they naturally bound the number of nodes expansions of our
methods. A∗ bounds IDA∗ (and other algorithms that use
IDA∗ iterations), reverse-A∗ bounds the effort of building
the perimeter, and MM bounds IDBiHS with a meet-in-the-

6https://github.com/nathansttt/hog2. HOG2 is a general plat-
form, thus, low-level and domain specific optimization tricks (.e.g.,
see (Burns et al. 2012)) that speedup the CPU overhead are not al-
ways implemented. However, the timing trends reported below will
likely apply for more optimized and/or domain specific solvers.

7We also tried using a lookahead of 2, but the runtime overhead
was too great and many problems timed-out without solution.
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Domain H
Expanded Time(sec)

Best IDA* SFBDS IDBiHS IDBiHS Best IDA* SFBDS IDBiHS IDBiHS
UM JIL(1) 0.5 BW UM JIL(1) 0.5 BW

P[10]

G 21(63%) 32(72%) 72(76%) 31 (72%) 31 (72%) 0.00 0.00 0.00 0.00 0.00
G-1 371(13%) 1,674(58%) 2,068(60%) 650(57%) 538 (60%) 0.00 0.00 0.00 0.00 0.00
G-2 2,054 (9%) 43,571(54%) 38,289(56%) 10,178(57%) 9,845(57%) 0.00 0.02 0.02 0.01 0.01
G-3 3,369 (4%) 549,522(53%) 511,224(55%) 132,910(56%) 118,407(55%) 0.01 0.25 0.28 0.07 0.07

P[12]

G 34(57%) 95(76%) 169(79%) 85(76%) 83 (77%) 0.00 0.00 0.00 0.00
G-1 1,256(14%) 9,665(72%) 8,622(74%) 3,417(70%) 2,857(72%) 0.00 0.01 0.01 0.00 0.00
G-2 13,089(10%) 383,488(68%) 205,469(71%) 75,205(70%) 72,939(72%) 0.04 0.25 0.15 0.06 0.05
G-3 38,545 (6%) 8,601,396(66%) 4,161,889(69%) 1,540,325(71%) 1,390,806(69%) 0.13 5.44 2.90 1.14 1.03

P[45] G 45,822(50%) 140,574(79%) 184,809(74%) 128,912(78%) 127,743(78%) 2.32 0.94 1.25 0.85 0.84
STP MD 8,143,628 (2%) 242,460,834(50%) 139,225,772(46%) 174,414,968(40%) 137,331,587(48%) 24.76 47.85 35.90 36.44 29.29
Grid Octile 383(70%) 47,060 (75%) 131,488(78%) 210,353(78%) 122,304(79%) 0.00 0.00 0.01 0.01 0.01

Table 2: Average node expansions and runtime of linear-memory algorithms

middle policy.8 Best UM should not be directly compared
against the LM algorithms, but rather be used for estimating
the performance loss from restricting the memory.

IDBiHS-BW is the best algorithm across all exponential
domains. It outperforms IDA∗, both in node expansions and
time, by up to a factor of 5.3 and SFBDS by up to a fac-
tor of 4. The improvement is more significant for weaker
heuristics. The runtime of IDBiHS-0.5 is slightly higher than
that of IDBiHS-BW, but is still competitive, inferior only
to SFBDS in STP. However, as the theoretical analysis sug-
gests (Section 4.3) IDBiHS is outperformed by IDA∗ in the
polynomial domain (Grid). Finally, the percentage of nodes
expanded in the last C-layer is proportional to the heuristic
strength. While for the UM algorithms most of the node ex-
pansions are usually performed before the last C-layer, for
the LM algorithms most of the node expansions are per-
formed in the last layer. For example, the entire last iteration
of IDA∗ (from the root and onward) is performed after no
solution was found with a smaller cost. Nonetheless, there is
no significant different between the different LM algorithms
in terms of the relative effort invested in the last C-layer.

7.2 Comparison of FM Algorithms
Table 3 presents results for FM algorithms. In order to con-
sider meaningful amounts of memory, we used a mem-
ory budget proportional to the number of states stored by
the Best UM algorithm (denoted by S). Specifically, we
used C · S, where C ∈ {50%, 10%, 1%}. In most cases,
IDBiHS-Trans requires the fewest expansions. However,
it has a large runtime overhead per node. Nonetheless,
IDBiHS-Trans achieved the fastest runtime in STP. Max-
BAI performed well, achieving the fastest runtime and the
least number of node expansions in GAP-1 through GAP-3,
when having 50% memory. However, its performance dete-
riorated the most when less memory was available. By con-
trast, A∗+IDBiHS uses less overhead per node, and therefore
is often the fastest algorithm. We also compared to Max-
BAI-Trans with different ratios between memory used for
the perimeter and for the transposition table, but the results

8Note that “Best UM” is not the best possible unrestricted mem-
ory algorithm, as there are other sophisticated algorithms which
may be better than the ones we used (see for example Alcázar, Rid-
dle, and Barley (2020)).

were similar to those of Max-BAI and are not reported.
All fixed memory algorithms experience a trade-off. Hav-

ing more memory often results in fewer node expansions.
However, more memory results in a larger overhead per
node due to the cost of maintaining the required data-
structures. For example, in STP, Max-BAI runs almost
4 times slower per node with 50% memory than with
10% memory. IDBiHS-Trans also demonstrates an anomaly,
where using more memory result in more node expansions
and the percentage of nodes expanded in the last C-layer is
higher. The reason behind this anomaly is that forward fron-
tier nodes are stored and matched by B DFS only after the
available memory is full. In the worst case scenario, an op-
timal solution can be found by matching only the first for-
ward frontier node, but this node will only be matched once
memory is filled by many other forward nodes. Thus, less
memory ensures that fewer forward nodes are expanded. On
the other hand, more memory causes fewer B DFS execu-
tions, and thus fewer backward nodes are expanded. There-
fore, the task of choosing how much memory to allocate is
not trivial for any algorithm, especially for IDBiHS-Trans.
Nonetheless, in most cases, it is more beneficial to use avail-
able memory than to not use memory at all (LM). In fact,
IDBiHS-Trans has managed to run 2.7 times faster than the
best UM algorithm (best among A∗, reverse-A∗, and MM) in
STP. This improvement is partially due to the smaller over-
head per node and partially due to less overall node expan-
sions resulting from using consistency and the F2F heuristic.

8 Conclusions and Future Work
This paper presents IDBiHS, a general BiHS algorithm for
memory-restricted algorithms. We started by introducing the
basic variant which uses linear-memory. Then, we moved
to fixed-memory algorithms and developed A∗+IDBiHS,
which bootstrap the search using A∗, and IDBiHS-Trans,
that uses a transposition table to store frontier nodes. An em-
pirical evaluation suggests that our new methods often out-
perform existing methods in exponential domain, especially
when given weaker heuristics. Nonetheless, all IDBiHS vari-
ants do not perform as well in polynomial domains. In addi-
tion, when the available memory is significantly large, both
FM variants of IDBiHS can run slower and sometimes even
expand more nodes than when using less memory. To over-
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Domain H Mem
Expanded Time(sec)

Max- BIDA* A*+ A*+ IDBiHS- Max- BIDA* A*+ A*+ IDBiHS-
BAI IDA* IDBiHS Trans BAI IDA* IDBiHS Trans

P[12]

G
50% 84(74%) 69(68%) 40(65%) 36 (73%) 125(90%) 0.00 0.00 0.00 0.00 0.00
10% 84(78%) 75(78%) 56(75%) 48 (77%) 65(82%) 0.00 0.00 0.00 0.00 0.00
1% 93(76%) 96(75%) 62(78%) 54 (75%) 59(78%) 0.00 0.00 0.00 0.00 0.00

G-1
50% 858 (47%) 2,742(43%) 932(44%) 1,129(64%) 1,630(68%) 0.00 0.00 0.00 0.00 0.00
10% 2,987(80%) 950 (72%) 3,435(75%) 1,021(69%) 998(64%) 0.00 0.00 0.00 0.00 0.00
1% 5,525(80%) 3,854(81%) 4,607(77%) 1,345(70%) 1,203(67%) 0.00 0.00 0.00 0.00 0.00

G-2
50% 20,662(62%) 16,654(50%) 96,891(55%) 18,041(61%) 8,243(74%) 0.03 0.12 0.09 0.06 0.05
10% 45,113(83%) 16,352(66%) 135,907(80%) 21,509(65%) 6,670(67%) 0.04 0.10 0.09 0.03 0.05
1% 113,607(79%) 27,665(74%) 207,447(82%) 31,866(70%) 11,924(74%) 0.09 0.08 0.25 0.03 0.06

G-3
50% 223,490(78%) 130,167(60%) 2,259,163(80%) 289,218(72%) 35,915(67%) 0.26 1.96 1.58 0.43 0.70
10% 578,231(79%) 212,442(68%) 3,293,269(75%) 381,136(71%) 41,020(68%) 0.51 2.01 2.13 0.36 0.81
1% 1,631,356(75%) 318,838(68%) 4,910,121(74%) 622,505(68%) 104,516(72%) 1.35 1.71 3.10 0.50 0.91

P[45] G
50% 145,410(74%) 97,663(63%) 108,176(65%) 87,563 (72%) 634,304(93%) 1.99 1.74 2.56 1.61 4.92
10% 134,226(78%) 128,601(75%) 144,863(67%) 120,340(73%) 412,355(81%) 1.10 1.01 1.32 0.87 2.97
1% 161,791(79%) 162,385(77%) 170,279(65%) 143,120(75%) 128,204(77%) 0.95 1.00 1.54 0.84 1.66

STP MD
50% 7,998,667(46%) 7,654,126(40%) 38,347,881(65%) 15,489,868(42%) 4,738,575(50%) 20.83 29.16 27.94 24.02 11.69
10% 13,804,939(64%) 5,183,115(51%) 71,470,823(74%) 24,322,900(41%) 4,447,875(47%) 9.50 13.17 17.04 12.22 8.79
1% 55,391,222(66%) 6,026,913(56%) 118,002,945(68%) 46,075,139(39%) 3,941,356(35%) 24.83 13.18 23.41 13.59 9.08

Grid Octile
50% 8,362(75%) 14,911(78%) 16,503(72%) 19,880(76%) 12,833(78%) 0.00 0.00 0.00 0.00 0.00
10% 31,439(76%) 36,417(77%) 42,914(74%) 55,964(75%) 14,388(78%) 0.00 0.00 0.00 0.00 0.00
1% 45,826(75%) 46,632(79%) 46,518(74%) 106,818(77%) 40,545(76%) 0.00 0.00 0.00 0.01 0.00

Table 3: Average node expansions and runtime of fixed-memory algorithms

come these limitations, we propose to continue the research
in the following directions:

(1) Different hybrids of A∗+IDBiHS and IDBiHS-Trans.
While a large memory budget can deteriorate the perfor-
mance of each of these algorithms individually, a combina-
tion of both algorithms might be better at utilizing the avail-
able memory and improve the perfromance. Instead of using
all available memory either on A∗ or on a transposition table,
we propose to use a portion of the memory on each.

(2) Storing Frontier Nodes in Bloom-filters. A Bloom fil-
ter (Bloom 1970) is a space-bounded data structure that
stores a set of elements, and can answer a query of whether
an element is a member of a set. We propose to modify
IDBiHS-Trans to store all frontier nodes nodes in a Bloom-
filter instead of storing some of them in a transposition table.
Bloom-filters membership queries can return false-positive,
but not false-negative. Therefore, when using Bloom-filters,
states that are matched by B DFS were not necessarily
generated by the forward search. But, states that were not
matched cannot possibly lead to a solution with a cost of
fT . Thus, only nodes matched by the backward search need
to be stored as potential meeting points, for further matching
by the forward side. The hope is that the additional overhead
induced by the false-positives will be lower than the one in-
duced by the iterations on many forward frontier partial lists.

(3) Improving RMBiS in Polynomial Domains. IBEX is
an LM algorithm (Helmert et al. 2019) that improves on
IDA∗ in polynomial domains. The number of states that
IDA∗ expands in polynomial domains is bounded byO(n2),
where n is the number of states within the final thresh-
old, while IBEX is bounded only by O(n logC∗). IBEX
achieves this asymptotic improvement over IDA∗ by in-
creasing the f -threshold in an aggressive way (based on
ideas from exponential search and binary search). We be-
lieve that the same ideas can be also incorporated into RM-

BiS algorithms.
(4) Adapting more algorithms. Here we considered algo-
rithms that control the meeting point of the two frontiers.
It would be valuable to try to adapt other recent BiHS al-
gorithms that do not control the meeting point (such as
NBS (Chen et al. 2017), DVCBS (Shperberg et al. 2019),
or BEA* (Alcázar, Riddle, and Barley 2020)) to the RM set-
ting.
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