
Conflict-Based Increasing Cost Search

Thayne T. Walker1,2, Nathan R. Sturtevant3, Ariel Felner4, Han Zhang5

Jiaoyang Li5 and T. K. Satish Kumar5

1University of Denver, Denver, USA
2Lockheed Martin Corporation, USA

3Department of Computing Science, Alberta Machine Intelligence Institute (Amii), University of Alberta, Canada
4Ben-Gurion University, Be’er-Sheva, Israel

5University of Southern California, Los Angeles, USA
thayne.walker@du.edu, nathanst@ualberta.ca, felner@bgu.ac.il, {zhan645, jiaoyanl}@usc.edu, tkskwork@gmail.com

Abstract

Two popular optimal search-based solvers for the multi-agent
pathfinding (MAPF) problem, Conflict-Based Search (CBS)
and Increasing Cost Tree Search (ICTS), have been extended
separately for continuous time domains and symmetry break-
ing. However, an approach to symmetry breaking in contin-
uous time domains remained elusive. In this work, we intro-
duce a new algorithm, Conflict-Based Increasing Cost Search
(CBICS), which is capable of symmetry breaking in contin-
uous time domains by combining the strengths of CBS and
ICTS. Our experiments show that CBICS often finds solu-
tions faster than CBS and ICTS in both unit time and contin-
uous time domains.

Introduction
The objective of multi-agent pathfinding (MAPF) (Stern
et al. 2019) is to find paths for multiple agents to their re-
spective goal states such that they do not conflict at any time.
A conflict occurs when agents’ shapes overlap at the same
time. We seek optimal, conflict-free solutions to the MAPF
problem in both “classic” unit time domains, where all ac-
tions have the same duration, and continuous time domains,
where action durations are arbitrary real-valued quantities.

Conflict symmetries pose a particular challenge for cur-
rent MAPF algorithms and can incur an exponential amount
of work without special enhancements (Li et al. 2020).
Conflict-Based Search (CBS) (Sharon et al. 2015) is sen-
sitive to two types of conflict symmetries: spatial conflicts
and time-extended conflicts. A spatial conflict occurs when
all lowest-cost paths for two agents conflict when either of
them move through a region called a region of conflict. Fig-
ure 1(a) illustrates a rectangle conflict (Li et al. 2019b) in a
4-neighbor grid map where the red and blue agent (shown
as filled circles) try to move to their respective goals (shown
with dashed lines). The shaded region in the center is the re-
gion of conflict. No matter which optimal path the agents
take through the region, they will always collide. Similar
spatial conflicts can also occur in continuous time domains.
A time-extended conflict occurs when two agents incur the

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A

B

C

D

1 2 3 4

(a)

A

B

1 2 3 4 5

(b)

Figure 1: Illustration of MAPF instances with conflict sym-
metries: (a) a rectangle conflict and (b) a corridor conflict.

same conflict or set of conflicts over and over at increas-
ing time steps until one of the agents increases its cost suf-
ficiently (usually by waiting) and allowing the other agent
to pass. Figure 1(b) illustrates a corridor conflict in a 4-
neighbor grid. The shaded region shows the region of con-
flict. Similar time-extended symmetries can occur in contin-
uous time domains.

Increasing Cost Tree Search (ICTS) (Sharon et al. 2013) is
robust to spatial conflict symmetries, but will incur an expo-
nential amount of work in the case of time-extended conflict
symmetries. Reduction-based approaches re-formulate the
MAPF problem for general solvers such as SAT (Surynek
et al. 2016) and MIP (Lam et al. 2019). They also have to
deal with conflict symmetries and are generally not formu-
lated for continuous time. Variants of CBS and ICTS have
been re-formulated for continuous time (Walker, Sturte-
vant, and Felner 2018; Andreychuk et al. 2019; Cohen
et al. 2019; Walker, Sturtevant, and Felner 2020). Enhance-
ments for symmetry breaking in CBS have been formulated
for unit time (Li et al. 2019b, 2020; Zhang et al. 2020).
One symmetry-breaking technique for continuous time ex-
ists (Walker, Sturtevant, and Felner 2020) but is limited to
spatial symmetries. However, general symmetry breaking in
continuous time domains has remained elusive so far.

In this work, we introduce Conflict-Based Increasing Cost
Search (CBICS), a hybrid of CBS and ICTS which com-
bines their strengths. CBICS allows symmetry breaking in
both unit time and continuous time domains. Search nodes in

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

385

CBICS contain information about both conflicts (like CBS)
and costs (like ICTS). This novel formulation allows us to
find solutions faster and with a higher success rate in most
MAPF instances versus previous state-of-the-art.

Problem Definition
MAPF was originally defined for a “classic” setting where
the movements of agents are coordinated on a graph G =
(V,E), where edges have a unit cost/unit time duration
and agents occupy a point in space. Thus, two agents can
only have conflicts when on the same vertex at the same
time, or traversing the same edge in opposite directions.
This paper uses the definition of MAPFR (Walker, Sturte-
vant, and Felner 2018), a variant of MAPF for continuous
time motion where every vertex v∈V is associated with co-
ordinates in a metric space and every edge e∈E is asso-
ciated with a positive real-valued edge weight w(e)∈R+.
Weights represent the times it takes to traverse edges. Addi-
tionally, there is a set of k agents, A={1, .., k}. Each agent
has a start and a goal vertex Vs={start1, .., startk}⊆V
and Vg={goal1, .., goalk}⊆V such that starti 6=startj and
goali 6=goalj for all i6=j.

A solution to a MAPFR instance is Π={π1, .., πk}, a set
of single-agent paths composed of states. A state s=(v, t)
is a pair composed of a vertex v∈V and a time t∈R+. A
path for agent i is a sequence of d+1 states πi=[s0

i , .., s
d
i],

where s0
i=(starti, 0) and sdi=(goali, t) where t is the time

the agent arrives at its goal and all vertices in the path follow
edges in E.

Agents have a shape, such as a circle or polygon, which is
situated relative to an agent-specific reference point (Li et al.
2019c). Agents move along edges such that their motion
uses constant velocity along a straight vector in the metric
space. Traversing an edge is called an action a=(sn, sn+1).
MAPFR also allows weighted, self-directed edges for wait
actions. The duration of actions can be fixed or dynamically
computed. This paper assumes fixed-duration wait actions.

A conflict happens when two agents perform actions
〈ai, aj〉 so that their shapes overlap at the same time. A fea-
sible solution has no conflicts between any pairs of its con-
stituent paths. The objective is to minimize the sum-of-costs
c(Π)=

∑
π∈Π c(π), where c(π) is the sum of edge weights

of all edges traversed in π. We seek Π∗, a solution with min-
imal cost among all feasible solutions. Optimization of the
classic MAPF problem is NP-hard (Yu and LaValle 2013).
Hence, optimization of the MAPFR problem is also NP-hard.

Background
In this section, we cover previous work which we combine
to formulate CBICS.

Conflict-Based Search
Conflict-Based Search (CBS) (Sharon et al. 2015) performs
search on two levels. The high level searches a constraint
tree (CT), shown in Figure 2(c). Each node N in the CT
contains a solution N.Π. Each path π∈N.Π of an agent in
the root node is constructed using a low-level search without
taking the other agents into account. Next, CBS checks for

conflicts in N.Π. If N.Π contains no conflict, then N is a
goal node and CBS terminates. If N.Π contains a conflict
between agents i and j, then CBS performs a split, meaning
that it generates two child nodes Ni and Nj of N and adds
motion constraints mi and mj to Ni and Nj respectively.

A motion constraint blocks an agent from performing the
action(s) that caused the conflict. Two types of motion con-
straints are used with classic MAPF: vertex constraints and
edge constraints. A vertex constraint blocks an agent from
occupying a vertex at a specific time. An edge constraint
blocks an agent from traversing an edge at a specific time.
The accumulation of constraints in the CT is shown in Fig-
ure 2(c). The notation “B2@1” for a constraint means the
agent is blocked from occupying vertex B2 at time step 1.
Next, CBS re-plans πi∈Ni.Π and πj∈Nj .Π with motion
constraints mi and mj and other motion constraints from
ancestor nodes so that the current conflict and previously
detected conflicts are avoided. CBS searches the tree in a
best-first fashion prioritized by the sum-of-costs. CBS ter-
minates when its OPEN list is empty or a feasible solution
is found.

CBS is guaranteed to find a feasible solution if one ex-
ists, otherwise it may run forever. For the classic problem,
a polynomial-time (non-optimal) algorithm (Botea, Bonusi,
and Surynek 2018) can be run in parallel to determine if a so-
lution exists. At this time, the existence of polynomial-time
solvers for MAPFR is an open question.

A significant amount of research has studied how to im-
prove the performance of CBS by dealing with conflict
symmetries (Boyarski et al. 2015; Gange, Harabor, and
Stuckey 2019; Li et al. 2019b,a, 2020; Zhang et al. 2020;
Walker, Sturtevant, and Felner 2020). Some of this work
has leveraged ideas from ICTS, in particular, the analysis
of conflict symmetries using multi-value decision diagrams
(MDDs) (Srinivasan et al. 1990). An MDD is a directed
acyclic graph where nodes are connected via edges to form
paths from start to goal for an agent such that the agent ar-
rives at its goal within a cost limit. Hence it contains one
root node (starti for agent i) and one sink node (goali).
Some examples of MDDs are shown in Figure 3.

Extended Increasing Cost Tree Search
Extended Increasing Cost Tree Search (E-ICTS) (Walker,
Sturtevant, and Felner 2018) is an extension of
ICTS (Sharon et al. 2013) for MAPFR. E-ICTS is a
two-level search algorithm. On its high level, it searches
the increasing cost tree (ICT), as shown in Figure 2(b),
where every node consists of a k-ary vector of cost ranges
〈(c1, c1 + δ], .., (ck, ck + δ]〉, where δ is an increment value
which represents the path cost ranges of a solution. For
the example in Figure 2(a), with δ=1, an ICT node may
contain the vector of ranges: 〈[2, 3), [2, 3), [2, 3)〉, which
represents a solution with path costs between 2 and 3 for
all agents. When δ is fixed, the upper bound of each range
is implied, and ICT nodes contain the lower bounds only
(e.g., 〈2, 2, 2〉), as shown in Figure 2(b).The ICT root node
contains the smallest path cost for each agent, ignoring the
other agents.

For each ICT node, the low level is invoked. Its task is

386

to determine a lowest-cost feasible solution that falls in the
ranges 〈[c1, c1+δ), .., [ck, ck+δ)〉. For each agent i, ICTS
stores all single-agent paths in the range [ci, ci+δ) as an
MDD. Figure 3(a) shows an example of two MDDs for
agents x and z for the MAPF instance in Figure 2(a).

If no feasible solution is found by the low level, the ICT
node is split. A node is split by generating k child nodes,
each with the cost range of one agent increased by δ. For
example, for the ICT node 〈2, 2, 2〉 and δ=1, a split would
generate three child nodes: 〈3, 2, 2〉, 〈2, 3, 2〉 and 〈2, 2, 3〉,
respectively.

The low level searches the Cartesian product of all time-
overlapping actions of the k MDDs to find a set of k non-
conflicting paths. Multiple solutions of different sum-of-
costs may exist. If any feasible solution exists, the low-level
returns the minimum sum-of-costs. Otherwise, it returns in-
finity. In case the low level finds a feasible solution, it be-
comes the new incumbent solution at the high level. The
high level orders the OPEN list by sum-of-costs. The search
halts either when no node in the OPEN list has a better cost
than the incumbent or the OPEN list is empty.

Mutex Propagation
Mutex propagation (MP), a technique for finding unreach-
able states in planning graphs (Weld 1999), has been inte-
grated into CBS for symmetry breaking (Zhang et al. 2020).
MP helps to determine sets of mutually exclusive states for
conflicting agents, often allowing for an immediate resolu-
tion of conflict symmetries. This technique is general, and
applies to all types of conflict symmetries. MP for unit time
is carried out in four steps:

1. Build an MDD for each agent.

2. Discover initial mutexes between MDDs.

3. Propagate the mutexes.

4. Extract motion constraints for CBS.

x y

z

A

B

C

1 2 3
(a)

2,2,2

2,3,23,2,2 2,2,3

4,2,2 3,3,2 3,2,3 2,4,2 2,3,3 2,2,4

x y z

x y z y z z

(b)
{}{}{}

{B2@1}{}{} {}{B2@1}{}

{B2@1}{B2@1}{} {B2@1}{}{B2@1} {B2@1}{B2@1}{} {}{B2@1}{B2@1}

x y

y z x z

(c)

Figure 2: (a) An example unit time MAPF instance, (b) a
partial ICT with an implied δ of 1 for the MAPF instance
and (c) a partial CT for the MAPF instance.

B1 B2 A2

C2 B2 B3

t=0 1 2
(a)

B1 B2 A2

B1 B2 A2

C2 B2 B3

t=0 1 2 3
(b)

Figure 3: (a) Mutex propagation for agents x and z for the
MAPF instance in Figure 2(a) with cost limits 〈2,−, 2〉 and
(b) the same analysis as (a) but with cost limits 〈3,−, 2〉.

In Step 1, MDDs are built for two conflicting agents as
shown in Figure 3(a).

In Step 2, the MDDs are traversed in parallel from start
to goal. At each time step, the Cartesian product of the two
MDDs are merged and checked for conflicts. For example,
in Figure 3(a), the combination {B1}×{C2}={(B1,C2)} is
checked at time step t=0, and so on, for each time step.
A mutex 〈sti, stj〉 is created for any pair sti∈MDDi and
stj∈MDDj of MDD nodes (or edges) which conflict (e.g.,
(B2,B2) at time step 1). These initial mutexes are depicted
as blue dashed lines in Figure 3(a).

In Step 3, the initial mutexes are propagated, meaning that
whenever all parent MDD nodes of sti are mutex with all
parent MDD nodes of stj , a new mutex 〈sti, stj〉 is created.
These propagated mutexes are depicted as red dotted lines
in Figure 3(a). For example, at time step 2, B3 and A2 get
a propagated mutex because their only parents (B2 and B2)
respectively, at time step 1 are mutex.

In Step 4, the pair of MDDs is analyzed against the mu-
texes. For any sti which is mutex with all stj at the same time
step, vertex constraints are created for sti. These are shown
in Figure 3(a) as dashed nodes. For example, B2 at time step
1 in the upper MDD is used for a constraint for agent x be-
cause it is mutex with all nodes at the same time step in the
lower MDD. In Figure 3(b), the cost limit for agent x has
been increased to 3, resulting in additional MDD nodes be-
ing added to the upper MDD. Because of these additional
MDD nodes, B2 in the lower MDD is no longer mutex with
all MDD nodes in the upper MDD at t=1. Hence it can no
longer be used for a constraint in CBS.

Conflict-Based Increasing Cost Search
In this section, we describe Conflict-Based Increasing Cost
Search (CBICS), a new hybrid of CBS and ICTS. The main
idea of CBICS is that useful information is learned by ana-
lyzing the path costs, which can be exploited to avoid unnec-
essary work. In Figure 2(a), the path costs of the agents are
x=2, y=2, z=2 when conflicts between agents are ignored.
To resolve the conflict between agents y and z, at location
B2 at the first time step, agent y must wait for agent z to en-
ter B2, or vice versa. This results in the path cost combina-
tions 〈y=2, z=3〉 and〈y=3, z=2〉. Hence, y+z=5. We refer
to this sum lbi,j (for arbitrary agents i and j) as the pairwise
lower bound, since there is no feasible solution whose sum

387

is less than this bound.
Without the information that lby,z=5, lbx,z also appears

to be 5 (agent z must wait for agent x or vice versa). How-
ever, given lby,z=5, it must be that lbx,z=6: If we fix y=2
and z=3, the path cost for agent x must be x≥4. For ex-
ample, if agent y follows the path left, left and agent z fol-
lows the path wait, up, up, then the only lowest-cost path for
agent x is down, right, up, right. In general, by fixing the
path costs of some agents, we can learn about the path costs
of other agents.

Consider the partial search trees for CBS (Figure 2(c))
and ICTS (Figure 2(b)). CBS adds only constraints at each
depth of the CT, eventually resulting in enough cumulative
constraints to eliminate infeasible path combinations. But,
little insight is gained at each depth in the CT. ICTS sys-
tematically increases the path cost for each agent, but does
not learn that some subsets of path costs can never lead to a
feasible solution.

CBICS gains insight about feasible path cost combina-
tions and uses both motion constraints and cost constraints
in order to reduce the size of the search tree and find solu-
tions more quickly.

CBICS High Level
CBICS searches the cost-range constraint tree (CRCT) as
shown in Figure 4. A CRCT node is a tuple: 〈R, M , LB,
Π, SoC〉 where R={r1, .., rk} is a set of path cost ranges
for each agent where ri=[lb, ub), for example ri=[2,∞).
We use the shorthand 2+ for [2,∞) and 2 for [2, 2]. M=
{M1, ..,Mk} is a set of motion constraint sets for each agent.
LB={lb1,2, lb1,3, .., lb(k−1),k} is the set of lower bounds for
the sum of path costs for all pairs of agents (pairwise path
costs). SoC is the sum-of-costs of all agents. Π is a solution.
For a CRCT node N we use the shorthand N.ri to refer to
the cost range in N.R for the ith agent, N.Mi to mean the
set of motion constraints in N.M for the ith agent, N.πi to
mean the path in N.Π for the ith agent and N.lbi,j to mean
the sum of costs for the ith and jth agents.

Each node in Figure 4 shows the path cost ranges R (in
colors) and SoC (in black parentheses) in the top row, pair-
wise cost information LB in the second row (in black) and
motion constraint sets M in the remaining rows (in colors).

x y

z

A
B
C

1 2 3

2+, 2+, 2+ (6+)
4, 4, 4
{}{}{}

A

2+,2,3 (7+)
4, 5, 5

{}{B2@1}{B2@1}

B
2+,3,2 (7+)

5, 4, 5
{}{B2@1}{B2@1}

C
2+,2+,2+ (8+)

4, 4, 6
{}{B2@1}{B2@1}

D

4,2,3 (9)
6, 7, 5
{. . .}
{B2@1}
{B2@1}

E
2+,2,3 (10+)

7, 5, 5
{. . .}
{B2@1}
{B2@1}

3,3,2 (8)
6, 5, 5
{B2@1}
{B2@1}
{. . .}

2+,3,2 (9+)
5, 6, 5
{B2@1}
{B2@1}
{. . .}

2,3+,3 (8+)
5, 5, 6
{B2@1}
{B2@1}
{. . .}

3,4+,2 (9+)
7, 5, 6
{B2@1}
{B2@1}
{. . .}

2+,2+,2+ (9+)
4, 6, 6
{B2@1}
{B2@1}
{. . .}

y=2, z=3 y=3, z=2
y+z≥6

x=4
y=2

x+y≥7
x=3
z=2

x+z≥6
x=2
z=3

x=3
z=2

x+z≥6

R={rx, ry, rz} SoC

LB =
{lbx,y, lbx,z, lby,z}

M

Figure 4: The entire CRCT for the MAPF instance in Figure
2(a).

6
5
4
3
2
1

1 2 3 4 5 6
lby,z=4

rz=2+

r
y
=
2
+

A

Cost of πy

C
os

to
fπ

z

(a)

6
5
4
3
2
1

1 2 3 4 5 6

B

C

D

Cost of πy

C
os

to
fπ

z

lby,z=5

lb′y,z=6

rz=2+

r
y
=
2
+

(b)

Figure 5: (a) The combined cost range of agents y and z for
(a) node A and (b) for nodes B, C and D of Figure 4.

When motion constraint sets contain more than one mem-
ber, “. . .” is used to indicate this. Recall from CBS that mo-
tion constraints m∈N.Mi restrict agent i from performing
an action at a specific time. A motion constraint is a tuple
m=〈n, a〉 where n is the agent number and a=〈st, st+1〉
is the action for the agent to avoid. In this paper, the nota-
tion for motion constraints are in the format B1@0→B2@1
meaning the agent is prohibited from moving from loca-
tion B1 at time step 0 and arriving at location B2 at time
step 1. However, in Figure 4 motion constraints are shown
with abbreviated notation like B2@1, which is shorthand
for an action that ends at location B2 at time step 1. The
start location can be inferred from the MAPF instance. The
color indicates the agent number. When a motion constraint
is struck through (e.g., B2@1), it means that the constraint
was conditionally removed. Conditional constraints are dis-
cussed later. The solution Π of each node is not shown.

Cost constraints restrict agents to paths with costs inside
certain cost ranges. For N.ri=[lb, ub), N.πi is restricted to
a path such that c(N.πi)∈[lb, ub). The pairwise path cost
N.lbi,j similarly restricts paths based on the sum of two path
costs. That is, for N.lbi,j=`, N.πi and N.πj are restricted
such that c(πi)+c(πj)≥`. The range of possible path costs
for agents y and z for node A is shown in Figure 5(a). The
cost region (shown in gray) represents all values bounded by
ry=2+ represented by the blue line, rz=2+ represented by
the orange line, and all pairwise path costs lby,z=4 repre-
sented by the black line.

Pseudocode for CBICS is shown in Algorithm 1. On line
3, the root CRCT node N (e.g., node A in Figure 4) is con-
structed. N.Π in the root node contains paths for all agents,
planned for shortest paths without taking the other agents
into account. Each ri∈N.R is set to [c(πi),∞) respectively,
SoC is c(N.Π), N.LB gets the sum of costs for each pair
in N.Π and all elements of N.M are set to empty. CBICS
checks for conflicts between the paths in Π (line 10). If no
conflict is found, N.Π is set as the new incumbent (line 12).
This incumbent is needed due to the lazy evaluation of some
nodes. Some nodes may have a cost increase after evalua-
tion. The OPEN list is ordered by SoC. If no better solution
exists in the OPEN list, the incumbent is returned as the so-
lution (line 14). If a conflict is found, the low-level subrou-
tine PAIRWISECONSTRAINTSEARCH is called for the two
conflicting agents (generically, agent i and j) (line 17).

388

Algorithm 1 CBICS Algorithm
1: Input: a MAPF instance
2: OPEN ← ∅
3: Initialize the root node and add it to OPEN
4: incumbent← dummy with SoC=∞
5: while OPEN 6= ∅ do
6: N ← OPEN.pop()
7: if N has any empty πi ∈ N.Π then
8: Re-plan each empty πi with cost and motion constraints
9: end if

10: A← FINDCONFLICT(N.Π) . Find conflicting actions 〈ai, aj〉
11: if A = ∅ then
12: incumbent← N if N.SoC < incumbent.SoC
13: if incumbent.SoC ≤ OPEN.top.SoC then
14: return incumbent
15: end if
16: else
17: P,M ′i ,M

′
j , lb
′
i,j ← PAIRWISECONSTRAINTSEARCH(i, j, N)

18: if M ′i 6= ∅ ∨M ′j 6= ∅ then . Conjunctive split
19: for 〈π′i, π′j〉 ∈ P do . Nodes with pairwise costs = lbi,j
20: N ′ ← N
21: N ′.ri ← [c(π′i), c(π

′
i)]

22: N ′.rj ← [c(π′j), c(π
′
j)]

23: N ′.lbi,j ← c(π′i)+c(π′j)

24: N ′.SoC ← N.SoC − c(N.lbi,j) +N ′.lbi,j
25: N ′.Mi ← N ′.Mi ∪M ′i . Cost-cond. constraints
26: N ′.Mj ← N ′.Mj ∪M ′j
27: N ′.πi ← π′i
28: N ′.πj ← π′j
29: OPEN ← OPEN ∪N ′
30: end for
31: N ′ ← N . Node for path costs at and above the next frontier
32: N ′.lbi,j ← lb′i,j
33: N ′.SoC ← N.SoC − c(N.lbi,j) +N ′.lbi,j
34: N ′.Mi ← N ′.Mi ∪M ′i . Cost-cond. constraints
35: N ′.Mj ← N ′.Mj ∪M ′j
36: N ′.πi ← ∅ . Will be replanned lazily on line 8
37: N ′.πj ← ∅
38: OPEN ← OPEN ∪N ′
39: else . Disjunctive, CBS-style split for conflicting agents
40: N ′ ← N . Create node for agent i
41: N ′.ri ← [MINπ′

i∈P
c(π′i),∞)

42: N ′.lbi,j ← c(P0.π′i)+c(P0.π′j) . P0 is the first pair in P
43: N ′.SoC ← N.SoC − c(N.πi) + c(π′i)
44: N ′.Mi ← N ′.Mi ∪ {〈i, ai〉} . Regular motion constraint
45: N ′.πi ← ∅ . Will be replanned lazily on line 8
46: N ′.SoC ← N.SoC − c(N.πi) + c(π′i)
47: OPEN ← OPEN ∪N ′
48: N ′ ← N . Create node for agent j
49: N ′.rj ← [MINπ′

j∈P
c(π′j),∞)

50: N ′.lbi,j ← c(P0.π′j)+c(P0.π′j) . P0 is the first pair in P
51: N ′.Mj ← N ′.Mj ∪ {〈j, aj〉} . Regular motion constraint
52: N ′.πj ← ∅ . Will be replanned lazily on line 8
53: N ′.SoC ← N.SoC − c(N.πi) + c(π′i)
54: OPEN ← OPEN ∪N ′)
55: end if
56: end if
57: end while
58: return ”No solution”

The PAIRWISECONSTRAINTSEARCH (PCS) plans two
conflicting agents (agents i and j) jointly to find a feasi-
ble solution and discover motion constraints and cost con-
straints at the same time. PCS takes as input two path cost
constraints ri and rj , a pairwise cost constraint lbi,j (also
known as the current pairwise cost frontier) and motion con-
straints Mi and Mj . Line 17 shows N as the input because

N contains all of the information needed. The output is: (1)
a pair of new motion constraint sets M ′i and M ′j , (2) a set of
lowest-cost path pairs P={〈πi, πj〉1, .., 〈πi, πj〉n} such that
∀(πi, πj)∈P :

• πi and πj have no conflicts.

• c(πi)+c(πj)≥lbi,j (The sum of each pair of path
costs conforms to the pairwise cost constraint.)

• c(πi)∈ri and c(πj)∈rj (Each path cost conforms
to the path cost constraints.)

and (3) lb′i,j , the next lowest pairwise cost frontier. Further
details of PCS are covered after the high level.

For example, in Node A of Figure 4, based on the conflict
between agents y and z, ry, rz , lby,z , My and Mz in Fig-
ure 5(a) are passed to PCS in order to plan agents y and z
jointly. If PCS was called for the example instance with the
cost constraints ry=2+, rz=2+ and lby,z=4 with no motion
constraints, PCS would return two path pairs in P with path
costs 〈2, 3〉 and 〈3, 2〉. These points are shown as B and C
in Figure 5(b). The resulting pairwise cost frontiers, lby,z=5
and lb′y,z=6 are also shown.

Constraint Sets for Splitting CBICS generates child
nodes based on outputs from PCS. Recall from the discus-
sion of CBS that, during a split, agents i and j receive a set of
new motion constraints Mi and Mj , respectively. This helps
the agents to avoid a conflict. Completeness is ensured only
when the actions blocked by Mi are mutually conflicting
with all actions blocked byMj (Walker, Sturtevant, and Fel-
ner 2020). This is known as the mutually disjunctive prop-
erty (Li et al. 2019c) for constraint sets. We say that mo-
tion constraint sets are valid iff no solution exists when both
agents i and j violate any constraints mi∈Mi and mj∈Mj ,
respectively, simultaneously.

There are two possibilities for PCS outputs M ′i ,M
′
j : (1)

motion constraints are found for at least one of the two
agents or (2) no motion constraints are found. In case (1)
CBICS performs a conjunctive split. In case (2), CBICS per-
forms a (CBS-style) disjunctive split.

Conjunctive Splitting In a conjunctive split, the same
motion constraint sets are applied to all child nodes. See
lines 19-38 of Algorithm 1. A child node N ′ is created for
each path pair π′i, π

′
j in P , where N ′.ri and N ′rj are as-

signed the costs c(π′i) and c(π′j), respectively, the pairwise
lower bound, N ′.lbi,j gets c(π′i)+c(π

′
j), N ′.Π is updated

with π′i and π′j and N ′.M is updated with M ′i and M ′j (lines
19-30).

For example, node A of Figure 4 is split based on the
conflict between agents y and z, producing two child nodes
because PCS returned two paths in P with costs 〈2, 3〉 and
〈3, 2〉. Child nodes B and C take on fixed values for ry and
rz (〈2, 3〉 and 〈3, 2〉, respectively). Child B and C also get
lby,z=5, and the same sets of constraints are added to both.
CBICS also replaces B.πy , B.πz , C.πy and C.πz with the
respective paths from P .

CBICS generates an additional node whose cost con-
straints represent the cost range based on the next pairwise
cost frontier, lb′i,j (lines 31-38). Note that paths for this node

389

are not filled in, but are lazily planned on line 8. The creation
of the additional node is illustrated by node D, which is gen-
erated based on lb′y,z=6, and also receives the same motion
constraint sets as nodes B and C. The cost range for node D
in Figure 4 is shown as the shaded region in Figure 5(b).

Disjunctive Splitting Lines 39-54 show the steps for a
disjunctive split. In a disjunctive split, only two nodes are
created, one for each agent in conflict. Each node then gets
motion constraints for one agent respectively. The cost con-
straints are based on the minimum costs of path pairs in P .

Cost-Conditional Motion Constraints In order to ensure
completeness, motion constraints used in a conjunctive split
must be cost-conditional motion constraints. Conditional
motion constraints (Walker, Sturtevant, and Felner 2020) are
similar to regular constraints, except that they can be turned
off, meaning that they are omitted from the low-level search
based on some criteria. The need for cost-conditional mo-
tion constraints in conjunctive splitting scenarios can be un-
derstood using the example in Figures 3(a) and (b). In Fig-
ure 3(a), CBS constructs motion constraints for the mutexed
MDD nodes shown with dashed outlines. Figure 3(b) shows
the same analysis if the cost limit is increased to 3 for agent
x. The MDD node B2 at time step 1 for agent z is no longer
mutex with all MDD nodes for agent x, hence the motion
constraints for agent x remain valid, but the motion con-
straints for agent z are no longer valid. This can be seen by
comparing the nodes with dashed outlines between (a) and
(b).

We therefore create motion constraints that are condi-
tional on the cost of the other agents. The analysis in Fig-
ure 3(b) leads us to define a cost-conditional motion con-
straint 〈n, a, ref, c〉, where n is the agent being constrained,
a is the action to be avoided, ref is the reference agent for
the constraint, and c is the upper cost bound of the refer-
ence agent. Hence, the motion constraint is only valid when
the cost of the reference agent is no greater than c. Re-
ferring back to Figure 3(b), a cost-conditional motion con-
straint 〈n=x, a=B1@0→B2@1, ref=z, c=2〉 would be re-
turned by PCS.

The CRCT is searched in a best-first fashion using the
sum-of-costs of nodes as priorities. Some nodes in the
CRCT which are generated before node E are pruned
quickly because the combination of costs is infeasible. These
pruned nodes are shown with red ‘X’s in Figure 4. For exam-
ple, the left child of node C is pruned because setting rx=3
and ry=3 makes conflict-free paths for agents x and y im-
possible.

The search continues in this fashion, finding the current
pairwise cost frontier, creating child nodes for fixed costs on
the frontier and one child node representing pairwise costs
at and above the next lowest pairwise cost frontier.

Prior to calling PCS, CBICS checks each mi∈Mi and
mj∈Mj against the upper bound of each r∈R. All mi with
mi.ref=j andmi.c<rj .ub are removed from the constraint
set (i.e., turned off). Then, the search is started. For exam-
ple, the analysis in Figure 3(a) creates four conditional mo-
tion constraints based on the actions terminating at dashed
nodes.

1. 〈n=x, a=B1→B2@0, ref=z, c=2〉
2. 〈n=x, a=B2→B3@1, ref=z, c=2〉
3. 〈n=z, a=C2→B2@0, ref=x, c=2〉
4. 〈n=z, a=B2→B3@1, ref=x, c=2〉.
If PCS were called with parameters rx=2 and rz=3, con-
straints (1) and (2) would be omitted because rz=3 is greater
than c=2 for both of them.

The upper cost bound of a conditional motion constraint
mi.c is valid iff it is mutually disjunctive with all of the op-
posing agent (agent j)’s actions at the same time when agent
j’s path cost is less than or equal to mi.c. Hence, we say
cost-conditional motion constraint sets are valid iff no solu-
tion exists when both agents i and j violate any (non-turned
off) motion constraint from Mi and Mj simultaneously. By
non-turned off, we mean motion constraints mi for which
mi.c≤rj .ubwhere rj .ub is the upper bound of the cost range
for agent j (and analogously for mj).

In node E in Figure 4, because of the motion constraints
and the cost constraints for agent y from node B, only one
feasible solution for agents x and y exists with costs 〈4, 2〉.
This results in pushing the individual cost limit for agent
x from 2+ (in node B) to 4 (in node E) and lbx,y from 4+
(in node B) to 6 (in node E). Because of the cost increase
for agent x, we can infer that lbx,z=7 (because rx=4 and
rz=3).

In this instance, the goal node E is found sooner than
would have been the case with either CBS or ICTS for two
reasons: (1) CBICS can apply motion constraints to multiple
agents at the same time. Hence, both agents y and z get mo-
tion constraints in nodes B, C and D where CBS would have
applied them only to one agent. (2) CBICS can increase the
path costs of multiple agents at the same time, by the maxi-
mum amount possible. ICTS would have increased the cost
of only one agent and only by the fixed amount δ.

Pairwise Constraint Search
PCS plans two conflicting agents jointly to find feasible so-
lutions and discover motion constraints and cost constraints
at the same time. The pseudocode for PCS shown in Algo-
rithm 2 is based on A*, where the state space is the joint
state space for the two agents. A state in the joint state
space is S={si, sj}, where si and sj are single-agent states.
It respects motion constraints Mi and Mj for the agents
during successor generation (line 13). It respects cost con-
straints by pruning successors (line 60). PCS terminates af-
ter all lowest-cost solutions have been found and the first
next-lowest cost solution is found (line 7) or when OPEN is
empty.

During the successor generation phase (lines 12-18),
successors are generated to maintain time overlap be-
tween the actions of the agents. Time overlap means
that for ai=〈si, s′i〉 and aj=〈sj , s′j〉, si.t∈[sj .t, s

′
j .t] or

s′i.t∈[sj .t, s
′
j .t]. This is only needed for continuous

time (Walker, Sturtevant, and Felner 2018). Successor nodes
are marked as infeasible if their parent is infeasible. This
is similar to how MP checks the mutexes of predecessor

390

Algorithm 2 Pairwise Constraint Search Algorithm
1: Input: starti, startj , goali, goalj , Mi,Mj , ri, rj , lbi,j
2: OPEN ← 〈starti, startj〉
3: M ′i ← ∅,M ′j ← ∅, P ← ∅, Bi ← ∅, Bj ← ∅
4: while OPEN 6= ∅ do
5: S = 〈si, sj〉 ← OPEN.pop()
6: if S′.feasible ∧ S′ is goal ∧
7: P 6=∅ ∧ f(s′i)+f(s′j) > all path costs in P then
8: M ′i ←M ′i \ {∀m′i∈M ′i : m′i.c<rj .lb ∨m′i.a /∈ Bi}
9: M ′j ←M ′j \ {∀m′j∈M ′j : m′j .c<ri.lb ∨m′j .a /∈ Bj}

10: return P,M ′i ,M
′
j , lb
′
i,j=f(s′i)+f(s′j)

11: end if
12: if si.time < sj .time then . Get successors for continuous time
13: S′i ← successors(si,Mi)
14: S′j ← {sj}
15: else
16: S′j ← successors(sj ,Mj)

17: S′i ← {si}
18: end if
19: Compute f-cost for each s′i ∈ S′i, s′j ∈ S′j
20: S′ ← S′i × S′j . Cartesian product
21: for S′ ∈ S′ do
22: S′.feasible← S.feasible
23: if s′i ∈ S′ conflicts with s′j ∈ S′ then
24: S′.feasible← false
25: end if
26: if ∃m′i ∈M ′i blocks 〈si, s′i〉 then
27: m′i ← m′i ∈M ′i
28: M ′i ←M ′i \m′i
29: else
30: m′i ← 〈n=i, a=(si, s

′
i), ref=j, c=f(s′j)〉

31: end if
32: if S′.feasible = false then
33: if not m′i.costIsCapped then
34: m′i.c← MAX(f(s′j),m

′
i.c) . Increase range

35: end if
36: else
37: if f(s′j) ≤ m′i.c then
38: m′i.c← f(s′j)− ε . Decrease range permanently
39: m′i.costIsCapped← true
40: end if
41: end if
42: M ′i ←M ′i ∪m′i
43: Analogously for s′j
44: if S′ is goal ∧f(s′i)≤ri.ub ∧ f(s′j)≤rj .ub then
45: if S′.feasible ∧ 〈f(s′i), f(s′j)〉 is unique in P∧
46: f(s′i)≥ri.lb∧ f(s′j)≥rj .lb∧ f(s′i)+f(s′j)≥lbi,j then
47: P ← P ∪ path to S′ . Save unique-cost solutions
48: else if ¬S′.feasible then
49: while ¬S.feasible do . Add to infeasible action sets
50: Bi ← 〈S.si, s′i〉
51: Bj ← 〈S.sj , s′j〉
52: s′i ← S.si
53: s′j ← S.sj
54: S ← S.parent
55: end while
56: end if
57: if f(s′i)<ri.ub ∧ f(s′j)<rj .ub then
58: OPEN ← OPEN ∪ S′
59: end if
60: else if f(s′i)≤ri.ub ∧ f(s′j)≤rj .ub then
61: OPEN ← OPEN ∪ S′ . Add to open if in cost bounds
62: end if
63: end for
64: end while
65: return ∅, ∅, ∅,∞ . No solution

MDD nodes for computing propagated mutexes. PCS per-
forms mutex propagation, but it does this without the use of
MDDs. Instead, it keeps a list of motion constraints, updat-
ing the upper cost bound m′.c as necessary.

Consider the example instance in Figure 2(a). If PCS
were planning for agents x and y, the root state would
be S=〈sx=B1@0, sy=B3@0, f=2, 2, feasible=true〉,
where sx and sy are the states of agents x and y and f
is f(sx) and f(sy) respectively. f(si) is the f-cost of s
which is a lower-bounded estimate of the cost of a path
from starti to goali that passes through si (line 19). The
successors of this joint state as produced by lines 12-18
would be:

1. 〈sx=C1@1, sy=B3@1, f=4, 3, feasible=true〉
2. 〈sx=C1@1, sy=B2@1, f=4, 2, feasible=true〉
3. 〈sx=B1@1, sy=B3@1, f=3, 3, feasible=true〉
4. 〈sx=B1@1, sy=B2@1, f=3, 2, feasible=true〉
5. 〈sx=B2@1, sy=B3@1, f=2, 3, feasible=true〉
6. 〈sx=B2@1, sy=B2@1, f=2, 2, feasible=false〉

Lines 26-31 will get an existing motion constraint (for up-
dating) or add a new motion constraint (as an initial mutex)
with an initial upper cost bound set to the f-cost of the op-
posing agent (line 30).

Continuing the example, 5 new cost-conditional motion
constraints will be created from the successor nodes, whose
upper cost bound m′.c will be updated.

1. 〈n=x, a=B1@0→B1@1, ref=y, c=3〉
2. 〈n=x, a=B1@0→B2@1, ref=y, c=3〉
3. 〈n=x, a=B1@0→C1@1, ref=y, c=3〉
4. 〈n=y, a=B3@0→B3@1, ref=x, c=4〉
5. 〈n=y, a=B3@0→B2@1, ref=x, c=4〉

The logic for updating m′.c occurs at lines 32-41. Con-
sider what happens for motion constraint 1, listed above.
Because agent x’s action B1@0→B1@1 does not con-
flict with either of agent y’s actions B3@0→B3@1 and
B3@0→B2@1, the cost is capped so that it cannot grow
(see line 39) and its upper cost limit, m′.c is reduced, (af-
ter comparing to both states) to 2−ε where 2 is the f-cost
of agent y’s B3@0→B2@1 action, and ε is a small con-
stant. Now consider what happens for motion constraint 2
which is for agent x’s action B1@0→B2@1. It does not
conflict with agent y’s action B3@0→B3@1, but it does
conflict with B3@0→B2@1. Thus, the cost gets capped at
3−ε, (for the f-cost of B3@0→B3@1), but does not get de-
creased when checked versus B3@0→B2@1. If the actions
had been checked in the reverse order, the result would be
the same. By inspection, it is apparent that as long as agent
y’s cost does not go above 3−ε, agent x can never perform
the action B1@0→B2@1 without conflict.

Subsequent expansions will either increase or decrease
m′.c values appropriately so that each m′.c is the top of
the continuous conflicting path cost range for the opposing
agent. Note that the resultingm′.c for some cost-conditional
motion constraints will be less than the lowest possible path

391

cost for the opposing agent, hence are unusable and must be
omitted entirely (line 8. For example, m′.c for motion con-
straint 1 is 2−ε which is below the cost of a shortest path for
agent y, and can be omitted from Mx.

In cases where heuristics that inform f-costs are not exact
(without the additional logic described here), PCS could in-
clude motion constraints in M ′i and M ′j which block actions
for paths with costs that are outside the cost bounds of ri and
rj respectively. This would lead to incompleteness. In or-
der to remove motion constraints which fall outside the cost
bounds, PCS computes the sets of infeasible actions (liter-
ally feasible=false) Bi and Bj for agents i and j at lines
3 and 48-55. These sets include only infeasible actions in-
cluded in infeasible paths to the goal that fall inside the cost
bounds. Finally, in addition to removing all m′ where m′.c
is less than the lower cost bounds, we also remove any m′
where m′.a is not in the set of infeasible actions Bi and Bj
respectively (lines 8 and 9).

Completeness and Optimality
We believe CBICS to be optimal and complete, which is sup-
ported by our experimental results, where it has always re-
turned optimal solutions. We are finalizing a complete and
formal proof of correctness that will be presented in future
work.

Additional Enhancements
Some additional enhancements make CBICS more efficient.
Instead of letting it dynamically find the pairwise costs for
conflicting agents, runtime is reduced if all pairwise costs
are updated in the root node (line 3 of Algorithm 1). This
can be done by performing a conflict check between all ini-
tial paths. Any pairs of paths that have a conflict are then
planned together with PCS. The resulting pairwise costs are
then updated in the root node. This is called the preprocess-
ing enhancement.

In some scenarios, |P |, the number of unique-cost path
combinations found by PCS can be large, which for con-
junctive splits, results in a large branching factor at the high
level. In order to keep the branching factor small, some
of the cost combinations can be combined into a single
node. Of all approaches we tried, the best approach is to
create four nodes from P : (1) a node with the minimum
cost for ri and maximum cost for rj . (2) a node with the
maximum cost for ri and minimum cost for rj . (3) a node
that combines all costs in between (but not equal to) the
minimum and maximum costs. (4) the node for where the
sum of costs is at least lb′i,j . For example, with the fol-
lowing cost combinations: 〈2, 5〉, 〈3, 4〉, 〈4, 3〉, 〈5, 2〉, four
nodes with the following path cost ranges would be gen-
erated: 〈ri=2, rj=5〉, 〈ri=[3, 4], rj=[3, 4]〉, 〈ri=5, rj=2〉 ,
〈ri=2+, rj=2+〉. This is called the combination enhance-
ment.

Analysis
Figure 6 shows an example of a typical CBICS tree. Orange
nodes represent conjunctive nodes with an unlimited upper

cost bound (unlimited nodes), red nodes represent conjunc-
tive nodes with finite cost bounds (limited nodes), and blue
nodes represent disjunctive nodes. The search usually ex-
plores the sub-trees of limited nodes to completion - elim-
inating the sub-trees from consideration before moving on
to expanding unlimited nodes. In practice, conjunctive splits
occur most often at unlimited nodes. This is because lower
bounds on individual costs are rarely increased for unlimited
nodes and, when the costs are low, PCS (and mutex propa-
gation in general) is more likely to find motion constraints.
Conversely, as costs increase, PCS is less likely to find mo-
tion constraints and disjunctive splitting is used. Often, the
pattern results in the sub-trees of limited nodes resembling a
regular CBS tree. However, occasionally a sufficient number
of disjunctive motion constraints are added in a sub-tree to
allow PCS to find motion constraints, triggering a conjunc-
tive split.

When compared to CBS, which has a branching factor of
2, CBICS has a larger branching factor on average. However,
unlike CBS, nodes in CBICS have cost constraints which
tend to eliminate a significant proportion of the sub-trees
quickly. Thus, while CBS and ICTS tend to build fuller bi-
nary and k-ary-like trees, respectively, CBICS tends to build
a more unbalanced search tree.

The branching factor of the joint state space for PCS is
b=(bbase)

2, where bbase is the single-agent branching fac-
tor. The depth of the solution ∆, can be no larger than
MAX(di, dj) where di and dj are the lengths (number of
states) in πi and πj in the unit time case. ∆ can be no
larger than di+dj in the continuous time case because of
a phenomenon related to operator decomposition (Standley
2010). Hence, the computational complexity of PCS is no
worse than for regular mutex propagation, namely O(bd) in
unit time domains, andO(b2d) for continuous time domains.

Empirical Results
All experiments were run using an Intel i9 processor at
2.4GHz with 64GB of memory. The implementation is pub-
licly available1. The experiments come from the MAPF
benchmarks set (Stern et al. 2019) which includes various
grid maps and MAPF instances with randomly selected start

1https://github.com/thaynewalker/hog2/tree/id/apps/CBICS

Figure 6: Structure of a CBICS tree.

392

Su
cc

es
s

R
at

e
4-

N
ei

gh
bo

r
Su

cc
es

s
R

at
e

8-
N

ei
gh

bo
r

Su
cc

es
s

R
at

e
16

-N
ei

gh
bo

r

5 10 15 20 25

0

50

100
Empty

E-ICTS CBS+BC CBS+MP+BC CBICS-DJ CBICS

5 10 15 20 25 30 35 40

0

50

100
20% Random Obstacles

5 10 15 20

0

50

100
Maze Maps

5 10 15 20 25 30

0

50

100
Room Maps

5 10 15 20

0

50

100

5 10 15 20 25 30

0

50

100

5 10 15

0

50

100

5 10 15 20

0

50

100

5 10 15 20

0

50

100

Number of Agents
5 10 15 20 25 30

0

50

100

Number of Agents
5 10 15

0

50

100

Number of Agents
5 10 15 20

0

50

100

Number of Agents

Figure 7: Success rates of E-ICTS, CBS+BC, CBS+MP+BC and two variants of CBICS on benchmark problems.

Map E-ICTS CBS+BC CBS+MP+BC CBICS
4 16 4 16 4 16 4 16

Empty 0.9 1.8 - 1.3 1.0 6.0 0.1 2.5
Random Obs. 0.02 7.2 - 5.4 0.06 5.5 0.01 0.8
Maze 9.2 25.3 - 25.5 10.4 26.5 8.2 18.3
Room 1.4 15.6 - 20.0 4.9 21.7 0.5 12.0

Table 1: Overall runtime for benchmarks with 10 agents.

and goal vertices for agents. There are 25 instances for each
map. The benchmarks were run by starting with five agents,
incrementally increasing the number of agents and record-
ing the runtime and number of instances that were solvable
within 30 seconds. Any MAPF instance that was not solved
within this runtime limit was marked as a failure. Figure
7 shows the success rates for four different benchmark in-
stances, namely empty 8x8 grid maps, 32x32 grid maps with
20% random blocked cells, 32x32 maze maps with corridors
that are two cells wide, and 32x32 grid maps with rooms
with doorways that are one cell wide.

All MAPF instances were solved for circular agents with a
radius of 1/(2

√
2) cells, a fixed wait time of 1, and the sum-of-

costs time-not-on-target objective, meaning an agent never
incurs cost when it is on its goal. Even if it moves away and
back to its goal location, prior actions staying on its goal lo-
cation have no cost. We have run experiments on 4-, 8- and
16-neighbor grid maps which are 2k neighborhoods (Rivera,
Hernández, and Baier 2017). 8- and 16-neighborhoods have
continuous time. All experiments were run on an implemen-
tation which has collision detection, the conflict avoidance
table and other aspects optimized for continuous time. This
causes differences in our results versus MAPF solvers which
are optimized for unit time.

Figure 7 shows the average success rates for various
MAPF algorithms over 25 instances with increasing num-
bers of agents. CBS+BC means CBS with biclique mo-

tion constraints (Walker, Sturtevant, and Felner 2020) (for
non-4-neighbor MAPF instances only since biclique mo-
tion constraints are not valid for unit time), CBS+MP+BC
means CBS with (continuous time) mutex propagation and
biclique motion constraints (for continuous time instances
only), CBICS-DJ means CBICS with only disjunctive split-
ting, and CBICS is the full algorithm with both the prepro-
cessing and combination enhancements. Both implementa-
tions of CBICS use biclique motion constraints in disjunc-
tive splits when applicable. The latter three algorithms need
to use PCS for continuous-time mutex propagation.

With the exception of empty maps in continuous time, the
results show that CBICS is able to find solutions faster, and
with a higher success rate than all other variants. CBICS
solves for up to 5 or more agents in the same amount of
time compared to previous state of the art. This is signifi-
cant because each additional agent increases the difficulty
of solving the problem instance exponentially. In 8- and 16-
neighbor empty 8x8 grid maps, CBS+BC has a larger suc-
cess rate than CBICS because the work for extended-time
symmetry breaking of mutex propagation in PCS is not ben-
eficial. Biclique motion constraints are formulated for spa-
tial symmetries and so perform better on empty maps. In
most of the other maps, CBICS and CBICS-DJ outperform
the other variants, with CBICS consistently having the best
performance. The results in Table 1 which shows the average
runtime for the same MAPF instances with 10 agents, show
the same trend, with CBICS having the smallest runtimes.

Table 2 shows the average number of high-level node ex-
pansions for the benchmarks with 10 agents. When an algo-
rithm was not able to solve an instance, the number of node
expansions before the timeout was used instead. All algo-
rithms expanded more nodes for the empty-8x8 map than for
the other maps because agent density is high and thus many
conflicts need to be resolved and many cost increases are
needed to find a solution. Also, a smaller map means shorter

393

Map E-ICTS CBS+BC CBS+MP+BC CBICS
4 16 4 16 4 16 4 16

Empty 219 28369 - 2048 4221 41994 592 6647
Random 16 12722 - 938 5 114 4 48
Maze 103 167 - 774 291 589 80 428
Room 169 10132 - 798 84 465 15 212

Table 2: Nodes expanded for benchmarks with 10 agents.

path lengths and the low level of each algorithm thus does
less work, enabling it to expand more nodes in less time.

Mutex propagation is an effective yet computationally
expensive algorithm. Although CBS+MP+BC is using the
same implementation of the low-level as CBICS, its average
number of expansions is consistently larger than for CBICS
because of its ability to propagate conjunctive motion con-
straints to multiple agents and pruning of infeasible cost
combinations. Additionally, when running PCS with cost
limits, a lot of work is reduced, allowing CBICS to evalu-
ate nodes faster.

Table 3 shows the average runtime per high-level node ex-
panded for the low-level of each algorithm in milliseconds.
For instances that were unsolvable, the runtime of all ex-
panded high-level nodes were used. E-ICTS generally has a
very small runtime per node evaluated because it uses small,
cost-exact pairwise checks and eliminates infeasible com-
binations before doing a final k-agent search. The major-
ity of its low-level searches never perform the full k-agent
search because the pairwise tests fail quickly. PCS evaluates
the entire pairwise space, including the infeasible combina-
tions. This causes longer low-level runtimes, but more in-
formation is gleaned in the process. The runtime per node
of CBS+MP+BC is consistent across all 32x32 maps, but
the low-level runtime per node of CBICS has more variance.
This is because limited nodes and the nodes in their sub-trees
have tighter cost constraints, and so can be evaluated faster.
The unlimited nodes in CBICS, having unlimited upper cost
bounds, are similar to CBS+MP+BC nodes and tend to take
longer to evaluate.

Conclusion
In this work, we have solved the open issue of generalized
symmetry breaking in continuous time domains by formu-
lating Pairwise Constraint Search (PCS). PCS computes mo-
tion constraint sets for conflicting agents by performing mu-
tex propagation and simultaneously computes cost validity
ranges for the motion constraints.

We have also formulated Conflict-Based Increasing Cost
Search (CBICS), which leverages strengths from the CBS

Map E-ICTS CBS+BC CBS+MP+BC CBICS
4 16 4 16 4 16 4 16

Empty 0.6 5.4 - 3.0 3.4 4.5 1.8 3.8
Random 0.7 29.7 - 28.3 9.9 48.2 4.0 17.7
Maze 89.4 151.5 - 20.1 35.8 48.8 38.7 42.7
Room 0.6 1.5 - 27.1 27.5 41.8 25.8 36.5

Table 3: Low-level runtime for benchmarks with 10 agents.

and ICTS algorithms. CBICS dynamically employs both
conjunctive and disjunctive splitting in the high-level search
to simultaneously increase costs and resolve conflicts.
CBICS works well for both unit time and continuous time
domains and outperforms current state of the art algorithms
for continuous time domains.

Acknowledgements
We are grateful for the significant contributions of Sven
Koenig. The research at the University of Denver was sup-
ported by the National Science Foundation (NSF) grant
number 1815660 and Lockheed Martin Corp. Research at
the university of Alberta was funded by the Canada CI-
FAR AI Chairs Program. We acknowledge the support of
the Natural Sciences and Engineering Research Council of
Canada (NSERC). Research at Ben Gurion University was
supported by BSF grant number 2017692.

References
Andreychuk, A.; Yakovlev, K.; Atzmon, D.; and Stern, R.
2019. Multi-Agent Pathfinding with Continuous Time. In
International Joint Conferences on Artifical Intelligence,
39–45.

Botea, A.; Bonusi, D.; and Surynek, P. 2018. Solving multi-
agent path finding on strongly biconnected digraphs. Jour-
nal of Artificial Intelligence Research 273–314.

Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. E. 2015. ICBS: Improved
Conflict-Based Search Algorithm for Multi-Agent Pathfind-
ing. In International Joint Conferences on Artifical Intelli-
gence, 223–225.

Cohen, L.; Uras, T.; Kumar, T. K. S.; and Koenig, S. 2019.
Optimal and Bounded Sub-Optimal Multi-Agent Motion
Planning. In Symposium on Combinatorial Search, 44–51.

Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS:
Implict conflict-based search using lazy clause generation.
In International Conference on Planning and Scheduling,
155–162.

Lam, E.; Le Bodic, P.; Harabor, D.; and Stuckey, P. J. 2019.
Branch-and-cut-and-price for multi-agent pathfinding. In
Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence (IJCAI-19), International
Joint Conferences on Artificial Intelligence Organization,
1289–1296.

Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.;
Koenig, S.; Li, J.; Sun, K.; Ma, H.; Felner, A.; et al. 2020.
New Techniques for Pairwise Symmetry Breaking in Multi-
Agent Path Finding. In International Conference on Auto-
mated Planning and Scheduling, 6087–6095.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig,
S. 2019a. Disjoint Splitting for Multi-Agent Path Finding
with Conflict-Based Search. In International Conference on
Planning and Scheduling, 279–283.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Sven, K.
2019b. Symmetry-Breaking Constraints for Grid-Based

394

Multi-Agent Pathfinding. In AAAI Conference on Artificial
Intelligence, 6087–6095.
Li, J.; Surynek, P.; Felner, A.; Ma, H.; and Satish, K. T.
2019c. Multi-Agent Pathfinding for Large Agents. In AAAI
Conference on Artificial Intelligence, 7627–7634.
Rivera, N.; Hernández, C.; and Baier, J. A. 2017. Grid
Pathfinding on the 2k Neighborhoods. In AAAI Conference
on Artificial Intelligence, 891–897.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219: 40–66.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The Increasing Cost Tree Search for Optimal Multi-agent
Pathfinding. AIJ 470–495.
Srinivasan, A.; Ham, T.; Malik, S.; and Brayton, R. K.
1990. Algorithms for discrete function manipulation. In
Computer-Aided Design, 1990. ICCAD-90. Digest of Tech-
nical Papers., 1990 IEEE International Conference on, 92–
95. IEEE.
Standley, T. S. 2010. Finding Optimal Solutions to Coopera-
tive Pathfinding Problems. In AAAI Conference on Artificial
Intelligence, 28–29.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Kumar, T. K. S.; Boyarski,
E.; and Barták, R. 2019. Multi-Agent Pathfinding: Defini-
tions, Variants, and Benchmarks. In Symposium on Combi-
natorial Search, 151–159.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016.
Efficient SAT Approach to Multi-Agent Path Finding Under
the Sum of Costs Objective. In ECAI/PAIS, 810–818.
Walker, T. T.; Sturtevant, N. R.; and Felner, A. 2018. Ex-
tended Increasing Cost Tree Search for Non-Unit Cost Do-
mains. In International Joint Conferences on Artifical Intel-
ligence, 534–540.
Walker, T. T.; Sturtevant, N. R.; and Felner, A. 2020. Gen-
eralized and Sub-Optimal Bipartite Constraints for Conflict-
Based Search. In AAAI Conference on Artificial Intelligence.
Weld, D. S. 1999. Recent advances in AI planning. AI mag-
azine 20(2): 93–93.
Yu, J.; and LaValle, S. M. 2013. Structure and Intractability
of Optimal Multi-robot Path Planning on Graphs. In AAAI
Conference on Artificial Intelligence, 1443–1449.
Zhang, H.; Li, J.; Surynek, P.; Koenig, S.; and Kumar, T.
K. S. 2020. Multi-Agent Pathfinding with Mutex Propaga-
tion. In International Conference on Planning and Schedul-
ing.

395

