
On the Compilability and Expressive Power of State-Dependent Action Costs

David Speck, David Borukhson, Robert Mattmüller, Bernhard Nebel
University of Freiburg, Germany

〈speckd, borukhd, mattmuel, nebel〉@informatik.uni-freiburg.de

Abstract

While state-dependent action costs are practically relevant
and have been studied before, it is still unclear if they are
an essential feature of planning tasks. In this paper, we study
to what extent state-dependent action costs are an essential
feature by analyzing under which circumstances they can be
compiled away. We give a comprehensive classification for
combinations of action cost functions and possible cost mea-
sures for the compilations.
Our theoretical results show that if both task sizes and plan
lengths are to be preserved polynomially, then the boundary
between compilability and non-compilability lies between
FP and FPSPACE computable action cost functions (under
a mild assumption on the polynomial hierarchy). Preserving
task sizes polynomially and plan lengths linearly at the same
time is impossible.

Introduction
A planning task is said to have state-dependent action
costs (Geißer 2018; Ivankovic, Gordon, and Haslum 2019)
if the cost of one or more of its actions depends on the state
where the action is applied. State-dependent action costs oc-
cur naturally, e. g., in numeric planning or in probabilistic
planning in the form of state-dependent rewards of a Markov
decision process (MDP).

Depending on the planning algorithm used, state-
dependent action costs can be handled “natively”, e. g., dur-
ing uninformed explicit-state forward search, where they
are only needed to compute g-values of successor states.
For other algorithms, such as the computation of many
goal-distance heuristics, compiling state-dependent action
costs away into planning tasks with constant, i. e., state-
independent costs only, is required. Corraya et al. (2019)
showed that simply ignoring that costs are state-dependent
can not only make the solution quality exponentially worse,
but also affect search performance. Recent work (Geißer,
Keller, and Mattmüller 2015, 2016; Geißer 2018) has stud-
ied representations of state-dependent action costs as deci-
sion diagrams that are compact if additive structure in cost
functions can be exploited. Based on such representations,
translations were introduced, and the extent to which such

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Desired plan length preservation
linearly polynomially don’t care

G
C

F
co

m
pl

ex
ity

F
P impossible

(Thm. 5)
possible using DTM
compilation (Thm. 3)

F
P
S
P
A
C
E impossible (unless PH

collapses at the third
level) (Thm. 4)

possible
using DTM
compilation
(Thm. 2)

Table 1: Existence results for compilation schemes preserv-
ing task sizes polynomially depending on the computational
complexity of the generic cost functions (rows) and the de-
sired plan length preservation (columns).

a representation can be used to compute informative goal-
distance heuristics was investigated.

The EVMDD-based translation of state-dependent action
costs (Geißer, Keller, and Mattmüller 2015) represents ac-
tion cost functions as edge-valued multi-valued decision dia-
grams (EVMDDs) (Ciardo and Siminiceanu 2002) and turns
each edge of those diagrams into an auxiliary action. This
translation was shown to be “heuristic friendly” for a range
of heuristics (Geißer 2018), while leading only to a polyno-
mial increase in representation size for many cost functions,
such as weighted sums of state features. In the worst case,
however, this translation can increase the size of a planning
task exponentially. Similarly, the combinatorial translation
that introduces a new action for every combination of an
original action with a partial assignment to the state vari-
ables relevant to that action’s costs necessarily increases task
sizes exponentially.

This observed worst-case exponential increase raises the
question whether this is generally unavoidable, i. e., if or to
what extent state-dependent action costs are an essential fea-
ture of planning tasks and to what extent they are syntac-
tic sugar. This is the question we address in this paper. It is
closely related to an earlier study of the compilability of con-
ditional effects (Nebel 2000), another state-dependent fea-
ture of planning tasks. There, it was shown that conditional
effects cannot always be compiled away with only polyno-
mial overhead.

We use the notion of compilability (Nebel 2000) to for-

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

358

malize an essential feature. We already know from the
EVMDD-based and the combinatorial translations that it is
possible to preserve plan lengths polynomially or even ex-
actly, respectively, at the expense of exponential increases
in task size. Note that according to the definition of Nebel
(2000), a compilation may only increase the task size poly-
nomially, which means that, strictly speaking, all exist-
ing translations (EVMDD-based and combinatorial) are no
compilations. In this paper, however, we focus on transla-
tions that preserve task sizes polynomially, i. e., compila-
tions, and draw the boundary between cases in which plan
lengths can also be preserved polynomially and cases in
which this is impossible. Our results show that this depends
on the expressiveness of the cost functions that are allowed
(Table 1). For planning tasks in which all action cost func-
tions can be computed in FPSPACE, state-dependent action
costs can be compiled away into actions with constant costs
while preserving the size of the planning task polynomially.
However, additional polynomial preservation of plan lengths
can only be guaranteed if the action cost functions can be
computed in FP. This is shown by representing each action
cost function as a Turing machine computing it. Then, en-
coding the simulation of that Turing machine as part of the
new planning task constitutes a compilation that preserves
task size (and plan lengths in case of FP computable cost
functions) polynomially. On the other hand, we can show
that preserving both task sizes and plan lengths polynomi-
ally is impossible for FPSPACE action cost functions unless
the polynomial hierarchy collapses at the third level.

The rest of the paper is structured as follows: We intro-
duce required preliminaries and show that planning with
state-dependent action costs is PSPACE-complete, assum-
ing a cost function in FPSPACE, followed by the positive
results based on Turing machine compilations, and the im-
possibility results complementing them.

Preliminaries
First, we define planning tasks and domains with state-
dependent action costs (SDAC), and as a special case
thereof, tasks and domains with constant action costs (CAC).

Definition 1 (SDAC and CAC planning domain). An
SDAC planning domain is a tuple Ξ = 〈P,A,C〉. P =
{p0, . . . , pn−1} is a finite set of n propositional atoms. A
(partial) assignment s : P → {0, 1} is called a (partial)
state. S denotes the set of all (total) states. A is a finite set
of actions. An action a ∈ A is a pair of partial variable as-
signments 〈pre(a), eff(a)〉. Action a is applicable in a state
s ∈ S iff pre(a) is consistent with s. Application of a in s
results in the state s′ = s[a] that is consistent with eff(a)
and agrees with s on the values of all variables from P not
mentioned in eff(a). Finally, C : S × A → N0 is the cost
function of Ξ.

Ξ is a CAC planning domain if C is constant in the states,
i. e., if C(s, a) = C(s′, a) for all s, s′ ∈ S and a ∈ A.

When specifying preconditions and effects, we sometimes
write x .

= b, with b ∈ {0, 1}, for the assignment of value b to
variable x. Since we only consider propositional variables,
we write x for the fact x .

= 1 and ¬x for the fact x .
= 0.

Sometimes we write a (partial) state as a conjunction of lit-
erals, e.g., s = x ∧ ¬x′, which describes the (partial) state
s with s(x) = 0 and s(x′) = 1. With 0 we refer to the con-
stant zero function. Indicator functions that return 1 if and
only if some condition ϕ is satisfied, and 0 otherwise, are
denoted by 1ϕ.

The size of Ξ is ||Ξ|| = |P |+
∑
a∈A(|pre(a)|+|eff(a)|)+

||C||, where ||C|| is the encoding size of the action cost func-
tion. We assume that C is encoded efficiently in the input in
case of SDAC domains. In case of CAC domains, ||C|| is
bounded by |A| · dlogNe, whereN is the highest action cost
value.

Planning domains together with initial states, goal de-
scriptions, and plan cost bounds form planning tasks.
Definition 2 (SDAC and CAC planning task). An SDAC
planning task is a tuple Π = 〈Ξ, I,G,B〉 consisting of an
SDAC planning domain Ξ, an initial state I, a goal descrip-
tion G ⊆ P , and a cost bound B ∈ N0. It is a CAC plan-
ning task if Ξ is a CAC planning domain. The size of Π is
||Π|| = ||Ξ|| + |G| + |I| + ||B||, where ||B|| is the binary
encoding size of the cost bound.

Plans for planning tasks are sequences of applicable ac-
tions leading from the initial state to a goal state, respecting
the given cost bound.
Definition 3 (Plan). A sequence of actions π =
〈a0, . . . , an−1〉 is called a plan for a planning task Π =
〈Ξ, I,G,B〉 if there exist states s0, . . . , sn such that s0 = I,
G ⊆ sn, and ai is applicable in si and si+1 = si[ai] for all
i = 0, . . . , n− 1, and

∑n−1
i=0 C(si, ai) ≤ B.

We call ||π|| = n the length of π.
Note that according to the above definitions of planning

domains and tasks, a single domain or task has a fixed set of
atoms and actions. What may vary across different planning
tasks in one domain are only the initial and goal states, as
well as the imposed plan cost bound. In order to study com-
pilability and non-compilability results, it is not sufficient
to look at single domains or tasks, though. Rather, we need
to investigate entire families of planning domains or tasks of
increasing size to obtain meaningful results. We refer to such
families as lifted domains. Since we want action cost func-
tions to be uniform across such lifted domains, we define
them as generic cost functions that are defined for arbitrarily
many truth values and action sets.1

Definition 4 (Generic cost function). A generic cost func-
tion is a deterministic Turing machine that takes as input
a finite set of propositional atoms P together with a finite
set of actions A (the domain context 〈P,A〉) together with
a state s over P and an action a ∈ A, and that returns a
cost value n ∈ N0 in those domain contexts for which it is
defined. For other domain contexts, it terminates right after
reading the input, having an undefined output.

1Uniformity here means that a generic cost function can com-
pute only finitely many, but possibly more than one, different cost
functions for different domains within a lifted domain. Since inter-
esting lifted domains will contain infinitely many domains, we con-
sider this “uniform enough”, especially compared to non-uniform
models of computation such as families of Boolean circuits.

359

This means that we only allow computable functions as
generic cost functions and rule out pathological ones like
cost functions whose value depends, e. g., on whether a Tur-
ing machine encoded by the atoms in P halts. A generic cost
function is in the function complexity class FX if it computes
its result using only resources according to class X.

Notice that a generic cost function C induces a regular cost
function C : S ×A→ N0 in a given domain context 〈P,A〉
for which it is defined as C(s, a) = CP,A(s, a), where S is
the set of states over P , and hence also a planning domain
Ξ = 〈P,A,C〉.
Definition 5 (Lifted domain). A lifted domain L = 〈D, C〉
is a family D = {(P,A)i}i∈I of domain contexts for some
index family I together with a generic cost function C that
is defined for all (P,A)i, i ∈ I.

Example 1. Consider a lifted domain where every task of
every domain of that lifted domain has a certain number
of objects that can be painted in different colors. Assume
that there is an action a that colors all red objects blue, and
whose cost is the number of affected objects. In a concrete
domain Ξ with a setO containing ten objects and with states
encoding, besides other features, the current colors of those
objects, the cost function C(s, a) =

∑
o∈O 1s(color-of(o))=red

is state-dependent, while still restricted to a finite number of
objects of interest. The corresponding generic cost function
ranges over arbitrarily many objects uniformly. It is linear-
time computable.

The following definition formalizes compilation schemes,
which translate from one planning formalism to another
while preserving plan existence and polynomially preserv-
ing task sizes. We are interested in compilation schemes
from planning with SDAC to planning with CAC.

Definition 6 (Compilation scheme). A compilation scheme
or, in short, a compilation is a tuple of functions f =
〈fξ, fι, fg〉 on planning domains that induces a function on
planning tasks as follows:

F (Π) =
〈
fξ(Ξ), I ∪ fι(Ξ),G ∪ fg(Ξ),B

〉
,

where Π = 〈Ξ, I,G,B〉, satisfying the following condi-
tions:

1. there exists a plan for F (Π) iff there exists a plan for Π,
2. the size of the results of fξ, fι, and fg is polynomial in

the size of the arguments.

Note that by not allowing to change the cost bound we
make sure that for each plan in the original task there must
be one with at most cost B in the target task and vice versa.

Besides preserving planning task sizes polynomially, an-
other desirable property is preservation of plan lengths. This
is captured by the following definition.

Definition 7 (Compilations preserving plan length). A com-
pilation scheme f is said to preserve plan length exactly
(modulo an additive constant) if for every plan π solving
an instance Π, there exists a plan π′ solving F (Π) with
||π′|| ≤ ||π|| + k for some positive integer constant k. It
is said to preserve plan length linearly if ||π′|| ≤ c · ||π||+ k
for positive integer constants c and k, and to preserve plan

length polynomially if ||π′|| ≤ p(||π||, ||Π||) for some poly-
nomial p.

For the compilability results, we make heavy use of Tur-
ing machines. The definition below determines the notation
we use for them.
Definition 8 (Turing machine). A (nondeterministic) Turing
machine (TM or NTM) is a tuple T = 〈Q,Γ,Σ, q0, qf, δ〉
with the following components: (a) Q are the states of T ,
(b) Γ = {0, 1, } is the symbol alphabet, with being
the blank symbol, (c) Σ = {0, 1} are the input symbols,
(d) q0 ∈ Q is the initial state, (e) qf ∈ Q is the final state,
and (f) δ ⊆ (Q \ {qf} × Γ)× (Q× Γ×D) is the transition
relation, where D = {−1,+1} represents the head move-
ment in a transition. We call a TM deterministic (DTM) if the
transition relation is functional, i.e., δ : (Q \ {qf}) × Γ →
Q× Γ×D. A TM accepts an input string iff at least one
of the possible computational paths starting from that string
puts the machine into the final state.

Let T be a deterministic Turing machine. By fT :
{0, 1}∗ → N0 we refer to the function computed by T , i. e.,
fT (v0 . . . vn−1) = N means that T , starting in the con-
figuration with input string v0 . . . vn−1 on the tape, termi-
nates with the binary encoding of N on the tape. W.l.o.g,
we assume that binary numbers are written from left to right
(little-endian) on the output tape and padded with zeros. For
example, considering 4 tape cells, the binary number 1010
encodes the value 1 · 20 + 0 · 21 + 1 · 22 + 0 · 23 = 5. The
space required of T is given by kT : N0 → N, i. e., kT (n)
is the number of tape cells used at least once during any ex-
ecution of T on any input of length n, and the time required
by T is given by dT : N0 → N0, i. e., dT (n) is the number
of transitions required until reaching a final state during any
execution of T on any input of length n.

Computational Complexity
The first natural question is, of course, whether planning
with SDAC is computationally harder than planning with
CAC. More precisely, the bounded plan existence problem
of planning with SDAC is the problem of deciding for a
given planning task Π with cost bound B whether there
is a plan that costs B or less. Interestingly, this question
has not yet been answered in the literature, which stems
from the fact that it is important to take into account the
complexity of the cost function considered, something that
has never been done explicitly before. For this purpose it
is natural to consider that the cost function is not harder
than the plan existence problem when planning itself, i.e.
in FPSPACE. It turns out that the bounded plan existence
problem of planning with SDAC is PSPACE-complete just
like ordinary classical planning (Theorem 1).
Theorem 1. Bounded plan existence of planning with
SDAC is PSPACE-complete, provided the cost function is
in FPSPACE.

Proof. PSPACE-hardness results from reducing the well-
known bounded plan existence problem (with unit costs)
(Bylander 1994) to our problem, where the plan length
corresponds to the plan cost. PSPACE-membership can be

360

proven by defining a nondeterministic TM that guesses an
action for application in each step, evaluating the applied
actions and adding up their costs. This nondeterministic TM
terminates if the selected action is not applicable, or the
given cost bound B is exceeded. Since only the current state,
the summed up costs and the computation of the selected
cost function (in FPSPACE) must be maintained at any time,
this TM is in NPSPACE, which is known to be equivalent to
PSPACE (Savitch 1970).

Possibility Results
As we have shown that planning with SDAC and planning
with CAC are in the same complexity class (Theorem 1),
the question arises under which circumstances SDAC can
be compiled away. In other words, we are interested in the
expressive power of SDAC, which is a measure of how con-
cisely planning domains and plans can be expressed in a
given formalism with compilation schemes (Nebel 2000).
In this section, we define such a compilation scheme that
compiles a given planning task with SDAC into a planning
task with CAC, and prove that this compilation preserves
the plan length polynomially if the generic cost function is
computable in polynomial time.

The basic idea of our compilation is to simulate a DTM
T , which computes the cost of an action, with planning.
Bylander (1994) originally showed how to simulate a given
DTM with planning. Similar to Bylander (1994), we define
the simulation of a DTM as follows (Definition 9).

Definition 9 (DTM planning simulation). Let T =
〈Q,Γ,Σ, q0, qf, δ〉 be a kT -space bounded deterministic
Turing machine, and s = v0 . . . vn−1 an input of length n.
We define PT as the set of propositional state variables that
allows encoding a configuration of T , with atomic proposi-
tions encoding the current internal state of the Turing ma-
chine, its head position2, and the content of every cell that
can be reached in the given space bound, as follows.

PT = {stateq | q ∈ Q}
∪ {headi | − 1 ≤ i ≤ kT (n)}
∪ {contenti,c | 0 ≤ i < kT (n), c ∈ Γ}

In order to produce the initial Turing machine configuration
with input string s = v0 . . . vn−1 on the tape, initial Turing
machine state q0, and head on the left, we define IT (s) :
PT 7→ {0, 1} as a function, assigning each variable PT a
truth value as follows.

IT (s)(x) =

1 if x ∈ {stateq0 , head0}
1 if x ∈ {contenti,vi | 0 ≤ i < n}
1 if x ∈ {contenti, | n ≤ i < kT (n)}
0 otherwise

Finally, we define a set of actionsAT which “simulates” the

2For simplicity, without loss of generality, we use DTMs that
never move to the left of the initial head position.

transitions of T as follows.
AT = {aq,c,q′,c′,d,i for each transition δ(q, c) = 〈q′, c′, d〉

and each cell position 0 ≤ i < kT (n)}
pre(aq,c,q′,c′,d,i) = stateq ∧ headi ∧ contenti,c
eff(aq,c,q′,c′,d,i) = ¬headi ∧ headi+d

. . . ∧ ¬stateq ∧ stateq′ (only if q 6= q′)

. . . ∧ ¬contenti,c ∧ contenti,c′ (only if c 6= c′)

By construction, the components of Definition 9 define
a planning task that simulates a given DTM T . More pre-
cisely, for a given DTM T = 〈Q,Γ,Σ, q0, qf, δ〉 with input
s = v0 . . . vn−1, the planning task ΠT = 〈Ξ, IT (s), qf, 0〉
with Ξ = 〈PT , AT ,0〉 simulates the behavior of T . In other
words, after executing the unique plan π for ΠT , the vari-
ables contenti,c ∈ PT with 0 ≤ i < kT (n) and c ∈ {0, 1}
encode the function fT (s) computed by T in binary. Note
that, by construction, for each 0 ≤ i < kT (n), either con-
tenti,0 or contenti,1 is true after executing π.

Since we assume that all (generic) action cost functions
are computable, we know that for every action a there exists
a DTM Ta that computes the function fTa(s) = C(s, a)
for all states s. We further assume that Ta is space-bounded
polynomially (or more tightly). In the following, we choose
such a DTM Ta that computes this function asymptotically
optimally. Informally, this means that for large inputs, Ta
will at worst perform a constant factor (regardless of input
size) worse than the best possible DTM. This is necessary to
ensure that Ta maintains the same complexity as the generic
cost function.

Next, we define and explain a translation called fSDAC that
transforms a given planning task with SDAC into a planning
task with CAC (Definition 10).
Definition 10 (SDAC translation). Let Π = 〈Ξ, I,G,B〉
be a an SDAC planning task with Ξ = 〈P,A,C〉. We de-
fine the SDAC translation as the tuple of functions f SDAC =
〈f SDAC
ξ , f SDAC

ι , f SDAC
g 〉, which are defined and described

in detail below and which yield the new planning task
F SDAC(Π).

In the following we define and describe the function-
ing of the SDAC translation fSDAC (Definition 10) and as-
sume Nm = {0, . . . ,m}. We first define the new set of
propositional variables P ′, the new set of actions A′ and
the new cost function C ′, which result from fSDAC

ξ , i.e.,
fSDAC
ξ (Ξ) = 〈P ′, A′, C ′〉.

P ′ = P ∪
⋃
a∈A

PTa

∪ {idle} (1)
∪ {startinga | a ∈ A} (2)
∪ {copyingToTapeai , | a ∈ A, i ∈ N|P |} (3)

∪ {simulatingDTMa | a ∈ A} (4)
∪ {readingFromTapeai , | a ∈ A, i ∈ NkTa (|P |)} (5)

The new propositions P ′ include all propositions PTa
needed to encode the configurations of all cost Turing ma-
chines Ta as well as additional propositions that encode

361

π′ = I′ s′1 s′2 s′3 s′4 s′5

s′6s′7s′8s′9

startActiona [0] testPreconda [0] copyToTapea0,0 [0]

copyToTapea0,1 [0]

startDTMSima [0] simulate
DTM Ta [0]

finishDTMSima [0]
evalCosta0,0 [0]

evalCosta0,1 [1]

evalCosta1,0 [0]

evalCosta1,1 [2]

finishActiona [0]

cost of π′ = 2

Figure 1: Visualization of the plan π′ resulting from the fSDAC translation for the task Π′ = F SDAC(Π) of Example 2. This plan
corresponds to the original plan π for Π consisting of a single action a. The red actions are part of π′ and the action cost of each
action is shown in the square brackets. The black actions are not applicable by construction.

mutually exclusive phases of the translation of all actions
a: (1) an idle phase when no action is currently selected;
(2) a phase startinga when action a has been selected as the
next action to execute; (3) a copying phase during which
the original propositions of the planning task are copied
onto the Turing machine tape (technically: into new propo-
sitions representing the Turing machine tape content, called
copyingToTapeai for each original proposition index i); (4) a
phase during which the Turing machine Ta is simulated,
called simulatingDTMa; and (5) a phase during which the
cost value computed by Ta is read from the Turing ma-
chine tape (technically: from the new propositions encod-
ing the tape content) bit by bit, and corresponding partial
costs for the active bits are incurred in the new planning task
F SDAC(Π), called readingFromTapeai for each relevant tape
cell index i.

The new set of actions A′ contains, for each original ac-
tion a, new actions transitioning between those phases as
well as new actions executing the phases.

A′ =
⋃
a∈A

A′a with

A′a =

{startActiona} (6)
∪ {testPreconda} (7)
∪ {copyToTapeai,1 | i ∈ N|P |−1} (8)

∪ {copyToTapeai,0 | i ∈ N|P |−1} (9)

∪ {startDTMSima} (10)

∪ {simDTMStepaa′ | a′ ∈ ATa} (11)
∪ {finishDTMSima} (12)
∪ {evalCostai,1 | i ∈ NkTa (|P |)−1} (13)

∪ {evalCostai,0 | i ∈ NkTa (|P |)−1} (14)

∪ {finishActiona} (15)

Preconditions and effects of those actions are as fol-
lows (we abbreviate content as ct, copyingToTape as cp,
simulatingDTM as sim, and readingCostFromTape as rd):
• startActiona = 〈idle,¬idle ∧ startinga ∧ reset-dtma〉,

where reset-dtma ≡
∧
x∈PTa

x
.
= ITa(0)(x).

(Action a is selected as the next action to be executed, a
transition from the idle phase to the startinga phase oc-
curs, and all Turing machine variables of Ta are reset to
their initial values.)

• testPreconda = 〈startinga ∧ pre(a),¬startinga ∧ cpa0〉.
(The precondition of a is tested and, if successful, the
phase is entered during which the Turing machine tape
is filled.)

• copyToTapeai,1 = 〈cpai ∧pi,¬cpai ∧cpai+1∧cti,1∧¬cti,0〉,
copyToTapeai,0 = 〈cpai ∧¬pi,¬cpai ∧cpai+1∧cti,0∧¬cti,1〉.
(The value of pi is copied to the tape, either as a 1 by the
first action, or as a 0 by the second action.)

• startDTMSima = 〈cpa|P |,¬cpa|P | ∧ sima〉.
(Once all propositions have been written to the tape, the
Turing machine simulation phase is entered.)

• simDTMStepaa′ = 〈sima ∧ pre(a′), eff(a′)〉.
(The Turing machine step encoded by action a′ is simu-
lated, provided we are in the simulation phase.)

• finishDTMSima = 〈sima ∧ stateqf ,¬sima ∧ rda0〉.
(Once the Turing machine simulation has reached the final
state qf of the machine, the simulation terminates and the
cost evaluation phase is entered.)

• evalCostai,1 = 〈rdai ∧ cti,1,¬rdai ∧ rdai+1〉,
evalCostai,0 = 〈rdai ∧ cti,0,¬rdai ∧ rdai+1〉.
(The value of the i-th least significant bit from the cost
value is read from the tape, either as a 1 by the first action,
or as a 0 by the second action. Actions evalCostai,1 are the
only actions in the translation with non-zero costs – see
below.)

• finishActiona = 〈rdakT (|P |),¬rdakT (|P |) ∧ eff(a) ∧ idle〉.
(Once the cost value has been read from the tape, the ef-
fect of the original action a is applied – this has to happen
after the cost evaluation, since otherwise the effect could
change the values of variables on which the cost of a de-
pends – and the idle phase is entered again.)
The new action cost function C ′ assigns a cost of zero

to all actions except for the evalCost actions that read the

362

computed cost value c from the tape (in binary) and make
sure that costs of c are accumulated in the planning task.
This is achieved by reading the value bitwise, such that the
action evalCostai,1 costs 2i when the bit is in the i-th position
and is set to 1. If it is set to 0, it contributes cost 0. Formally,

C ′(s, a′) =

{
2i if a′ ∈ {evalCostai,1 | i ∈ NkTa (|P |)−1}
0 otherwise

for all s ∈ S, a′ ∈ A′.

Together, P ′, A′, and C ′ form the translated domain:

fSDAC
ξ (〈P,A,C〉) = 〈P ′, A′, C ′〉.

Finally, fSDAC
ι and fSDAC

g are defined a follows.

fSDAC
ι (p) =

{
1 if p = idle
0 otherwise

fSDAC
g = idle.

Before we show that fSDAC is indeed a compilation
scheme (Theorem 2), i.e., satisfies the two criteria of Def-
inition 6, let us consider Example 2 to get a better under-
standing of the functioning of fSDAC.

Example 2. Consider a simple SDAC planning task Π =
〈Ξ, I,G, 2〉 with one propositional variable p0, one action
a = 〈¬p0, p0〉 and cost function C(s, a) = 2 · 1p0 .=0, i.e.,
Ξ = 〈{p0}, {a}, C〉. We assume that Ta computes the func-
tion fTa(s) = C(s, a) for all states s requiring two tape
cells. Furthermore, Π has the initial state I(p0) = 0 and the
goal description G = p0. Clearly, the unique plan for Π is
π = 〈a〉 with cost 2.

Let us now consider the task Π′ = F SDAC(Π) induced
by the SDAC translation f SDAC (Definition 10). The unique
plan π′ for Π′ is visualized in Figure 1. In the initial state
I′ of Π′, all variables are false except idle. Thus, the only
initially applicable action is startActiona, leading to state
s′1. After that, the action testPreconda is applicable, since
the original precondition pre(a) holds in s′1. Now the value
of p0 is written to the tape of the DTM Ta which we sim-
ulate within the planning task. Since p0 is false, only the
copyToTapea0,0 action is applicable. The next actions start,
execute, and terminate the simulation of the DTM Ta, which
computes the cost of action awith respect to the current state
(p0

.
= 0). Now the cost evaluation begins, which reads the

output of Ta from the new propositions representing the tape
content of the Turing machine. The cost of applying action a
in (p0

.
= 0) is two, which is why the output tape reads 01 in

binary. Therefore, the first evaluation action costs 0 · 20 = 0
and the second costs 1 · 21 = 2. Finally, action a is finished,
which leads us to the goal state. The only action with non-
zero cost was the evaluation action with a cost of 2, which is
why the final plan π′ for Π′ has a cost of 2.

Theorem 2. For tasks from a lifted domain L = 〈D, C〉 with
a generic cost function C in FPSPACE, the SDAC transla-
tion f SDAC is a compilation scheme from SDAC tasks to CAC
tasks.

Proof. We have to show that fSDAC preserves bounded plan
existence, that fSDAC

ξ , fSDAC
ι , and fSDAC

g are of polyno-
mial size, and that the resulting tasks are CAC tasks. Plan
existence (ignoring plan costs) is preserved by construc-
tion: for every occurrence of an action a in a plan π for
Π, there is a unique sequence of actions π′a in F SDAC(Π)
that is applicable in the state corresponding to s (with all
fresh variables except for idle set to 0) iff a is applica-
ble in s. This sequence π′a is startActiona, testPreconda

followed by appropriate copyToTapeai,1 and copyToTapeai,0
actions, startDTMSima, simDTMStepaa′ for each step of
the DTM simulation, finishDTMSima, and appropriate
evalCostai,1 and evalCostai,0 actions, concluded by an in-
stance of finishActiona.

Costs are preserved since the cost C(a, s) of a in s is ex-
actly reflected by the sum of costs of the applied evalCostai,1
and evalCostai,0 actions, and all other actions in F SDAC(Π)
cost nothing. Also, the translation does not introduce any
new plans that are not present in Π: Since the goal requires
that idle is 1 and finishActiona is the only action with this ef-
fect, a goal state can only be reached if a sequence of actions
π′a has been completely executed. Once an action sequence
π′a has been started, no further action sequence π′a′ can be
started, since idle is not set to 1 until the finishActiona is
executed, and thus the complete sequence π′a has been exe-
cuted. Finally, all actions of a sequence π′a have a fixed order
with mutually exclusive phases, which proves that the trans-
lation does not introduce any new plans.

All newly added propositional variables and actions not
related to the simulation of the DTM used to compute the
cost function are polynomially bounded by the size of the in-
put task Π. Furthermore, the number of propositions and ac-
tions necessary to simulate the DTM is bounded by the space
required of T , i.e., kT (|P |). Thus, since C ∈ FPSPACE,
the compiled task is only polynomially larger than the in-
put task. The resulting tasks are obviously CAC tasks, as
C ′(s, a′) does not depend on s.

Note that the SDAC translation only requires polynomial
time. Finally, with Theorem 3, we prove that fSDAC preserves
plan length polynomially, provided a generic cost function in
FP.
Theorem 3. For tasks from a lifted domain L = 〈D, C〉 with
a generic cost function C in FP, the SDAC translation f SDAC

preserves plan length polynomially.

Proof. Each action a of the original plan π for Π is re-
placed by a sequence of actions π′a in the compiled task
Π′ = F SDAC(Π) as described in the proof of Theorem 2. Ac-
tions of a type that appear only once in π′a, like startActiona,
are uncritical. Actions of the types copyToTapeai,1 or
copyToTapeai,0, and evalCostai,1 or evalCostai,0 generally ap-
pear more than once, but their number is bounded by
kT (|P |), which, by assumption that C ∈ FP, is polynomial
in size of Π.

The number of simDTMStepaa′ steps simulating the cost
DTM of a is also bounded by a polynomial, as C ∈ FP.
Since each action a of the original plan π for task Π is sub-
stituted by polynomially many actions π′a, the entire length

363

of the plan π′ for Π′ is also only polynomially longer than
the original plan π.

The compilability result for FP cost functions raises the
question whether a similar translation also works for FNP
cost functions. On the one hand, simulating an NTM instead
of a DTM as part of a planning task is unproblematic, since
action choices match the nondeterminism of an NTM, and
unsuccessful runs of an NTM can be reflected in action se-
quences leading to dead-end states. On the other hand, FNP
action cost functions, where the certificates to be verified
are the cost values themselves, do not seem to be the ap-
propriate complexity class to study when allowing nonde-
terminism. E. g., the cost function mapping an encoding of
a propositional formula ϕ to 1 if ϕ is satisfiable, and to 0,
otherwise, is not in FNP (unless P = NP), but rather in
FPNP. For oracle TMs, we are not aware of a simulation by
a planning task where the plan length remains polynomially
bounded. Instead of studying such oracle TMs further, we
now focus our attention on two impossibility results involv-
ing FPSPACE and FP cost functions.

Impossibility Results
In the following, we prove two impossibility theorems,
showing that it is impossible to compile SDAC with generic
cost functions in FPSPACE away while preserving both task
sizes and plan lengths polynomially, unless the polynomial
hierarchy collapses at the third level (Theorem 4), and that it
is impossible to compile SDAC with generic cost functions
in FP away while preserving plan lengths linearly (Theo-
rem 5).

Theorem 4. There does not exist a compilation scheme
compiling away SDAC with generic cost functions in
FPSPACE that preserves plan length polynomially, unless
the polynomial hierarchy collapses at the third level.

Proof. Consider a lifted domain L = 〈D, C〉 consisting of
a family D = {(P,A)ji}i,j∈N0

of domain contexts such that
P ji consists of i different propositional atoms, and j enumer-
ates all such P ji with i different atoms. Action set Aji = {a}
consists of a single action a for all i, j ∈ N0. Action a can
always be executed and produces a state satisfying the goal.
The generic cost function C induces cost functionsC that re-
turn 0 as the cost for executing a iff the initial state encodes
a yes-instance of a PSPACE-complete problem (e.g., QBF),
and 1 otherwise. Consider now the tasks Πj

i , with B = 0.
Obviously, each planning task corresponds to an instance of
the PSPACE-complete problem and we can use the generic
cost function to decide the language.

Assuming now a compilation scheme as mentioned above
would imply that we could produce tasks F (Πj

i) that are
only polynomially larger than Πj

i with successful plans that
have length polynomially longer than the original plans.
Since we had only one action in Πj

i , successful plans of
F (Πj

i) have a length that is polynomial in the size of Πj
i ,

and therefore F (Πj
i). Deciding plan existence for planning

tasks when only plans of polynomial length are allowed

is, however, obviously a problem in NP. Making no as-
sumption about the computational mechanism that generates
the compiled tasks, it might be the case that for each do-
main size a different form of domain is generated, i.e., the
compilation is essentially non-uniform. In other words, we
could solve PSPACE-complete problems in NP/poly, i.e.,
PSPACE ⊆ NP/poly.3 By a result by Yap (1983), this im-
plies Σ3

p = co-Σ3
p, i.e., a collapse of the polynomial hierar-

chy at the third level.

Theorem 5. There does not exist a compilation scheme
compiling away SDAC with generic cost functions in FP that
preserves plan length linearly.

Proof. We use the same construction as above with the mod-
ification that instead of a PSPACE-complete problem we
consider a generic cost function that decides PARITY, i.e.,
are there an even number of 1’s. Assuming now a constant
blowup of the plans by k (with perhaps an additive constant
c), compiling Πj

i to F (Πj
i), we have to consider only plans

of length k + c. Since the domains can grow polynomially,
there can only be p(||Πj

i ||) different actions and therefore
only p(||Πj

i ||)k+c, i.e., polynomially many different plans.
Each such plan could be translated into a circuit of constant
depth. In other words, the problems, one can solve using
planning domains with plans that have a constant number
of actions in a plan are those in the class AC0. It is, however,
well-known that PARITY is not a member of AC0 (Furst,
Saxe, and Sipser 1984), hence, a compilation with the re-
strictions mentioned in the theorem is impossible.

Discussion
Contrasting the result that preserving task sizes polynomi-
ally and plan lengths linearly at the same time is impossible
(Theorem 5) with existing translations of state-dependent
action costs, we can observe that the worst-case exponential
task-size increase of the combinatorial translation (Geißer,
Keller, and Mattmüller 2015) is unavoidable, as this trans-
lation preserves plan lengths exactly. This reasoning does
not apply to the EVMDD-based translation (Geißer, Keller,
and Mattmüller 2015), though, which has a low polynomial
plan-length increase (||π′|| ≤ (|P |+ 2) · ||π||).

Our results shed some additional light on the advantages
and disadvantages of different ways of dealing with state-
dependent action costs in planning models and algorithms.
Those options include: (a) Do not compile state-dependent
action cost away at all, but rather keep them in the model and
support them natively in algorithms which avoids the over-
head introduced by compilation. Representing cost func-
tions declaratively, in closed form, is possible for functions
such as polynomials. One successful example is the work
on symbolic search with EVMDDs (Speck, Geißer, and
Mattmüller 2018a,b). For more complicated cost functions

3Recall that NP/poly is the non-uniform analogue of NP,
i. e., the class of problems solvable by an NTM with access to a
polynomial-bounded advice function that provides an advice string
to the NTM that may depend on the length of the input, but not on
the input itself.

364

(e. g., the motion cost of a robot provided by an external mo-
tion planner), representing them using semantic attachments
or similar mechanisms (Dornhege et al. 2009; Gregory et al.
2012; Haslum et al. 2018) may be advisable, but that comes
at the price of making them less accessible to parts of plan-
ning algorithms such as goal-distance heuristics. (b) Com-
pile them away using the DTM-based approach. This pre-
serves task sizes polynomially, but fails to preserve plan
lengths. We doubt the practical usefulness of such a com-
pilation, though, and view it as a purely theoretical con-
struction. Its heuristic-friendliness is also an open question.
(c) Compile them away with the combinatorial translation.
This necessarily leads to an exponential growth in task sizes
while preserving plan lengths exactly. It is heuristic-friendly
by construction. (d) Compile them away with the EVMDD-
based translation. The increase in planning task size de-
pends on the amount of additive separability of the cost
functions. Highly additively separable functions like linear
combinations of state features only lead to a polynomial in-
crease in planning task size, while in the worst case, that in-
crease can be exponential. Plan lengths are guaranteed to be
preserved polynomially. This translation is often heuristic-
friendly (Geißer 2018).

Notice that hybrid forms are also possible, like native han-
dling of state-dependent cost in the search algorithm com-
bined with a heuristic computation operating on a translation
(Geißer 2018).

Conclusion
We established a comprehensive classification of compil-
ability and non-compilability of state-dependent action costs
for combinations of action cost functions and possible cost
measures for the compilations. Generic cost functions with
a computational complexity beyond FPSPACE were not
considered, since planning with constant action costs is in
FPSPACE itself, and hence planning complexity would be
dominated by that of evaluating cost functions. The results
for the case in which the planning task sizes ought to be pre-
served polynomially are summarized in Table 1.

Acknowledgments
David Speck was supported by the German Research Foun-
dation (DFG) as part of the project EPSDAC (MA 7790/1-
1). We thank the anonymous reviewers for their comments
and suggestions.

References
Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence
69(1–2): 165–204.

Ciardo, G.; and Siminiceanu, R. 2002. Using Edge-Valued
Decision Diagrams for Symbolic Generation of Shortest
Paths. In Aagaard, M.; and O’Leary, J. W., eds., Proceedings
of the Fourth International Conference on Formal Methods
in Computer-Aided Design (FMCAD 2002), volume 2517
of Lecture Notes in Computer Science, 256–273. Springer-
Verlag.

Corraya, S.; Geißer, F.; Speck, D.; and Mattmüller, R. 2019.
An Empirical Study of the Usefulness of State-Dependent
Action Costs in Planning. In Benzmüller, C.; and Stuck-
enschmidt, H., eds., Proceedings of the 42nd Annual Ger-
man Conference on Artificial Intelligence (KI 2019), Lecture
Notes in Artificial Intelligence, 123–130. Springer-Verlag.

Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009. Semantic Attachments for Domain-
Independent Planning Systems. In Gerevini, A.; Howe, A.;
Cesta, A.; and Refanidis, I., eds., Proceedings of the Nine-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2009), 114–121. AAAI Press.

Furst, M. L.; Saxe, J. B.; and Sipser, M. 1984. Parity, Cir-
cuits, and the Polynomial-Time Hierarchy. Mathematical
Systems Theory 17(1): 13–27.

Geißer, F. 2018. On Planning with State-dependent Action
Costs. Ph.D. thesis, University of Freiburg.

Geißer, F.; Keller, T.; and Mattmüller, R. 2015. Delete Re-
laxations for Planning with State-Dependent Action Costs.
In Yang, Q.; and Wooldridge, M., eds., Proceedings of the
24th International Joint Conference on Artificial Intelli-
gence (IJCAI 2015), 1573–1579. AAAI Press.

Geißer, F.; Keller, T.; and Mattmüller, R. 2016. Abstractions
for Planning with State-Dependent Action Costs. In Coles,
A.; Coles, A.; Edelkamp, S.; Magazzeni, D.; and Sanner, S.,
eds., Proceedings of the Twenty-Sixth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2016),
140–148. AAAI Press.

Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning Modulo Theories: Extending the Planning Paradigm.
In McCluskey, L.; Williams, B.; Silva, J. R.; and Bonet,
B., eds., Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling (ICAPS
2012), 65–73. AAAI Press.

Haslum, P.; Ivankovic, F.; Ramı́rez, M.; Gordon, D.;
Thiébaux, S.; Shivashankar, V.; and Nau, D. S. 2018. Ex-
tending Classical Planning with State Constraints: Heuris-
tics and Search for Optimal Planning. Journal of Artificial
Intelligence Research 62: 373–431.

Ivankovic, F.; Gordon, D.; and Haslum, P. 2019. Planning
with Global State Constraints and State-Dependent Action
Costs. In Lipovetzky, N.; Onaindia, E.; and Smith, D. E.,
eds., Proceedings of the Twenty-Ninth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2019),
232–236. AAAI Press.

Nebel, B. 2000. On the Compilability and Expressive Power
of Propositional Planning Formalisms. Journal of Artificial
Intelligence Research 12: 271–315.

Savitch, W. J. 1970. Relationships Between Nondetermin-
istic and Deterministic Tape Complexities. Journal of Com-
puter and System Sciences 4: 177–192.

Speck, D.; Geißer, F.; and Mattmüller, R. 2018a. Sym-
bolic Planning with Edge-Valued Multi-Valued Decision Di-
agrams. In de Weerdt, M.; Koenig, S.; Röger, G.; and Spaan,
M., eds., Proceedings of the Twenty-Eighth International

365

Conference on Automated Planning and Scheduling (ICAPS
2018), 250–258. AAAI Press.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018b. SYM-
PLE: Symbolic Planning based on EVMDDs. In Ninth Inter-
national Planning Competition (IPC-9): planner abstracts,
91–94.
Yap, C. 1983. Some Consequences of Non-Uniform Con-
ditions on Uniform Classes. Theoretical Computer Science
26: 287–300.

366

