
Scheduling Stochastic Jobs - Complexity and Approximation Algorithms

Liangde Tao1, Lin Chen2∗, Guochuan Zhang1

1 College of Computer Science, Zhejiang University
2 Department of Computer Science, Texas Tech University

vast.tld@gmail.com, chenlin198662@gmail.com, zgc@zju.edu.cn

Abstract

Uncertainty is an omnipresent issue in real-world optimiza-
tion problems. This paper studies a fundamental problem
concerning uncertainty, known as the β-robust scheduling
problem. Given a set of identical machines and a set of jobs
whose processing times follow a normal distribution, the goal
is to assign jobs to machines such that the probability that all
the jobs are completed by a given common due date is max-
imized. We give the first systematic study on the complex-
ity and algorithms for this problem. A strong negative result
is shown by ruling out the existence of any polynomial-time
algorithm with a constant approximation ratio for the gen-
eral problem unless P=NP. On the positive side, we provide
the first FPT-AS (fixed parameter tractable approximation
scheme) parameterized by the number of different kinds of
jobs, which is a common parameter in scheduling problems.
It returns a solution arbitrarily close to the optimal solution,
provided that the job processing times follow a few different
types of distributions. We further complement the theoreti-
cal results by implementing our algorithm. The experiments
demonstrate that by choosing an appropriate approximation
ratio, the algorithm can efficiently compute a near-optimal
solution.

Introduction
Scheduling is a fundamental problem in computer science
and has received extensive study in the literature. The classi-
cal scheduling problems, where jobs have deterministic pro-
cessing times, are well understood. However, in many real-
world scheduling problems, the uncertainty of the input data
is inevitable. This is particularly the case in the scheduling
and planning of activities of multiple agents under an un-
certain environment (see, e.g., (Hiatt et al. 2009)). Unfor-
tunately, the stochastic version of the scheduling problem,
where jobs have processing times that follow a certain dis-
tribution, is much more challenging and far from well un-
derstood so far.

Very recently, Stec et al. (2019) revisited the central prob-
lem proposed by Daniels and Carrillo (1997), known as the
β-robust scheduling problem. Specifically, Stec et al. (2019)
considered the problem, where each job has a processing

∗Corresponding author.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time that follows a normal distribution. The goal is to assign
jobs to machines in order to maximize the probability that
all the jobs are completed by a given common due date.

Many real-world applications, such as network routing,
can be viewed as an example of the β-robust scheduling
problem. Consider the traffic demands between a pair of
nodes s and t in the network. Each traffic demand can be
viewed as a (stochastic) job and needs to be routed through
one of the links (or paths) between s and t. Each link can
be viewed as a machine, which can accept traffic demands
(jobs) up to the bandwidth limitation. The goal is to dis-
tribute traffic demands (jobs) among links (machines) which
maximizes the probability that the total load of every link
is no more than the bandwidth limitation. One very com-
mon network structure is the ring topology, where there are
exactly two links between s and t, and hence the number
of machines is 2. It is known that that typical traffic de-
mands like web surfing, downloading, streaming, etc., usu-
ally belong to a few categories (e.g., routers manufactured
by Huawei limit the maximum number of different types of
traffic demands to be 16). Approximating the traffic demand
in each category via the normal distribution is also a com-
mon approach (Pras et al. 2009).

Stec et al. (2019) proposed an algorithm for the β-robust
scheduling problem based on Branch-and-Price and demon-
strated its efficiency through experiments. Motivated by this,
it is natural to ask whether the problem admits an efficient
algorithm with a theoretical approximation ratio guarantee.
Indeed, given that the deterministic scheduling problem has
several simple heuristics with a small approximation ratio
(e.g., List-Scheduling (Graham 1969)), and that normal dis-
tribution is a class of common distribution that is usually
considered as “mild” in stochastic scheduling (contrasting to
those distributions with a heavy tail), one may well expect a
good approximation algorithm. Unfortunately, we prove that
such an algorithm does not exist under a standard complex-
ity assumption. In the meantime, we also establish efficient
algorithms by exploiting parameters that are typically small
and complement our theoretical results through experiments.
The specific contribution of this paper is as follows.

Our Contribution
This paper gives the first systematic study on the approx-
imability of β-robust scheduling on parallel machines. As a

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

367

strong negative result, we prove that no polynomial time al-
gorithm can distinguish between an instance of the β-robust
scheduling with an objective value arbitrarily close to 1 and
an instance with an objective value arbitrarily close to 0 un-
less P=NP. This immediately rules out any polynomial time
algorithm with a multiplicative approximation ratio of O(1)
as well as that with an O(1) additive error.

We then investigate the problem where a parame-
ter can be utilized to break the strong complexity bar-
rier. We first establish an algorithm which runs in
O((1

εn
2mµmax log(nσmax))m)time and returns a near-

optimal solution. Here, m,n are the number of machines
and jobs, respectively, and µmax and σmax are the maximal
mean and standard deviation among all normal distributions.
It is not hard to see that the running time of the algorithm
relies heavier on µmax than σmax. This coincides with the
complexity proof, where the reduction consists of normal
distributions with arbitrary means but unit standard devia-
tion. Consequently, our results illustrate that, interestingly,
the mean is much more critical than the standard deviation.
It remains an important open problem whether this observa-
tion holds for more general distributions.

Next, we establish an algorithm that returns a near-
optimal solution and runs in O((1

ε)2m(mk)O(mk)L2m+1)
time, where L is the length of the input and k is the number
of different kinds of jobs, i.e., job processing times only be-
long to k distinct normal distributions. Following the recent
advances in the FPT (fixed-parameter tractable) algorithms
for deterministic scheduling problems (see, e.g., (Mnich and
Wiese 2015; Knop and Kouteckỳ 2018)), this is the first
FPT algorithm for robust scheduling models. It indicates that
the common observation in deterministic scheduling prob-
lems, where reducing the ”diversity” of jobs greatly im-
proves tractability, is also true in robust scheduling.

Finally, we complement our theoretical results by imple-
menting our FPT algorithm. The experimental results show
that with a reasonably small error, our algorithm also runs
efficiently in practice.

Formal Statement of the Problem

The β-robust scheduling problem (β-RSP) is characterized
by a set of n independent jobs J = {1, . . . , n} and a set
of m parallel identical machines M = {1, . . . ,m}. Each
job j ∈ J has a stochastic processing time pj obeying
independent normal distribution with mean µj ∈ N and
variance σ2

j ∈ N+. The common due date is denoted by
δ ∈ N. Here β denotes the formulation of the objective
i.e., the probability of the maximum load not exceeding the
common due date. Using the three-field notation (Graham
et al. 1979), the problem can be represented by P |pj ∼
N (µj , σ

2
j)|Pr[Cmax ≤ δ]. To exclude the trivial cases,

we assume n > m so that in optimal solutions each ma-
chine would handle at least one job. Let Φ be the cumulative
function of the standard normal distribution N (0, 1). The
β-robust scheduling problem can be formulated as the fol-
lowing non-linear integer program (NIP).

max
∏
i∈M

Φ(
δ − µMi√

σ2
Mi

)

s.t.
∑
j∈J

µj · xij = µMi
∀i ∈M (1a)

∑
j∈J

σ2
j · xij = σ2

Mi
∀i ∈M (1b)

∑
i∈M

xij = 1 ∀j ∈ J (1c)

xij ∈ {0, 1} ∀i ∈M, j ∈ J
The binary decision variable xij = 1 denotes that job j is

scheduled on machine i, and xij = 0 otherwise.
We explain the above formulation. Note that normal

distribution has the following property: the summation of
finitely many independent normally distributed variables is
also a normally distributed random variable, with its mean
equaling the summation of means, and variance equaling the
summation of variances. First, notice that Eq (1c) enforces
that every job has to be scheduled on exactly one machine. In
Eq (1a) and Eq (1b), we consider all jobs scheduled on ma-
chine i, the summation of their processing time is a normally
distributed random variable with mean µMi

=
∑
j∈J µj ·xij

and variance σ2
Mi

=
∑
j∈J σ

2
j · xij .

The objective of NIP is straightforward. Given the mean
and variance of the random variable that represents the load
of each machine, the probability that the load of machine i
does not exceed the common due date δ can be expressed by
Φ(

δ−µMi√
σ2
Mi

). Consequently, the probability that the load for

each machine does not exceed the common due date δ is the
product of the probability for each machine.

Related Work
Unlike the well-understood classic scheduling problem, how
to handle stochastic processing times is a big challenge. To
this end, Daniels and Carrillo (1997) firstly introduced the
β-robust measure for single machine scheduling minimiz-
ing the total flow time and gave the NP-hardness proof. In
their model, the processing time of each job is independent
and obeys normal distribution. They proposed a branch-and-
bound algorithm to solve this problem which could only
handle 20 jobs. More efficient and heuristic algorithms were
also addressed by Wu et al. (2009). Latter, Alimoradi et
al. (2016) generalized the problem to parallel identical ma-
chines setting and obtained an exact algorithm that has better
performance on the data set. Recently, Zhang et al. (2018)
addressed another variant, where the independent normal
distribution assumption is not required. In their model, the
job’s processing times are not independent. Only mean and
covariance are known, the aim is to maximize the probabil-
ity of total flow time no greater than the given threshold in
the worst case.

Under identical machine setting, Ranjbar et al. (2012) and
Stec et al. (2019) considered the β-robust scheduling mini-
mizing the makespan and propose exact algorithms. Their

368

algorithms are based on the same nonlinear programming
model and able to solve instances with 6 machines and 20
jobs within 1000 seconds. Under unrelated machine set-
ting, Pishevar et al. (2014) took the total completion time as
the objective. The authors approximately modeled the prob-
lem with mixed-integer programming and devise a heuris-
tic algorithm. Different from the β-robust measure, stochas-
tic scheduling aims at minimizing/maximizing the expected
value of the objectives, see, e.g. (Bruno, Downey, and Fred-
erickson 1981; Glazebrook 1979; Jäger and Skutella 2018;
Im, Moseley, and Pruhs 2015; Eberle et al. 2019; Möhring,
Schulz, and Uetz 1999; Megow, Uetz, and Vredeveld 2006;
Skutella, Sviridenko, and Uetz 2016).

In recent years, there are some breakthroughs on FPT
algorithms for scheduling (Mnich and Wiese 2015) and
followed by several works including (van Bevern, Nie-
dermeier, and Suchỳ 2017; Chen et al. 2017; Knop and
Kouteckỳ 2018; Jansen, Maack, and Solis-Oba 2020). We
refer the reader to a nice survey (Mnich and van Bevern
2018). Most of the existing results are on deterministic
scheduling problems, while we are not aware of FPT algo-
rithms for the stochastic/robust version.

Preliminaries
In general, approximation algorithms are defined with re-
spect to the multiplicative ratio.

Definition (α-approximation algorithm). For a maximiza-
tion problem, ALG is an α-approximation algorithm if for
any instance I of the problem it holds that ALG(I) ≥
α ·OPT (I).

In this paper, we are primarily interested in algorithms
with a small additive error, as defined below.

Definition (approximation algorithm with additive error ε).
For a maximization problem, ALG is an approximation al-
gorithm with additive error ε if for any instance I of the
problem it holds that ALG(I) ≥ OPT (I)− ε.
Definition (Parameterized algorithm). For an instance of a
parameterized problem Π ⊆ Σ∗×N, a pair (x, k) consists of
the input x and the parameter k. A parameterized problem
is fixed-parameter tractable (FPT) if there is an algorithm
solving any instance of Π with parameter k and size n in
f(k) · poly(n) time for some computable function f .

Inapproximability
The goal of this section is to show that the β-robust schedul-
ing problem remains hard to approximate even the number
of machines is restricted to 2. More specifically, we prove
the following theorem.

Theorem 1. For any c ∈ (0, 1), there is no polynomial time
algorithm that can return a feasible solution with objective
value at least OPT − c for any instance of the problem
2|pj ∼ N (µj , σ

2
j)|Pr[Cmax ≤ δ], assuming P 6= NP .

Towards the proof, we reduce from 2 -PARTITION . The
instance of the problem and the solution is given as follows:

2-PARTITION
Input: S={1, . . . , n}, w=(w1, . . . , wn)∈Nn guarantee-
ing

∑
i∈S wi=2M .

Output: Is there S′⊆S such that
∑
i∈S′wi=

∑
i∈S\S′wi?

Proof of Theorem 1. As we know, 2 -PARTITION is a
weakly NP-hard problem. Assume P 6= NP , there is no
polynomial time algorithm for 2 -PARTITION (Garey
and Johnson 2002). Given an instance (n,w,M) of
2 -PARTITION , we construct an instance (δ, µ, σ) of the
β-robust scheduling problem with 2 machines, n jobs, the
common due date δ = (M + 1

2)n and µj = nwj , σ
2
j = 1

for each job. All jobs constructed have a uniform standard
deviation.

Recall the formulation of the non-linear integer program
(NIP). Suppose the answer of 2 -PARTITION instance
(n,w,M) is “yes”. Then it is possible to distribute jobs on
two machines such that for jobs on each machine, the sum-
mation of their means is exactly Mn. Consequently, the ob-
jective value of NIP becomes Φ(

√
n

2) ·Φ(
√
n

2), since Φ is the
cumulative function of standard normal distribution.

Suppose the answer of 2 -PARTITION instance
(n,w,M) is “no”. Then it is impossible to evenly distribute
all jobs regarding their means. In particular, in any feasible
solution the expected load of one machine is (M + τ)n
and of the other machine is (M − τ)n, for some integer
τ ≥ 1. Given that δ = (M + 1

2)n, it is easy to see that
for the machine whose expected load is (M + τ)n, the
probability that the random variable is bounded by δ is
Φ(−(τ − 1

2)
√
n) ≤ Φ(−

√
n

2). That is, for any feasible
solution, the objective value of NIP is no more than
Φ(−

√
n

2).

Note that as n → ∞, Φ(
√
n

2) → 1 and Φ(−
√
n

2) → 0.
Since c is a constant, for sufficiently large n, we have
Φ(
√
n

2) · Φ(
√
n

2) > c+1
2 and Φ(−

√
n

2) < 1−c
2 . Suppose

there exists a polynomial time algorithm that returns a solu-
tion with objective value at least OPT − c for any constant
c ∈ (0, 1). Then if the answer for 2 -PARTITION instance
(n,w,M) is “yes”, the algorithm should return a solution
for the constructed scheduling instance with objective value
strictly larger than c+1

2 − c = 1−c
2 . Otherwise, the algorithm

returns a solution with objective value strictly smaller than
1−c

2 . That is, such an algorithm for scheduling problem can
be used to solve 2 -PARTITION in polynomial time, which
is a contradiction.

Using the same reduction, the corollary below is also true.

Corollary 1. For any c ∈ (0, 1), there is no polynomial
time algorithm could give a c-approximation answer for any
instance of the problem P |pj ∼ N (µj , σ

2
j)|Pr[Cmax ≤ δ],

assuming P 6= NP .

Algorithms
Given Theorem 1, we know that if we aim for a good approx-
imation algorithm, then the running time is inevitably non-
polynomial (pseudo-polynomial or exponential) in some of

369

Algorithm 1 Dynamic Programming for β-RSP
Input: n,m, {µj}, {σ2

j }, δ
Output: an optimal assignment

1: F0 = {(0, . . . , 0)}
2: for h = 1 to n do
3: Fh = ∅
4: for all (µM1

, σ2
M1
, . . . , µMm

, σ2
Mm

) ∈ Fh−1 do
5: for i = 1 to m do
6: Fh ← Fh ∪ (. . . , µMi + µh, σ

2
Mi

+ σ2
h, . . .)

7: end for
8: end for
9: end for

10: return maxx∈Fn
obj(x)

the parameters. The research on FPT algorithms for the clas-
sical (deterministic) scheduling problem has revealed two
important parameters: the largest job processing time and
the number of distinct jobs (Chen et al. 2017; Knop and
Kouteckỳ 2018; Mnich and Wiese 2015). The two param-
eters yield tractability in theory. The question is, what are
their corresponding parameters in robust scheduling?

Parameters corresponding to the largest job processing
time. It is easy to see if the job processing time follows
a normal distribution, then two parameters contribute to the
realization of its processing time, mean and standard devi-
ation. A job may have a huge processing time if either of
the two parameters is large. It is thus natural to expect a
good algorithm if both the mean and standard deviation are
small. Indeed, we present an optimal algorithm (Algorithm
1) that runs polynomially in µmax and σmax if the num-
ber of machines is a constant, where µmax and σmax are the
largest mean and standard deviation. Somewhat surprisingly,
we show a near-optimal algorithm (Algorithm 2) that runs
polynomially in µmax and log σmax. This, combined with
the fact that our reduction in Theorem 1 only constructs jobs
with unit standard deviation, reveals the following interest-
ing fact: Although both mean and standard deviation con-
tributes to the random processing time, mean is much more
critical for robust scheduling problems in the sense there is
no complementary near-optimal algorithm that runs polyno-
mially in log µmax and σmax.

Parameters corresponding to the number of distinct
jobs. In deterministic scheduling problems, jobs of the
same kind refer to jobs of the same processing time. In ro-
bust scheduling, jobs with the same kind of processing times
follow the same distribution. Note that it does not necessar-
ily mean they have the same processing time. Nevertheless,
we are still able to establish a near-optimal FPT algorithm
(Algorithm 3) parameterized by the number of distinct dis-
tributions. In many real-world applications, the number of
distinct jobs (i.e., the parameter k) is reasonably small. Tak-
ing k as the parameter is acceptable. For example, in the
network routing problem (discussed in the introduction) the
parameter k is at most 16 which is a constant.

An Optimal Algorithm Pseudo-Polynomially in
Both Mean and Variance
The subsection is to establish a dynamic programming (Al-
gorithm 1) which is pseudo-polynomial in both the largest
mean and the largest variance.

We consider the following sub-problem: Is it possible to
assign the first h jobs, i.e., job 1, . . . , h, such that the sum-
mation of the means of all jobs on machine i is µMi and the
summation of their variances is σ2

Mi
?

Denote the sub-problem by a (2m+1)-dimensional vector
(h, µM1 , σ

2
M1
, . . . , µMm , σ

2
Mm

). If the answer is yes, then
the vector is feasible, called a stage-h state. We maintain
feasible states throughout the following algorithm where all
stage-h states are stored in Fh.

Initially, (0, . . . , 0) ∈ F0 is the only stage-0 state.
Iterative procedure: Suppose all stage-(h-1) states are

computed and stored in Fh−1 so far. For each stage-(h-1)
state (µM1 , σ

2
M1
, . . . , µMm , σ

2
Mm

) ∈ Fh−1, we compute m
stage-h states, which are (µM1 + µh, σ

2
M1

+ σ2
h, . . . , µMm ,

σ2
Mm

), . . . , (µM1
, σ2

M1
, . . . , µMm

+ µh, σ
2
Mm

+ σ2
h), each

corresponding to one extension of the partial solution by as-
signing job h to one of the machines.

Finally, after all the stage-n states are calculated and
stored in Fn, the algorithm simply selects one state from
Fn with the maximum objective value.

Theorem 2. Algorithm 1 gives an optimal solution for
the problem P |pj ∼ N (µj , σ

2
j)|Pr[Cmax ≤ δ] within

O(mn2m+1(µmaxσmax)m) time, where µmax = maxj µj
and σmax = maxj σ

2
j .

Proof. Suppose in an optimal assignment, machine i han-
dles all jobs in J∗i . For convenience, let J∗i (h) = J∗i ∩
{1, . . . , h}. We know for 1 ≤ h ≤ n, it holds that
(. . . ,

∑
j∈J∗i (h) µj ,

∑
j∈J∗i (h) σ

2
j , . . .) ∈ Fh. Hence, the op-

timal solution is contained in Fn.
It is not hard to see that the total number of opera-

tions done in Algorithm 1 is O(m
∑n
h=1 |Fh|). As all num-

bers involved are integers, the size of Fh is bounded by
(n2µmaxσmax)m.

A Near-Optimal Algorithm Pseudo-polynomially
in Mean
In this part, we show that if O(ε)-loss in the objective value
is allowed, then there exists an algorithm with running time
only pseudo-polynomial in the largest mean. Specifically, it
can be achieved by modifying Algorithm 1 a little bit. Re-
viewing Algorithm 1, the most time-consuming part is the
enumeration of all the possible states stored in F1, . . . ,Fn.
We seek to store fewer states without losing much. For the
normal distribution, the cumulative distribution function has
the property that when variables x, x̂ are close, the difference
between Φ(x) and Φ(x̂) is also small. The property can be
expressed as Lemma 1, which explains why we can round
the variance but not the mean. For an arbitrary normal dis-
tribution X ∼ N (µ, σ2), if we perturb the variance slightly
to generate a new random variable X̂ ∼ N (µ, σ̂2), then the
probability Pr(X̂ ≤ x) is close to Pr(X ≤ x), as is ensured

370

Algorithm 2 Approximation Scheme for β-RSP
Input: ε, n,m, {µj}, {σ2

j }, δ
Output: an (OPT−ε) assignment

1: ξ = ε/2nm

2: F̂0 = {(0, . . . , 0)}
3: for h = 1 to n do
4: Uh = ∅
5: for all (µM1

, σ̂2
M1
, . . . , µMm

, σ̂2
Mm

) ∈ F̂h−1 do
6: for i = 1 to m do
7: Uh ← Uh ∪ (. . . , µMi

+ µh, σ̂
2
Mi

+ σ2
h, . . .)

8: end for
9: end for

10: F̂h=Subroutine(Uh,Γµ,Γσ(ξ))
11: end for
12: return maxx∈F̂n

obj(x)

by Lemma 1. However, if we perturb the mean slightly, the
probability may change significantly.
Lemma 1. (Chen et al. 2019) For any x ∈ (−∞,∞) and
δ > 0, it holds that |Φ((1 + δ)x)− Φ(x)| ≤ δ.

In Algorithm 2, we no longer store all states. In each step,
a few representative states will be constructed and stored. In
the following step, Algorithm 2 will use the representative
states to generate new (representative) states. The key is to
bound the overall error introduced.

Let ξ = ε/2mn. Partition geometrically the set of integers
into Γσ(ξ) = {[0], (0, 1], (1, 1 + ξ], . . . , ((1 + ξ)γ−1, (1 +
ξ)γ]}, where (1+ξ)γ−1 <

∑
j σ

2
j ≤ (1+ξ)γ . To be consis-

tent, we define Γµ = {[0], [1], . . . , [
∑
j µj]}, which is essen-

tially a set of integers. Algorithm 2 proceeds in a very similar
way as Algorithm 1. We call (µM1 , σ̂

2
M1
, . . . , µMm , σ̂

2
Mm

) ∈
F̂h a trimmed stage-h state. We again start from the initial
trimmed stage-0 state (0, 0, · · · , 0) ∈ F̂0. Each stage-(h-
1) trimmed state gives rise to m vectors, where each com-
puted vector falls into one region partition by Γµ and Γσ(ξ).
In each region, the computed vectors are rounded up to a
trimmed stage-h state. Subroutine 1 summarizes the details
with the rounding procedure. The following lemma illus-
trates the relationship between Fh and F̂h and estimates the
error accumulated.
Lemma 2. For any (µM1

, σ2
M1
, . . . , µMm

, σ2
Mm

) ∈ Fh,
there exists (µM1

, σ̂2
M1
, . . . , µMm

, σ̂2
Mm

) ∈ F̂h such that

σ2
Mi
≤ σ̂2

Mi
≤ (1 + ξ)hσ2

Mi
.

Finally, we can show the near-optimality of Algorithm 2
as Theorem 3, with the help of the following lemmas.
Lemma 3. If ai, bi ∈ (0, 1), then it holds that |

∏m
i=1 ai −∏m

i=1 bi| ≤
∑m
i=1 |ai − bi|.

Lemma 4. For any x ∈ [0, 1] and m ≥ 1, it holds that
(1 + x/m)m ≤ 1 + 2x.
Theorem 3. For any ε > 0, Algorithm 2 gives an (OPT−ε)
solution for the problem P |pj ∼ N (µj , σ

2
j)|Pr[Cmax ≤ δ]

withinO((1
εn

2mµmax log(nσmax))m) time, where µmax =

maxj µj and σmax = maxj σ
2
j .

Subroutine 1 Subroutine-for-Algorithm 2
Input: F ,Γµ,Γσ
Output: F̂

1: for all S ∈ (Γµ × Γσ)m do
2: for i = 1 to m do
3: µMi = max{µMi : (. . . , µMi , . . .) ∈ F ∩ S}
4: σ̂2

Mi
= max{σ2

Mi
: (. . . , σ2

Mi
, . . .) ∈ F ∩ S}

5: end for
6: F̂ ← F̂ ∪ (µM1

, σ̂2
M1
, . . . , µMm

, σ̂2
Mm

)
7: end for

Proof. It is no hard to see that the total operations
done by Algorithm 2 is bounded by O(m

∑n
h=1 |F̂h|).

From the trim operation, the size of F̂h is bounded by
O((nµmax log1+ξ(nσmax))m), where ξ = ε/2nm. Sup-
pose x∗ = (µ∗M1

, σ2∗
M1
, . . . , µ∗Mm

, σ2∗
Mm

) is an optimal so-
lution. According to Lemma 2, there exists a corresponding
x̂ = (µ∗M1

, σ̂2
M1
, . . . , µ∗Mm

, σ̂2
Mm

) ∈ F̂n. Using Lemma 1
and Lemma 4, the total error could be bounded.

obj(x∗)− obj(x) ≤
m∑
i=1

|Φ(
δ − µ∗Mi√

σ2∗
Mi

)− Φ(
δ − µ∗Mi√

σ̂2
Mi

)|

≤
m∑
i=1

2nξ ≤ ε

A Near-optimal Algorithm Parameterized by
#Distinct Distributions
The subsection aims at an FPT approximation scheme pa-
rameterized by k, which is the number of different distri-
butions. It will be very useful in practice, where most job
processing times are i.i.d. (independent and identically dis-
tributed).

The basic idea is natural. We first guess two values for
each machine, the summation of means and the summation
of variances of jobs on this machine. For each guess (con-
sisting of 2m values), we use an integer linear program (ILP)
to test if it is possible to schedule jobs satisfying the guess.
Note that, however, the possible values for the summation
of means range within [0, nµmax], and the summation of
variances range within [0, nσmax], which are too many to
guess. Following our observation from Algorithm 2, with
O(ε)-loss in the objective value it suffices to round the sum-
mation of variances, i.e., we guess which interval of the form
[(1 + ξ)h−1, (1 + ξ)h] does the summation of variances lie
in. It is easy to see there are polynomially different kinds
of choices for the summation of variances of jobs on each
machine. Now turn to the summation of means of jobs on
each machine. Similarly, by Lemma 1 it suffices to geomet-
rically round its distance to δ. More specifically, given that
the summation of variances of jobs on this machine belongs
to ((1 + ξ)h−1, (1 + ξ)h] for some h ∈ N+, we guess which
interval of the form [δ + (1 + ξ)t−h/2, δ + (1 + ξ)t+h/2] or

371

Figure 1: Illustration of Algorithm 3 for one machine case

[δ− (1 + ξ)t+h/2, δ− (1 + ξ)t−h/2] does the summation of
means belong to. We remark that within an error of O(ε) it
is fine for a value to lie in multiple different intervals.

Suppose we guess out that for jobs on every machine i,
the summation of their means belongs to interval Sµi , and
the summation of their variances belongs to interval Sσ2

i
.

For every such guess, we establish an integer linear pro-
gramming – feasibility test as follows. And we denote it as
ILP({Sµ}, {Sσ2}).∑

j∈J
µj · xij ∈ Sµi

∀i ∈M (2a)

∑
j∈J

σ2
j · xij ∈ Sσ2

i
∀i ∈M (2b)

∑
i∈M

xi` = n` ∀` ∈ K (2c)

xi` ∈ N ∀i ∈M, ` ∈ K
Here K = {1, 2, · · · , k} denotes the k different distri-

butions, n` is the number of jobs that follow the `-th normal
distribution, where ` ∈ K. The integer decision variable xi,`
denotes the number of jobs with type ` distribution be sched-
uled on machine i.

We explain Constraints. First notice that Eq (2c) enforces
that all jobs are scheduled. Eq (2a) and Eq (2b) ensure the
summation of means/variance for jobs be scheduled on ma-
chine i belongs to interval Sµi

are Sσ2
i

respectively.
If the above ILP({Sµ}, {Sσ2}) admits a feasible solution,

then there is a schedule corresponding to the guess and we
say the guess is valid. Otherwise, the guess is discarded. Ob-
serve that there are in total mk different integer variables, it
turns out ILP({Sµ}, {Sσ2}) can be solved efficiently using
the following Lemma 5. Hence, we can find all valid guesses
and select the best one. The above discussions are presented
in Algorithm 3.
Lemma 5 ((Kannan 1987)). An integer linear programming
feasibility problem with N variables can be solved using
O(NO(N))L) arithmetic operations, where L is the number
of bits in the input.

As a toy example, Figure 1 illustrates how Algorithm 3
works for single machine cases. The horizontal segments

Algorithm 3 FPT-Approximation Scheme for β-RSP
Input: ε, n,m, {µj}, {σ2

j }, δ
Output: an (OPT−ε) assignment

1: ξ = ε/3m
2: Γσ =

⋃
h{((1 + ξ)h−1, (1 + ξ)h]}

3: for all (Sσ2
1
, . . . , Sσ2

m
) ∈ Γmσ , i ∈ [1,m] do

4: Sσ2
i

= [(1 + ξ)hi−1, (1 + ξ)hi]

5: Γ+
µi

=
⋃
t{[δ + (1 + ξ)t−

hi
2 , δ + (1 + ξ)t+

hi
2]}

6: Γ−µi
=

⋃
t{[δ − (1 + ξ)t+

hi
2 , δ − (1 + ξ)t−

hi
2]}

7: Γµi = Γ−µi
∪ [δ − (1 + ξ)

hi
2 , δ − 1] ∪ [δ]∪

[δ + 1, δ + (1 + ξ)
hi
2] ∪ Γ+

µi

8: for all (Sµ1
, . . . , Sµm

) ∈ Γµ1
× · · · × Γµm

do
9: solve ILP({Sµ}, {Sσ2})

10: if ILP({Sµ}, {Sσ2}) has solution x then
11: F = F ∪ {x}
12: end if
13: end for
14: end for
15: return maxx∈F obj(x)

represent the possible range of Sµ. The vertical segments
represent the possible range of Sσ2 .
Lemma 6. For any Sσ2

i
, Sµi 6= [δ] and any (µ, σ2),

(µ̄, σ̄2) ∈ Sµi
× Sσ2

i
, it holds that

max{δ − µ√
σ2

/
δ − µ̄√
σ̄2

,
δ − µ̄√
σ̄2

/
δ − µ√
σ2
} ≤ (1 + ξ)3/2.

Theorem 4. For any ε > 0, Algorithm 3 gives an (OPT−ε)
solution for the problem P |pj ∼ N (µj , σ

2
j)|Pr[Cmax ≤ δ]

within O((1
ε)2m(mk)O(mk)L2m+1) time, where k is num-

ber of different distributions and L is the number of bits in
the input.

Proof. In Algorithm 3, we solve ILP({Sµ}, {Sσ2}) for
O(2m(1/ξ)2m logm(nσmax) logm(δ + nµmax)) times,
where ξ = ε/3m. Due to Lemma 5, we know that
solving ILP({Sµ}, {Sσ2}) once need O((mk)O(mk)L)
time. Combine all, the time complexity of Algorithm 3 is
O((1

ε)2m(mk)O(mk)L2m+1).
For machine i, if we view Φ(

δ−µMi√
σ2
Mi

)as a 2-dimensional

function, where the variable µMi
∈ Sµi

and σ2
Mi
∈

Sσ2
i
, then for every Sµi and Sσ2

i
, the function are

both monotonic on µMi
and σ2

Mi
. Hence, the min/max

points are both located on boundary points. Suppose
(µ∗M1

, σ2∗
M1
, . . . , µ∗Mm

, σ2∗
Mm

) is an optimal solution. There
exist S∗µi

and S∗
σ2
i

in our partition such that µ∗Mi
∈ S∗µi

and
σ2∗
Mi
∈ S∗

σ2
i
. According to Lemmas 1 and 6, the error for

machine i is bounded by (1 + ξ)3/2 − 1. Combining all into
one, the total error is at most ε.

OPT −ALG ≤
m∑
i=1

((1 + ξ)3/2 − 1) ≤ 3mξ = ε.

372

fixed parameter tractable approximation scheme ξ = ε/3m

machines jobs kinds
of jobs

bench-
mark ξ = 10 ξ = 25 ξ = 40 ξ = 50

m n k time[s] opt-alg time[s] opt-alg time[s] opt-alg time[s] opt-alg time[s]

avg avg std avg avg std avg avg std avg avg std avg

2 20
3 66 0.1% 0.2% <1 0.1% 0.2% <1 0.1% 0.2% <1 0.1% 0.3% <1
5 100 0.3% 0.3% <1 0.2% 0.3% <1 0.3% 0.4% <1 0.3% 0.4% <1

10 111 0.5% 0.4% <1 0.4% 0.4% <1 0.5% 0.4% <1 0.5% 0.4% <1

3 20
3 39 3.4% 5.4% <1 2.4% 4.1% <1 2.9% 4.8% <1 3.5% 5.9% <1
5 41 3.8% 4.9% <1 2.7% 3.1% <1 3.0% 3.8% <1 3.6% 4.5% <1

10 44 3.3% 4.2% <1 3.2% 3.1% <1 2.9% 3.1% <1 2.9% 3.7% <1

4 20
3 69 0.6% 1.6% <1 0.7% 1.7% <1 0.9% 2.2% <1 1.0% 2.3% <1
5 66 0.2% 0.4% <1 0.2% 0.4% <1 0.2% 0.4% <1 0.2% 0.4% <1

10 72 0.8% 1.0% <1 0.9% 1.2% <1 0.9% 1.3% <1 0.9% 1.4% <1

5 20
3 70 0.7% 1.9% 2 0.6% 1.7% <1 0.6% 1.8% <1 0.9% 2.6% <1
5 71 1.2% 1.6% 2 1.5% 2.2% <1 1.6% 2.3% <1 1.8% 2.5% <1

10 77 1.1% 1.2% 3 1.3% 1.5% <1 1.4% 1.8% <1 1.5% 2.1% <1

6 20
3 71 1.6% 4.6% 80 1.1% 3.4% 28 1.3% 3.9% 26 1.6% 4.1% 28
5 73 3.1% 4.8% 48 2.4% 4.0% 25 2.9% 4.9% 22 3.6% 5.8% 22

10 74 4.1% 4.0% 62 3.2% 4.0% 43 3.5% 4.6% 41 4.5% 5.9% 41

Table 1: Simulation result of Algorithm 3

Getting rid of the exponential dependency onm, the num-
ber of machines, is unlikely even if we only look for an
approximate solution. Chen, et al. (2014) prove that for
the classical scheduling problem where each job process-
ing time is deterministic instead of being a random variable,
bounding the makespan, which is δ in our problem, up to a
precision of ε requires a running time at least (1/ε)Ω(m).
This classical scheduling problem is, of course, different
from our stochastic problem, but it suggests that an algo-
rithm that significantly outperforms our algorithm (in the
sense that it runs in subexponential or even polynomial in
m) is very unlikely to exist, as a stochastic setting is typi-
cally considered as harder than a deterministic setting.

Experiments
In the previous part, see e.g., Theorem 4, we prove Algo-
rithm 3 is an efficient algorithm for the β-robust scheduling
problem and theoretically analyze the running time and the
quality of solutions. One may wonder that whether Algo-
rithm 3 could work in practice? To investigate its actual per-
formance, we conduct the experiment. We implement Algo-
rithm 3 and compare it with the benchmark on the dataset.

All instances in the dataset contain 20 jobs. We set three
different values on the number of job kinds, i.e., k =
3, 5, 10, and five different values on the number of machines,
i.e., m = 2, 3, 4, 5, 6. For each combination of (m, k), 500
instances are generated. In each instance, the distribution of
each kind of job is randomly generated, that is, the value
of mean is selected uniformly at random from [15, 25], and
the value of variance is selected uniformly at random from
[1, 3]. For the common due δ, we adopt the same generating
method in previous work (Ranjbar, Davari, and Leus 2012;

Stec et al. 2019) but with some distortion d uniformly se-
lected form [−5, 5]. To be exact, the common due date δ is
selected to be δ = µ̄ +

√
mσ̄2 + d where µ̄ is the average

mean and σ̄2 is the average variance.
The benchmark is obtained through directly solving the

master problem (Stec et al. 2019) which gives the optimal
solution of the problem. We run Algorithm 3 under different
parameter settings (ξ = 10, 25, 40, 50) and compare it with
the benchmark from the following two aspects: the quality
of solutions (i.e., the gap between the optimal solution); the
running time. In our experiment, the time limit of Algorithm
3 is set to be 300 seconds. Once exceed the time limit, we
stop the procedure and output the current best solution.

Procedures1 are coded in C++ using Gurobi 9.0.3. All ex-
periments are performed on a computer with an Intel Xeon-
w2295 processor and 256GB memory.

Comparison results are summarized in Table 1. As we can
see, Algorithm 3 performs pretty well in the quality of so-
lutions. For each parameter setting (ξ = 10, 25, 40, 50) and
combination of (m, k), the average gap between the optimal
solution is at most 4.5% and the standard deviation of the
gap is at most 5.9%. Meanwhile, if the parameter ξ is appro-
priately chosen Algorithm 3 performs much faster than the
benchmark. Especially, if we set the parameter ξ = 25, the
average running time of Algorithm 3 is less than one second
for instances with m = 2, 3, 4, 5.

Conclusions
This paper gives the first systematic study on the approxima-
bility of β-robust scheduling on parallel machines. We pro-

1Codes, dataset and test results can be accessed in a publicly
accessible repository at https://github.com/polyapp/beta-robust-
scheduling.

373

vide a strong inapproximability result. Meanwhile, we ex-
tend the common FPT algorithms for deterministic schedul-
ing problems to the robust setting by presenting the first
near-optimal algorithm (with ε-additive error) when the
maximal mean of distributions, or the number of distinct dis-
tributions is small. The theoretical results are supported by
extensive experiments. While the landscape of approxima-
bility is now clear for β-robust scheduling with normally
distributed jobs, the problem remains unsolved for other
common distributions (e.g., Poisson, Cauchy, Gamma). It is
interesting to see whether the observation that mean is more
critical than variance is also true for other distributions.

Acknowledgements
Research of Liangde Tao and Guochuan Zhang was partly
supported by “New Generation of AI 2030” Major Project
(2018AAA0100902). Research of Lin Chen was partly sup-
ported by NSF Grant 1756014.

References
Alimoradi, S.; Hematian, M.; and Moslehi, G. 2016. Robust
scheduling of parallel machines considering total flow time.
Computers & Industrial Engineering 93: 152–161.

Bruno, J.; Downey, P.; and Frederickson, G. N. 1981. Se-
quencing tasks with exponential service times to minimize
the expected flow time or makespan. Journal of the ACM
28(1): 100–113.

Chen, L.; Jansen, K.; and Zhang, G. 2014. On the optimality
of approximation schemes for the classical scheduling prob-
lem. In Proceedings of the 25th annual ACM-SIAM sympo-
sium on Discrete algorithms, 657–668.

Chen, L.; Marx, D.; Ye, D.; and Zhang, G. 2017. Param-
eterized and Approximation Results for Scheduling with a
Low Rank Processing Time Matrix. In Proceedings of the
34th Symposium on Theoretical Aspects of Computer Sci-
ence, volume 66, 22:1–22:14.

Chen, L.; Xu, L.; Xu, S.; Gao, Z.; and Shi, W. 2019. Election
with bribed voter uncertainty: Hardness and approximation
algorithm. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence, volume 33, 2572–2579.

Daniels, R. L.; and Carrillo, J. E. 1997. β-Robust scheduling
for single-machine systems with uncertain processing times.
IIE Transactions 29(11): 977–985.

Eberle, F.; Fischer, F.; Matuschke, J.; and Megow, N. 2019.
On index policies for stochastic minsum scheduling. Oper-
ations Research Letters 47(3): 213–218.

Garey, M. R.; and Johnson, D. S. 2002. Computers and in-
tractability, volume 29. wh freeman New York.

Glazebrook, K. D. 1979. Scheduling tasks with exponen-
tial service times on parallel processors. Journal of Applied
Probability 16(3): 685–689.

Graham, R. L. 1969. Bounds on multiprocessing timing
anomalies. SIAM journal on Applied Mathematics 17(2):
416–429.

Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; and Kan, A. R.
1979. Optimization and approximation in deterministic se-
quencing and scheduling: a survey. Annals of Discrete Math-
ematics 5: 287–326.

Hiatt, L. M.; Zimmerman, T. L.; Smith, S. F.; and Simmons,
R. 2009. Strengthening schedules through uncertainty anal-
ysis. In Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence, 175–180.

Im, S.; Moseley, B.; and Pruhs, K. 2015. Stochastic schedul-
ing of heavy-tailed jobs. In Proceedings of the 32nd Interna-
tional Symposium on Theoretical Aspects of Computer Sci-
ence, volume 30, 474–486.

Jäger, S.; and Skutella, M. 2018. Generalizing the
Kawaguchi-Kyan Bound to Stochastic Parallel Machine
Scheduling. In Proceedings of the 35th Symposium on The-
oretical Aspects of Computer Science, volume 96, 43:1–
43:14.

Jansen, K.; Maack, M.; and Solis-Oba, R. 2020. Structural
parameters for scheduling with assignment restrictions. The-
oretical Computer Science 844: 154–170.

Kannan, R. 1987. Minkowski’s convex body theorem and
integer programming. Mathematics of Operations Research
12(3): 415–440.

Knop, D.; and Kouteckỳ, M. 2018. Scheduling meets n-fold
integer programming. Journal of Scheduling 21(5): 493–
503.

Megow, N.; Uetz, M.; and Vredeveld, T. 2006. Models and
algorithms for stochastic online scheduling. Mathematics of
Operations Research 31(3): 513–525.

Mnich, M.; and van Bevern, R. 2018. Parameterized com-
plexity of machine scheduling: 15 open problems. Comput-
ers & Operations Research 100: 254–261.

Mnich, M.; and Wiese, A. 2015. Scheduling and fixed-
parameter tractability. Mathematical Programming 154(1-
2): 533–562.

Möhring, R. H.; Schulz, A. S.; and Uetz, M. 1999. Approxi-
mation in stochastic scheduling: the power of LP-based pri-
ority policies. Journal of the ACM 46(6): 924–942.

Pishevar, A.; and Tavakkoi-Moghaddam, R. 2014. β-robust
parallel machine scheduling with uncertain durations. Uni-
versal Journal of Industrial and Business Management 2(3):
69–74.

Pras, A.; Nieuwenhuis, L.; van de Meent, R.; and Mandjes,
M. 2009. Dimensioning network links: a new look at equiv-
alent bandwidth. IEEE network 23(2): 5–10.

Ranjbar, M.; Davari, M.; and Leus, R. 2012. Two
branch-and-bound algorithms for the robust parallel ma-
chine scheduling problem. Computers & Operations Re-
search 39(7): 1652–1660.

Skutella, M.; Sviridenko, M.; and Uetz, M. 2016. Unrelated
machine scheduling with stochastic processing times. Math-
ematics of Operations Research 41(3): 851–864.

374

Stec, R.; Novak, A.; Sucha, P.; and Hanzalek, Z. 2019.
Scheduling Jobs with Stochastic Processing Time on Par-
allel Identical Machines. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence, 5628–
5634.
van Bevern, R.; Niedermeier, R.; and Suchỳ, O. 2017. A pa-
rameterized complexity view on non-preemptively schedul-
ing interval-constrained jobs: few machines, small loose-
ness, and small slack. Journal of Scheduling 20(3): 255–
265.
Wu, C. W.; Brown, K. N.; and Beck, J. C. 2009. Schedul-
ing with uncertain durations: Modeling β-robust scheduling
with constraints. Computers & Operations Research 36(8):
2348–2356.
Zhang, Y.; Shen, Z.-J. M.; and Song, S. 2018. Exact Al-
gorithms for Distributionally β-Robust Machine Scheduling
with Uncertain Processing Times. INFORMS Journal on
Computing 30(4): 662–676.

375

