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Abstract

Width-based search algorithms seek plans by prioritizing
states according to a suitably defined measure of novelty, that
maps states into a set of novelty categories. Space and time
complexity to evaluate state novelty is known to be exponen-
tial on the cardinality of the set. We present novel methods
to obtain polynomial approximations of novelty and width-
based search. First, we approximate novelty computation via
random sampling and Bloom filters, reducing the runtime
and memory footprint. Second, we approximate the best-first
search using an adaptive policy that decides whether to forgo
the expansion of nodes in the open list. These two techniques
are integrated into existing width-based algorithms, resulting
in new planners that perform significantly better than other
state-of-the-art planners over benchmarks from the Interna-
tional Planning Competitions.

1 Introduction
Autonomous systems operating on the edge of computer
networks or that only have occasional, sporadic access to
vast, centralized computing resources require decision mak-
ing algorithms that work under those conditions. Not only
low response times are required to seek courses of action
that are safe and effective, but also the memory available
for such computation is limited. The need to adapt exist-
ing heuristic search algorithms such as A* to deal with time
and space restrictions was recognized early on (Chakrabati
et al. 1989) and followed-up recently (Vadlamudi, Aine, and
Chakrabarti 2011; Dionne, Thayer, and Ruml 2012).

In this paper we look at width-based search meth-
ods (Lipovetzky and Geffner 2012), a family of algorithms
that rely on heuristics that measure the novelty of a state,
comparing its information content with that of states visited
in the past. Originally developed in the context of classical
planning (Geffner and Bonet 2013), when combined with
other heuristics (Bonet and Geffner 2001; Hoffmann, Por-
teous, and Sebastia 2004; Lipovetzky and Geffner 2017a;
Katz et al. 2017), width-based planners become state-of-the-
art and competitive with portfolio solvers (IPC18). A major
shortcoming of the latter width-based methods derived from
best-first search (BFS) (Edelkamp and Schrödl 2012; Pearl
1983), such as those used by the planner DUAL-BFWS, is
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that measuring novelty is exponential on the number of dis-
crete levels or categories used to rank states. Lipovetzky and
Geffner (2012) showed that an upper bound exists for any
given classical planning instance, yet this result cannot be
exploited, as this bound results in impractical runtimes to
evaluate states, a crucial issue for the effectiveness of heuris-
tic search methods.

We address this issue by proposing new methods to ob-
tain polynomial approximations of novelty and to control the
growth of the memory footprint of BFWS algorithms. The
first contribution is an appraisal approximation of the nov-
elty of state information by randomly sampling the space of
possible valuations of state variables, and using Bloom fil-
ters for efficient, but imprecise, storage of state information.
The second contribution is a novel form of best-first search
which uses an adaptive policy that decides whether to de-
lay the generation of successor states. This policy is derived
from the analytical solution to an infinite-horizon Markov
Decision Problem (MDP) (Bertsekas 2017), where its cost
function controls the representation of different novelty cat-
egories in the open list.

The paper is structured as follows. We start discussing
concisely background material covering classical planning,
width-based search, and Bloom filters. Sections 3 and 4 ex-
pound the contributions of this paper, approximations of
novelty measurements and search. We evaluate both over ev-
ery benchmark in the IPC satisficing track. We finalize with
a discussion of the importance and potential impact of our
results.

2 Background
We follow Bonet & Geffner (2013) presentation of classi-
cal planning, an optimal control problem (Bertsekas 2017)
where states are fully observable and made of a finite num-
ber of Boolean atoms, actions are finite and optimal solu-
tions (plans) map the unique initial state into one of many
goal states, in the minimum number of steps. The transi-
tion system for a classical planning problem P is defined as
S(P ) = 〈S, s0, SG,A, T 〉 where S is the state space, s0 ∈ S
is the initial state, SG ⊆ S is the set of goal states, A is the
set of actions and T : S ×A→ S is the transition function.
We define the set of applicable actions A(s) as the subset of
a ∈ A, for which T (s, a) is defined. A solution to S(P ) is
a plan π = 〈 a1, . . ., an〉, with length n, that maps an initial
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state s0 ∈ S to a goal state sn ∈ SG, such that each action
is applicable in the corresponding state ai ∈ A(si−1), along
the induced sequence s0,...,si,...,sn where si = T (si−1, ai).

We describe classical planning problems compactly us-
ing STRIPS (Nilsson and Fikes 1971). P is given as the tu-
ple P = 〈F,O, I,G〉, where F is the collection of Boolean
atoms or fluents, O is the set of operators, I ⊆ F is a set of
atoms that fully describe the initial state, and G ⊆ F is a set
of atoms in the goal state. The transition system S(P ) is ob-
tained from P as S = 2|F |, s0 = I , sG = {s | s |= G},
T and A(s) follow from the effects and preconditions of
a ∈ O. Optimal solutions are those sequences of actions
that are the shortest too. In this paper we consider satisficing
solutions, trading off between run time and quality.

The planners discussed in this paper are instances of
the classic heuristic search algorithm named Best-First
Search (Edelkamp and Schrödl 2012; Pearl 1983) or BFS
for short. This algorithm searches for plans by extending
incrementally all paths (nodes) in S(P ) starting from s0.
The nodes are visited in the order specified by an evalua-
tion function f defined over paths, and the algorithm ter-
minates in the first path that ends on a state s ∈ SG. BFS
implicitly enumerates the states s in S(P ) by assigning to
them a natural number, the expansion order, e(s) (Dionne,
Thayer, and Ruml 2012), which is 0 for s0 and increases by
one unit for every new state s extending an existing path.
We denote the set of states generated before s as P(s) =
{ s′ | e(s′) < e(s)}. As we will see in the next section, this
ordering is crucial to define novelty measures.

2.1 Best-First Width Search (BFWS)
BFWS (Lipovetzky and Geffner 2017a) is a family of BFS
algorithms where the evaluation function for a node n, f(n)
is defined as a tuple of functions

f(n) = (w, h1, . . . , hm)

where w : S → W is the function measuring novelty, that
maps states s ∈ S into categories ω ∈ W ,W ⊂ N, andH =
{h1, . . . , hm} is a set of suitably chosen functions. When in-
serting nodes n in the open list, BFWS algorithms sort in in-
creasing order according to the first function in f(n), break-
ing ties recursively with the provided hi. These functions
can also be used to partition the set of states generated before
s as P(s,H) = { s′ | e(s′) < e(s), h(s) = h(s′) ∀h ∈ H}.
Definition 1. The novelty w(s) = w〈H〉(s) of a newly gen-
erated state s given a set of partition functionsH over states
s ∈ S is k, iff (1) exists a tuple1 t ⊆ F of minimum size k,
s.t. s |= t, (2) ∀s′ ∈ P(s,H), s′ 6|= t.

As noted in the introduction, BFWS algorithms are state-
of-the-art over the IPC classical planning benchmarks. We
illustrate the BFWS framework by discussing in detail
BFWS(f5), one of the best performing to-date in the Agile
track (IPC 2018).

The evaluation function f5 = 〈w,#g〉 makes BFWS to
expand first novel states, breaking ties with a simple goal
counting heuristic (Nilsson and Fikes 1971) #g(s). The

1Conjunction of atoms.

novelty function uses two heuristic functions to partition
the novelty space w = w〈#g,#r〉, one is #g(s), and the
other, #r(s), counts the atoms p achieved along the path
to s, such that p ∈ R, R ⊆ F , where R is selected by a
relevance analysis procedure. R is meant to contain atoms
which are instrumental to reach the goal efficiently, so for
domain-independent planning, one can instanceR as a set of
landmarks (Hoffmann, Porteous, and Sebastia 2004), or the
set of fluents which belong to positive effects of actions in
the relaxed plan for s0 (Hoffmann and Nebel 2001). Both of
the above definitions of R were used in the planner DUAL-
BFWS, and the later was used in BFWS(f5).

Evaluating w(s) requires to test states s to belong to the
categories ω ∈ W . Lipovetzky and Geffner (2017a) define
W as the integer interval [1, i + 1] where i is the size of
the largest novel tuple generated by optimal plans for P . In
this case, the test above requires to generate exhaustively all
tuples t of size i present in state s and determine if they
are present in P(s,H). An optimal procedure to implement
Definition 1 follows. For each tuple of size 1 ≤ l ≤ i, let
βl(s) = {t | t ⊆ F , s |= t, |t| = l}2. Starting with l = 1, we
enumerate tuples t ∈ βl(s), and then test if t is part of previ-
ously observed tuples in the set N (s) =

⋃
s′∈P(s,H) βl(s

′).
If the test is negative for at least one tuple, thenw(s) := l,

otherwise, we need to test the elements of βl+1, until l = i.
If the test is positive for all t ∈ βi, then the state is consid-
ered not to be novel, and w(s) := i + 1. This leads to the
exponential time and space O(|F |i) requirements to evalu-
ate w(s) that we outlined in Section 1. While i is known to
be generally way smaller than |F |, the bound i is usually
high enough to render the novelty test up to i impractical. In
the case of the IPC benchmarks, any value of i > 2 leads
to very high runtimes to generate states. In practice, w(s) is
approximated by setting i to an arbitrary lower bound, which
renders the evaluation of w(s) to be tractable but may rele-
gate states with valuable information to the back of the open
list.

2.2 Bloom Filters
The Bloom filters (Bloom 1970; Louridas 2017) are a prob-
abilistic data structure to represent sets efficiently, at the
expense of allowing false positives when testing whether
the set contains a given object. Typical implementations of
Bloom filters consist of a bit-array v of size r, where all en-
tries vj are initially set to ⊥, andK independent hash func-
tions η that map objects into the range [1, r]. To add an ob-
ject o as a member of the set represented by the Bloom filter,
the K hash functions ηl are evaluated on o, so vηl(o) := >
for l = 1,..., K. To test whether o is in the set, the hash
functions ηl are evaluated, and if all vηl(o) := >, then o is
considered to be an element of the set. In comparison with
a traditional hash table whose size grows with that of the
range of possible objects, the Bloom filter has fixed-size r.

The choice of value for r determines the probability to
obtain a false positive, that is, testing o for containment and
getting a positive answer, when o has not been previously

2We note that βl can be iterated by lazily generating its ele-
ments.
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added as a member. As noted in (Broder and Mitzenmacher
2004) the probability of a false positive is given by

Pf =
(

1− e−Kq
r

)K
(1)

where q is the expected number of different objects to be
tested. The analytical solution to the problem of minimiza-
tion of false positive rate with respect to K shows that Pf is
minimized whenK = (r/q) ln 2 (Broder and Mitzenmacher
2004). Since the expected number of different objects, nodes
in planning, tend to be larger than the memory, it follows that
when (r ln 2) ≤ q, then K = 1 minimizes Pf .

3 Novelty Approximation
In this section, we describe an approximate measure of nov-
elty for newly generated states, ŵ(s), which is tractable and
can be proved to be equal to w(s) with positive probability.
For that, Definition 1 is relaxed as follows

Definition 2. The approximate novelty ŵ(s) = ŵ〈H〉(s) of
a newly generated state s given a set of partition functions
H over states s ∈ S is k, iff (1) exists a tuple t ⊆ F
of minimum size k, s.t. t ∈ Zk(s), (2) ∀s′ ∈ P(s,H),
O(s′, t) = ⊥.

We have changed Definition 1 in two ways. First, we only
test the tuples from a randomly sampled set Zl(s) ⊆ βl(s),
for l = 1,...,i. We require that the probability of every tuple
in βl(s) being selected is uniformly distributed. For that we
sample without replacement from the discrete uniform dis-
tribution over βl(s), with probability mass function pX(t)
= z/|βl(s)| for all t ∈ βl(s), z = |Zl(s)|, representing the
probability of occurrence of t in Zl(s). We note that tuples
are sampled, independently, for each state. Second, we re-
place the condition s′ 6|= t for a random variable O(s′, t)
that models the runtime behavior of a Bloom filter. O(s′, t)
maps pairs s′, t to > with probability 1 when s′ |= t and
t ∈ Zl(s′), otherwise, it maps s′, t to ⊥ with positive prob-
ability. The tractability of ŵ(s) follows from requiring r,
the number of entries in the Bloom filter, and |Zl(s)| ≤ Z̄,
where Z̄ is the maximum size of Zl(s), to be constants, e.g.
Z̄ = r = |F |. It is trivial to note that the running time of any
reasonable algorithm for computing ŵ〈H〉(s) as per Defini-
tion 2 isO(iZ̄) and memory requirement isO(ir), dropping
the complexity of tuple membership checks from exponen-
tial to linear on i.

These two simple changes suffice to allow measures of
novelty that are much finer than what can be obtained with
highly optimized implementations of w(s), but certainly,
and as noted at the beginning of the section, there is a cer-
tain probability that ŵ(s) and w(s) will not be in agreement.
The rest of this section is devoted to provide a probabilistic
model of the rate at which approximate and actual novelty
disagree.

Impact of Sampling. We proceed now to derive the proba-
bility of error induced by sampling from βl(s) following the
discrete uniform distribution. By error we refer to the event
of w(s) 6= ŵ(s), that is ŵ(s) is greater or less than w(s) for
a state s. We start by defining the probability γt, given s and

P(s,H), of a particular tuple t ∈ βl(s) observed as new in
s, that is t /∈ ⋃s′∈P(s,H) Zl(s

′) and t ∈ Zl(s), as

γt =

 ∏
s′∈P′

t(s)

(
1− z

|βl(s′)|

) z

|βl(s)|
(2)

whereP ′t(s) is defined as the set {s′ | s′ ∈ P(s,H), s′ |= t},
z is the sample size, z/|βl(s)| follows from the probability
mass function pX . The event of taking a sample at s is inde-
pendent from that of sample at s′ ∈ P(s,H) which allows
us to use the product rule. Also, it follows that as z → |βl|,
the probability γt → 0 when P ′t(s) 6=∅, and γt → 1 when
P ′t(s)=∅. That is, if all tuples t ∈ βl(s′) are sampled in each
s′ ∈ S , as we do when computing novelty exactly, the prob-
ability of t being new in s is 0, if t ∈ ⋃s′∈P(s,H) Zl(s

′), and
1 otherwise.

From Equation 2, we follow that the probability of tuple
t not being new is [1− γt]. We use this result to compute
the probability that none of the tuples t ∈ βl(s) are new,
assuming independence between different tuples to make the
derivation tractable, as

pl =
∏

t∈βl(s)

[1− γt] (3)

Using Equation 3, we can now define the probability of ap-
proximate novelty measure to be greater or smaller than ac-
tual, PH = P (ŵ(s) > w(s)), PL = P (ŵ(s) < w(s))
respectively, as

PH =

w(s)∏
i=1

pi, PL =

1−
w(s)−1∏
i=1

pi

 (4)

Finally, the probability of approximate and actual novelty
measures to agree, PC = P (ŵ(s) = w(s)), is :

PC =

w(s)−1∏
i=1

pi

 (
1− pw(s)

)
(5)

In Lemma 1 we prove the sum of probabilities in Eqs. 4
and 5 to be 1, and where (PL + PH) is the total probability
of error induced by sampling.

Lemma 1. The sum of probabilities PL, PH and PC is 1.

Proof. Let q =
∏w(s)−1
i=1 pi be the probability of not finding

new tuples with novelty below w(s). Then, Equations are
rewritten as PL = 1 − q, PH = q pw(s) and PC = q (1 −
pw(s)) for a given novelty w(s). Hence, PL + PH + PC =
(1− q) + q pw(s) + q (1− pw(s)) = 1− q + q pw(s) + q −
q pw(s) = 1, proving the correctness of equations.

Synergies between Sampling and Bloom Filters. The
number of generated statesP(s) before state s can beO(bd),
that is, exponential on the branching factor b of the transi-
tion system S(P ) and the length d of the path to s from s0.
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Therefore, replacing N (s) =
⋃
s′∈P(s,H) βl(s

′) by a Bloom
filter with r entries cannot come for free. While the Bloom
filter will always give the correct answer to membership
queries for tuples t that are in N (s), it can produce false
positives for membership, as it incorrectly gives a positive
answer for tuples t′ /∈ N (s).

We note that sampling from βl enables the use of Bloom
filters to “approximate” N (s). This is because it leads to
a reduction of the probability of false positives Pf given
in Equation 1, in comparison with what we would obtain
from using βl directly as in the algorithm for w(s) given in
Section 2.1. This observation follows from noting that q in
Equation 1 is the expected number of distinct tuples t sam-
pled during the search, and the rate of growth of this random
variable is directly proportional to Z̄. The smaller Z̄ is, the
slower q will grow. From Equation 1, we can see that the
probability of false positives Pf increases with the ratio q/r,
which in turn depends only on q as r is a constant. Therefore,
the rate of growth of Pf depends on Z̄.

Finally, we note that Pf will be maximized when q is ex-
ponential on l, the maximum size of the tuples considered.
Then, in principle, false positive probability increases too as
l grows larger.

Total probability of error. To obtain the total probability
of erroneously appraising the novelty of a newly generated
state s, Perror, we incorporate Equation 1 into Equation 2

γt =

 ∏
s′∈P′(s)

(
1− z

|βl(s′)|

) z

|βl(s)|
(1− Pf )


(6)

used to evaluate Equation 4, from which then it follows that
Perror = PL + PH .

Conjoining BFWS(f5) and Novelty Approximation.
Novelty approximation using sampling and Bloom Filter
can be directly applied to BFWS. We replace the w(s) in
BFWS(f5) with the approximation ŵ(s) resulting in f̂5 =
〈ŵ,#g〉.

Additionally, any reasonable implementation to compute
ŵ(s) = ŵ〈#g,#r〉(s) for BFWS(f̂5), as per Definition 2,
needs to track the evaluations of partition functions H =
{#g,#r} for all observed tuples. This increases the space
complexity by a factor of number of possible partitions,
|G| · |F |. We manage the increase in space complexity by
employing a set of Bloom filters, a bank V , and then bound-
ing the space available for novelty computation by a param-
eter Dmax. In case Dmax is sufficiently large to track all
the tuples and evaluations of partition functions, we enable
exact item membership tests. Otherwise, we use the bank
of Bloom filters. Whenever a new partitioned space is ob-
served, we assign it a Bloom filter from V . If the number of
observed partitions exceeds |V |, we overlap them randomly,
allowing different partitions to use the same Bloom filter.
This results in a gradual decrease in the accuracy of novelty
computation in exchange for space, the Perror increases as
more partitions overlap.

The resulting planner BFWS(f̂5) has the following hyper-
parameters, namely, the sample size Z̄, the size of a Bloom
filter r and the bound of space Dmax. In Section 5, we
present experimental evaluations with different choices of
parameter values.

Increasing the novelty bound. As discussed in Sec-
tion 2.1, any implementation of Definition 1 has a com-
plexity ofO(|F |i) rendering the computation impractical for
many instances. Whereas, Definition 2 has linear complexity
allowing us to compute ŵ(s) for any value of i ∈ [1, |F |]. In
the following section, we describe the impact of increasing
W ∈ [1, i + 1] in the polynomial planners: BFWS(f5) with
novelty pruning (Lipovetzky and Geffner 2017b).

Theorem 1. Let P = 〈F,O, I,G〉 be a STRIPS planning
problem. The number of nodes generated for each novelty
category ω ∈ W , when run with P as input, is less than or
equal to

(|F |
ω

)
· |G| · |F |.

Proof. The upper bound on the number of observed state
partitions is given by |G| · |F |. Also, the count of tuples of
size ω, of atoms in F , is

(|F |
ω

)
. Hence, the number of nodes

with w(s) = ω cannot exceed
(|F |
ω

)
· |G| · |F |.

Corollary 1. Let P = 〈F,O, I,G〉 be a STRIPS plan-
ning problem, and BFWS(f̂5) the polynomial planner using
Bloom filters introduced above. When run with P as its in-
put, BFWS(f̂5) generates at most |V | · r nodes for each nov-
elty category ω ∈ W .

Proof. A Bloom filter represents
(|F |
ω

)
tuples, but the num-

ber of true negatives is bound by the size of Bloom filter r.
Also, we create a set of Bloom filters, the bank V , that rep-
resents the set of partitioned spaces of cardinality |G| · |F |.
Hence, the above bound holds.

From Theorem 1, we note that the bound on number of
nodes with w(s) = ω + 1 increases by O(|F |) in compari-
son to those with w(s) = ω , which makes nodes with large
value of ŵ(s) unlikely candidates for expansion. This leads
us to another important issue afflicting BFWS algorithms,
inherited from BFS, i.e. only a small fraction of the nodes
that make it into the open list are ever considered for ex-
pansion. One possible method to address this challenge is to
choose small size for r and V , and from Corollary 1 we can
deduce that it will bound the nodes in each novelty category
by |V | · r, hence there are less nodes in each category. This
makes it seem that nodes with high novelty w(s) are now
more likely to expand, however, in practice nodes receive a
higher approximate novelty value ŵ(s) because of increase
in Pf . In the following section, we discuss a method that
remediates this.

4 Best First Search with Open List Control
We propose an example of a novel methodology to design
BFS algorithms that aim at controlling the rate of growth
of nodes of each category ω ∈ W in the open list. To do
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this, we model the search as a discrete-time dynamical sys-
tem subject to perturbation, and an optimal control prob-
lem (Bertsekas 2017) is formulated where optimal policies
ensure that a rate of growth less than the branching factor b
of S(P ) is sustained. With some simplifying assumptions,
the optimal policy for this control problem can be derived
analytically, as shown below, and integrated directly into the
search algorithm. We model the evolution over time of the
internal state (i.e. size of open lists) of a BFWS-like algo-
rithm B, subject to function TB , abstracting the instructions
executed in one iteration of the expansion loop of B, as the
dynamical system

xk+1 = TB(xk, uk, ck)

where, k is the index of current expansion, xk is a suitably
defined abstraction of the internal state of the search algo-
rithm B at time k, uk ∈ [0, 1)|W| is the control action, that
prescribes the pruning rate for states with w(s) = ω, and
ck ∈ N|W| is the count of successor states s′ at time k with
w(s′) = ω. ck is the perturbation, that is, an uncontrollable
side-effect of node expansion that has been modeled as a
uniformly distributed discrete random variable.

The information we track in xk is given by the tuple 〈ne,
nv(ω)〉, where ne is the number of expanded nodes so far,
and nv(ω) is the count of novel states visited for each nov-
elty category ω ∈ W . If u = 0|W|, then TB is determin-
istic and B behaves like a standard BFWS algorithm. Oth-
erwise, the successors s′ of state s pointed at by node n in
the open list with min f(n) are generated with probability
1 − uω when w(s′) = ω. If some s′ is pruned, n is kept in
a holding queue and re-expanded whenever the open list be-
comes empty. An important implementation detail for B is
that it needs to maintain |W| open lists in parallel, as keep-
ing smaller open lists is often more performant (Burns et al.
2012), also greatly facilitating implementation and compu-
tation of states xk.

In order to formulate an optimal control problem, we
need first to specify a cost function. Considering a very
large number of stages or expansions, we can reasonably
assume that the horizon is infinite, and define the aver-
age cost per stage function (Bertsekas 2017), with a policy
π = {µ0, µ1, ...}, of the form

Jπ = lim
N→∞

1

N
E
ck

[
N−1∑
k=0

g(xk, µk(xk), ck)

]
(7)

The choice of the cost per stage g(xk, µk(xk), ck) is dictated
by the need to seek a trade-off between the number of states
in the open list with ŵ(s) = ω growing too large and missing
out useful novel states. We define gk as follows

gk =
∑
ω∈W

[
cωk (1− µωk (xk)) +

1

(1− µωk (xk))

]
(8)

where the expected count of successor nodes, with novelty
ŵ(s) = ω, added to the open list at time k is given by cωk (1−
µωk (xk)), and the second term is the inverse rate of node
generation, as we want every possible value of novelty to be

represented in the open list with positive probability. Using
Equation 8 we can rewrite Jπ as

Jπ = lim
N→∞

1

N
E
ck

[
N−1∑
k=0

gk

]
(9)

We make an assumption to facilitate obtaining the optimal
policy, namely, µk will converge to some stationary µ as
k → ∞, so it can be used to estimate the cost of future
stages accurately. Also, the expected value of uniformly dis-
tributed random variable cωk is calculated from nv(ω) and
ne, as E [cωk ] = nv(ω)/ne. It follows then from Equation 9
that

Jπ =
∑
ω∈W

(
nv(ω) (1− µω(xk))

ne
+

1

(1− µω(xk))

)
(10)

We note that Jπ is strictly convex and differentiable over
µω ∈ [0, 1), and optimal values for the control inputs corre-
spond with optimal solutions of the optimization problem

min
µ∈[0,1)|W|

Jπ

Such a solution is directly obtained from Equation 10 from
the solution of the differential equation ∂Jπ/∂µω = 0,

µω(xk) =

1−
(

ne

nv(ω)

) 1
2

, if ne/nv(ω) < 1

0, otherwise
(11)

Note that the holding queue follows the well-established
practice of segmenting the search frontier into multiple
queues (Richter and Westphal 2010). We use the optimal
policy that we derived above to control the different queues
based on their w(s) values, ensuring that each queue repre-
sents every category ω ∈ W with positive probability. The
queues are accessed sequentially, expanding all the nodes
in the current queue before switching to the next. Also, the
way we implement it, the queues are generated lazily, fol-
lowing a partial expansion of nodes whose successor falls in
the subsequent queues.

5 Experimental Evaluation
In order to evaluate the impact novelty approximation and
open list control has on width-based planners, we imple-
mented different instantiations of BFWS(f5): complete as
described in the Section 2, or incomplete if nodes with nov-
elty greater than a given bound are pruned (Lipovetzky and
Geffner 2017b). We used the Downward Lab’s experiment
module (Seipp et al. 2017) on a server with Intel Xeon
Processors (2 GHz) with a 1800 sec and 8 GB time and
memory limit, respectively. All BFWS planners are imple-
mented in C++ using the planning modules from LAPKT
(Ramirez, Lipovetzky, and Muise 2015) and grounder from
Tarski (Frances and Ramirez 2019). We use every bench-
mark in the IPC satisficing track to evaluate the correctness
of the novelty approximation ŵ, and performance of new
planners that use ŵ. In case a domain has appeared over
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(w < ŵb̄)|(w = 3)

Z̄ = δ · |F |
r = |F |2
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(w < ŵ)|(w = 3)

Figure 1: Variation in the rate of accurate (w = ŵ), lower
(w > ŵ) and higher (w < ŵ) approximation of novelty w
over different sizes of sample(Z̄) and Bloom Filter(r).

multiple IPCs, we used the problem set from the most re-
cent IPC. We compare our new planners against notable
polynomial planners: BFWS(f5) with novelty pruning and
〈1, 2-C-M〉, a sequential polynomial planner (Lipovetzky
and Geffner 2017b), as well as two state-of-the-art planners
DUAL-BFWS (Lipovetzky and Geffner 2017a) and LAMA-
first (Richter and Westphal 2010). We show that the intro-
duction of these methods has a significant impact on the per-
formance of the BFWS algorithms.

Correctness of novelty approximation. We evaluate the
reliability of the novelty approximation by observing the ef-
fect on rate of correct and incorrect (lower or higher) ap-
proximation of novelty over varying sizes of sample Z̄ and
Bloom Filter r, scaled by a multiplicative factor δ. The nov-
elty approximation ŵ is correct or accurate if ŵ(s)=w(s).
We limit the maximum size of tuple evaluated to 3, as
higher order computations for exact novelty w were infea-
sible within the practical constraints of time and memory.
Thus, w : S → W , where W=[1, 4], and w=4 represents
all nodes with w>3 . To distinguish the impact of sampling
from that of Bloom Filter, we capture the results of novelty
approximation with and without Bloom Filter, hereafter, rep-
resented as ŵ and ŵb̄, respectively. We capture the statistics
from 1200 solved instances in IPC satisficing benchmarks.

From Fig. 1, we note that the rate of correct approx-
imate novelty (w = ŵb̄) increases with sample size Z̄,
when Bloom Filters are not used. This backs up our anal-
ysis in Section 3 that the accuracy of novelty approximation
is likely to increase with sample size. We also observe that
the rate does not decrease below 1/2 even for w = 3, where
the sample is order of 1/|F |2 smaller than the exhaustive
set. This is a significant improvement over a trivial method
of using a coin toss to determine whether or not a tuple t of
size l is new in state s, which has probability 1/8 of selecting
correct novelty, given w=3 .

While we note that the novelty approximation without
Bloom Filters performs satisfactorily in terms of correct-
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Figure 2: Pairwise comparison of runtime, over All IPC sat-
isficing benchmarks, between BFWS(f5) and pI-Pω̄AC.

ness, it is still infeasible to store exhaustive set of tuples
βl(s) of sizeO(|F |l), when l≥3, for many IPC problems. As
discussed in Section 3, we address this by using Bloom Fil-
ters for evaluation of ŵ ≥ 3. With this addition, we observe
a slight decrease in the rate of correct novelty approxima-
tion, which is the consequence of false positives, discussed
in Section 2.2. Also, we observe that the trend along sample
size is reversed, i.e., the rate of correct novelty approxima-
tion now decreases with increase in sample size. The trend is
in line with the theoretical analysis in the Section Synergies
between Sampling and Bloom Filters. On the other hand, in-
creasing the size of Bloom Filter r improves the results, as
the false positive rate decreases.

Performance over benchmarks. Hereafter, we repre-
sent a particular configuration of BFWS planner as
’pI-(P|L)ω̄AC’. The prefix ’p-’ refers to the use of nov-
elty based pruning for nodes with ŵ(s) > ω̄. ’I-’ refers to
BFWS called sequentially until the problem is solved over
ω̄ ∈ [1, |F |]. Pω̄ refers to BFWS(f5) planner with the set
of possible novelty categories W = [1, ω̄ + 1]. Lω̄ refers
to BFWS(f5) with the goal counting heuristics replaced by
landmark counts (Richter, Helmert, and Westphal 2008),
that is fL=〈w, hL〉. ’A’ denotes that ŵ(s) is used instead
of w(s), and ’C’ denotes that BFWS is modified to control
open list growth as described in Section 4. All ’AC’ planners
were run 4 times with different seeds, so we report the mean
and standard deviation of statistics of interest.

We set the sample size Z̄=|F | so as to maintain a lin-
ear time complexity. We found that Dmax values between
100 MB and 1GB had similarly good results for ’pI-Pω̄AC’,
we show the results for Dmax = 500 MB. For the Bloom
Filters size r, we didn’t observe much variation between
100KB / 8 ·105 bits and 10MB / 8 ·107 bits, withDmax

= 1 GB. In our final implementation, we set an initial value
of r = |F |2, subject to increase when ω̄r · |V | < Dmax ∧
|V | = |G| · |F |, and decrease when ω̄r > Dmax ∧ |V | = 1.
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w̄ = 1 w̄ = 2 w̄ = 3 w̄ ≥ 4

# Instances 100.00 % 18.92% 3.68% 1.05%

Table 1: % of instances across all IPC satisficing bench-
marks where a node of novelty w̄ was recorded in found
plans.

A total of 103 instances out of 1691 used the bank of Bloom
filters V , described in Section 2, ensuring that novelty com-
putation does not exceed Dmax. Lastly, we use the solution
to the problem of minimizing Pf in Equation 1 to chose the
number of hash functions asK=ln 2 (r/q), where q =

(|F |
ω

)
.

Looking back at the motivation, a key driver for introduc-
ing the novelty approximation was to enable novelty com-
putation for values greater than 2, which was infeasible for
many IPC domains with the exact novelty definition. The
results for p-P3A in Table 2, show that our hypothesis was
indeed correct as computing higher novelties with approxi-
mation improves coverage. This is substantiated in Table 1
which shows that ≈ 5% of the solved instances had one or
more nodes with w̄(s) ≥ 3 in the solution plan. Moreover,
the coverage of approximate planners with ω̄ = 2, P2A and
p-P2A, improves in comparison to P2 and p-P2, respectively,
which indicates that there is no apparent demerit of using
novelty approximation. The improvement can be attributed
to polynomial time and space complexity of ŵ(s) allowing
for additional search capacity.

Though BFWS(f̂5) performs satisfactorily, it has a key
shortcoming which impacts the search within the limited
time environment, i.e. for large instances of domains with
width i > 2, the BFWS search driven by the evaluation
function f5 = 〈w,#g〉 exhausts all the available time in
expanding nodes with w(s) ≤ 2. Moreover, the issue gets
compounded for domains with high branching factor as the
open list doesn’t fit within the memory bounds. We address
both the issues by applying the open list control discussed in
Section 4. In our implementation, the control is not applied
to child nodes with novelty w(s)=1, as the maximum count
of such nodes is small, O(|F |), and have minimal impact
on space. Note that this method will not cause the search to
become incomplete. However, if we choose not to maintain
the holding queue, we get a search that is incomplete and
terminates early. Introducing the open list control in BFWS
(f̂5) leads to noticeable improvement in coverage of P2AC
and P3AC which can be observed in Table 2. We do not re-
port tables on plan length due to space limits as plan length
remains similar for all configurations.

At this point, we discuss a new planner, where we iter-
atively run the polynomial BFWS(f̂5) with novelty based
pruning, sequentially increasing the number of novelty cate-
goriesW at each iteration,W = [1, ω̄+1], over ω̄ ∈ [1, |F |].
We denote the planner as ’pI-Pω̄AC’ where I stands for iter-
ative. Informally, its major advantage is that it taps into the
low polynomial space and time complexity of p-Pω̄AC with
small ω̄ values as well as the greater coverage with larger
ω̄ . This can be observed in Table 2, which shows a signifi-
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Figure 3: Coverage over memory(MB) and time(seconds) on
IPC 2014 and 2018 satisficing benchmarks.

cant jump in coverage compared to BFWS(f5) with novelty
based pruning(p-P2) and 〈1, 2-C-M〉 (B3).

The coverage is also higher than the state-of-the-art
LAMA-first (B1) and DUAL-BFWS (B2). Moreover, from
Fig. 2, we note that ’pI-Pω̄AC’ planner has better runtime
performance than BFWS(f5), the winner of Agile track (IPC
2018). It solved 59 more instances than BFWS(f5) across
every IPC satisficing benchmarks with a 300 sec time and
8 GB memory limit. At the same time. Fig. 3 confirms that
the space and time consumption is much less than the base-
line BFWS planners. It is worth pointing that ’pI-Pω̄AC’ is
probabilistically incomplete. Also, we did not observe any
difference in coverage of ’pI-Pω̄AC’ with or without the
holding queue, as the nodes pruned at one iteration get se-
lected in subsequent iterations with positive probability.

Discussion We show that approximate novelty search
greatly improves the performance over baseline BFWS plan-
ners. The ability to compute ŵ > 2 using novelty approxi-
mation, within practical constraints of time and memory, al-
lows us to use ’pI-Pω̄AC’ configuration that beats the state-
of-the-art. This is impressive for a sequential polynomial
planner which uses simple goal counting heuristics #g(s)
and relaxed plan counter #r(s) along with ŵ to direct the
search. Also, we can observe that certain domains were af-
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domain B1 B2 P2 P2A P2AC P3A P3AC p-P2 B3 p-P2A p-P3A pI-Pω̄AC pI-Lω̄AC
agricola (20) 12 8 11 11±1.0 12±1.7 15±0.8 16±1.3 10 15 10±0.6 15±0.8 16±1.3 12±0.5
airport (50) 34 47 46 46±0.6 46±0.6 44±0.0 44±0.6 46 47 46±0.6 45±1.0 46±0.6 46±0.5
assembly (30) 30 30 30 30±0.6 29±1.0 30±0.6 30±0.6 30 30 30±0.5 30±0.0 30±0.0 30±0.0
caldera (20) 16 20 15 16±1.0 20±0.5 16±1.0 18±0.5 19 20 20±0.5 18±0.5 20±0.5 20±0.0
cavediving (20) 7 7 7 7±0.0 8±0.6 8±0.0 8±0.5 1 8 2±2.9 8±0.5 9±1.0 8±0.5
childsnack (20) 6 10 0 4±1.3 5±1.7 3±1.9 6±0.6 0 2 5±0.5 6±0.6 8±1.3 8±1.3
citycar (20) 5 20 5 5±0.0 20±0.0 5±0.0 20±0.6 20 20 20±0.5 5±0.0 20±0.0 20±0.0
data-network (20) 13 11 9 12±1.7 19±1.0 11±2.5 18±0.5 16 14 17±1.0 16±0.6 18±0.6 18±0.6
depot (22) 20 22 22 22±0.0 22±0.0 22±0.0 22±0.0 22 22 22±0.0 22±0.0 22±0.0 22±0.0
flashfill (20) 14 16 12 14±2.4 14±0.6 14±2.2 14±1.0 15 9 14±2.4 14±1.9 14±1.0 14±1.0
floortile (20) 2 2 1 2±0. 5 2±0.0 2±0.0 2±0.0 0 1 1±0.0 2±0.5 2±0.0 2±0.0
hiking (20) 20 12 12 14±2.1 8±0.8 18±1.0 20±0.5 9 13 12±1.8 20±0.0 20±0.0 19±0.5
maintenance (20) 11 17 17 16±0.5 16±0.6 16±0.5 17±0.5 17 17 16±0.5 16±0.5 17±0.5 17±0.5
mprime (35) 35 35 32 30±0.6 35±0.0 31±0.5 34±0.8 35 35 35±0.0 32±0.8 35±0.0 35±0.0
mystery (30) 19 19 19 19±0.0 19±0.0 19±0.5 19±0.5 19 18 19±0.0 19±0.5 19±0.5 19±0.5
nomystery (20) 11 19 13 14±1.0 12±1.0 13±0.5 14±1.0 13 13 12±1.7 14±0.6 15±1.0 18±1.4
nurikabe (20) 9 14 16 14±0.6 15±1.3 14±0.6 15±2.1 16 16 14±0.5 14±0.6 15±1.0 14±0.6
org-synth-split (20) 12 11 5 6±0.5 3±0.8 7±1.0 5±1.4 4 3 4±0.5 6±1.0 7±0.0 6±0.5
parcprinter (20) 20 16 9 5±1.0 5±1.9 5±0.8 6±1.0 9 16 6±1.0 5±1.0 8±0.0 6±0.5
pathways-neg (30) 24 30 23 30±0.6 29±1.5 30±0.6 29±0.5 24 27 30±0.5 30±0.6 30±0.0 30±0.0
pegsol (20) 20 20 20 20±0.0 20±0.5 20±0.0 20±0.0 5 20 12±1.5 18±0.5 20±0.0 20±0.0
pipesworld-nt (50) 43 50 50 50±0.0 50±0.0 50±0.0 50±0.0 50 50 50±0.0 50±0.0 50±0.0 50±0.0
pipesworld-t (50) 43 38 43 42±0.5 42±0.6 42±0.5 43±0.8 41 39 41±1.5 42±0.5 42±1.2 43±1.5
psr-small (50) 50 50 48 49±0.5 49±0.5 50±0.0 50±0.0 31 46 34±1.3 43±0.8 49±0.5 48±0.6
rovers (40) 40 37 39 40±0.0 40±0.0 40±0.0 40±0.0 39 38 40±0.0 40±0.0 40±0.0 40±0.0
satellite (36) 36 31 27 30±0.8 32±0.6 30±0.5 30±0.0 27 31 32±0.5 30±0.5 34±0.6 34±0.6
schedule (150) 150 149 149 149±1.0 149±0.8 149±1.0 150±0.6 149 149 149±1.0 149±1.0 149±1.0 149±1.0
settlers (20) 18 8 7 6±1.0 12±0.6 6±1.3 10±0.0 10 11 9±1.0 6±1.0 12±0.6 17±1.3
snake (20) 5 12 19 16±0.5 15±0.8 17±0.5 17±0.5 18 3 16±0.5 17±0.5 20±0.5 20±0.5
sokoban (20) 19 17 14 15±0.5 10±1.0 16±0.5 14±0.8 6 13 4±0.6 11±0.5 16±0.6 16±0.6
spider (20) 16 14 13 15±1.0 14±1.0 15±1.0 14±1.3 13 11 15±1.0 15±1.0 14±1.0 15±0.5
storage (30) 20 28 29 30±0.6 30±0.6 30±0.6 30±0.5 30 29 30±0.6 30±0.6 30±0.5 30±0.6
termes (20) 16 9 9 10±0.0 8±0.6 9±1.0 8±1.3 1 6 2±0.5 6±1.9 7±1.4 10±1.3
tetris (20) 16 16 20 20±0.0 20±0.0 20±0.0 20±0.0 20 18 20±0.0 20±0.0 20±0.0 20±0.0
thoughtful (20) 15 20 20 20±0.0 20±0.0 20±0.0 20±0.0 20 20 20±0.0 20±0.0 20±0.0 20±0.0
tidybot (20) 17 18 19 20±0.0 20±0.5 20±0.0 20±0.0 20 20 20±0.0 20±0.0 20±0.0 19±0.5
tpp (30) 30 29 29 30±0.6 30±0.0 29±0.0 30±0.0 30 30 30±0.0 30±0.0 30±0.0 30±0.0
transport (20) 16 20 20 20±0.0 20±0.0 20±0.0 20±0.0 20 20 20±0.0 20±0.0 20±0.0 20±0.0
trucks-strips (30) 18 16 9 9±0.8 9±1.3 9±0.8 10±1.4 11 8 12±1.8 11±1.3 12±1.3 12±0.8
Total (1691) 1456 1496 1436 1455±8.7 1476±4.2 1463±8.9 1502±4.9 1414 1456 1438±5.9 1462±8.0 1524±2.5 1516±5.0

Table 2: Coverage over all satisficing benchmarks from IPCs: complete - B1: LAMA-first, B2: DUAL-BFWS and ’P...’, and
polynomial incomplete - B3: 〈1, 2-C-M〉 and ’p-P...’. Pω̄ refers to BFWS(f5) planner withW = [1, ω̄ + 1], Lω̄ is BFWS(fL) ,
which uses Landmarks , ’I-’ stands for Iterative, ’A’ for approximate, and ’C’ for control over open list. The mean coverage is
shown along with the standard deviation for the planners that use sampling. Domains which are fully solved by all planners are
omitted but included in supplementary material (Singh et al. 2021). The best results are highlighted in bold.

fected more than others. Specifically, the domains citycar,
data-network, hiking and satellite benefited significantly.

We found that the open list control significantly benefited
the domains citycar and data-network which have a high
branching factor but solvable with ω̂ ≤ 2. Citycar in partic-
ular was fully solvable with ω̂ = 1 and discarding nodes with
w(s) > 1 didn’t impact the order of expansion. Hiking and
satellite on the other hand required expansion of nodes of
w(s) > 2, and the increased coverage highlights the impor-
tance of policy based control of different novelty categories
in the open list. Childsnack and Floortile however showed
no improvement, which is a combined effect of high width
and the fact that our goal count heuristic #g(s) is not in-
formed enough.

6 Conclusion
The proposed methods of novelty approximation and open
list control in BFWS not only have positive impact on cover-
age but also on the overall time and space complexity of the

search, resulting in new state-of-the-art planners over sat-
isficing benchmarks from every IPC since 1998 and more
significantly the last 2 IPCs (2014 and 2018). These results
strongly suggest that probabilistically complete search algo-
rithms are a promising research direction in classical plan-
ning. This is specially crucial in limited time and memory
environments where the search must work within hard con-
straints on time and memory. However, we must note that
approximate novelty search is by no means a silver bullet,
and certain domains including Childsnack and Floortile still
remain unsolvable. We hope this work brings about the in-
sights to develop the next generation of classical planners,
that scale up better as the intractability of the benchmarks
ramps up and tackle the inherent limitations of BFS.
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