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Abstract

In this paper, we investigate the plan reservation problem
with diverse plans in mobile networks. The pricing scheme
includes: 1) Pay-as-you-go (PAYG) payment; 2) All-in-one
plan: an upfront fee is charged to cover data volume of a pe-
riod of time; and 3) Directional plan: an upfront fee is charged
to cover data volume of a specific app for a period of time. We
investigate online plan reservation with competitive analysis,
as the data volume is not known until an app is used. The
problem is challenging as there are multiple directional plans
and one all-in-one plan, creating a large decision space and
complicated correlations among the decisions. We propose
the Online Hedge Reservation (OHR) Algorithm to solve the
problem and prove that it achieves eβ/(eβ − 1) competitive
ratio when each plan is valid till the end of each calendar
month and 2eβ/(eβ − 1) competitive ratio when each plan is
valid for a full month, where β is the ratio of prices of the di-
rectional plans and the all-in-one plan. This is an exciting neat
extension of the competitive ratio e/(e−1) of the classic ski-
rental problem. Finally, trace-driven simulation is conducted
to further verify the advantages of the OHR Algorithm.

Introduction
With the fast advances of mobile applications, sponsored
data plan (SDP) was recently adopted as a win-win-win so-
lution to Internet Service Providers (ISPs), content providers
(CPs), and end users. CPs provide users with network traf-
fic subsidies, which can attract more users for CPs, reduce
users’ costs, improve ISPs’ revenue, and motivate them to
increase investment in the infrastructure (Zhang and Wang
2014; Zhang, Wu, and Wang 2015). As a typical and ma-
ture form of SDP, directional plan is widely adopted. A di-
rectional plan will charge an upfront fee. Then, during the
active period of the plan, there is no cost for the traffic gen-
erated by apps of one CP, as long as the traffic does not reach
a cap. Table 11 shows an example of directional plans in the
real world.

Although the benefits of directional plans to a population
of users have been studied and verified in the perspective of
network economy, as a single user, it is still unclear how to
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%5f0%5f0.html

purchase them in the temporal dimension. The challenge is
that the user’s future data traffic is usually non-predictable,
but the plans should be reserved in advance. Especially, ISPs
will also provide pay-as-you-go (PAYG) and all-in-one plan,
as shown in Table 1, which greatly challenge users’ decision
on plan reservation. For example, a user consumes 450 MB
on TikTok watching short videos and 50 MB on other apps
(without directional plans) in the first month. The best pay-
ment method is to order ByteDance Plan and cover the rest
50 MB with PAYG. The total cost is CNY 23.5 (USD 3.35).
In contrast, covering all data volume by the all-in-one plan
is a much worse decision which will cost CNY 128 (USD
18.29), i.e., about 540% of the optimal cost. However, as the
users’ interests may drastically change (Rosenfelder 2018),
the optimal reservation may not work in the next month. For
example, the user starts to play a popular mobile game sup-
ported by Baidu in the following month, which can be cov-
ered by Baidu Plan. Only 100 MB is used by TikTok, but
500 MB is consumed by the game. If the user keeps using
the old best payment method in the last month, the cost will
be CNY 154 (USD 22) while using the ByteDance plan and
Baidu plan saves about 88% in this time.

In this paper, we are motivated to investigate the on-
line plan reservation scheme. Given the available directional
plans and the all-in-one plan, the objective is how to reserve
them to minimize the overall cost. However, the user’s fu-
ture data usage is not known in advance (Rosenfelder 2018;
Zang et al. 2019; Unterbrunner et al. 2009), so that we fo-
cus on the online solution with competitive analysis (Komm
2016). Nevertheless, the challenge is three-fold: (1) There
are M directional plans and an all-in-one plan to choose,
which create a large decision space. (2) Some apps have di-
rectional plans but others do not, causing unbalanced deci-
sions among different apps. (3) There is a complicated cor-
relation between the all-in-one plan and directional plans.
The reservation of a directional plan affects the decision on
the all-in-one plan, and vice versa. However, it is difficult to
quantify how they will affect each other.

To address the aforementioned issues, we propose the On-
line Hedge Reservation (OHR) Algorithm with two random-
ized hedge values. When PAYG cost in the current billing
cycle reaches the thresholds, the directional plan and the all-
in-one plan will be reserved respectively. The hedge values
are randomized, following our designed probability distribu-
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Payment
method

Covered apps Fee

Pay-as-you-
go

N/A CNY 0.29
(USD
0.04)/MB

5G Smart En-
joy Plan

All Apps CNY 128
(USD
18.4)$/Month

ByteDance
Plan

Today’s Headlines,
TikTok, Volcano
Video

CNY 9 (USD
1.3)/Month

Alibaba Plan Taobao, Tmall, Ali-
pay, YouKu, Koubei,
Xianyu, MayiWealth

CNY 9 (USD
1.3)/Month

Baidu Plan Baidu, Baidu Map,
Mobile Assistant,
Baidu Keyboard

CNY 9 (USD
1.3) /Month

Table 1: China Mobile Plans

tions, and thus risks caused by the uncertain future are coun-
teracted, leading to a quantified performance bound (i.e.,
competitive ratio). We consider two realistic plan settlement
modes: (1) non-extension plans, each plan is valid till the
end of each calendar month; and (2) extension plans, each
plan is valid for a full month since it is reserved. Our com-
petitive analysis firstly shows that the competitive ratio of
the OHR Algorithm is eβ

eβ−1 for the non-extension mode,
where β is the ratio of prices between the directional plan
and the all-in-one plan. This is an exciting neat extension
of the competitive ratio e

e−1 of the classic ski-rental prob-
lem (Karlin, Kenyon, and Randall 2003). 2 For the extension
mode, it additionally introduces complicated temporal cor-
relations, as the plans are no longer independent in each cal-
endar month. We prove that the OHR Algorithm still works
well in this mode with a competitive ratio of 2eβ

eβ−1 .
Finally, an intensive trace-driven simulation is conducted

to verify the theoretical results. We compare the perfor-
mance of OHR with benchmarks. The results show that
OHR outperforms all of them in the series of simulation.

Related Work
Sponsored Data Plan
Sponsored data plans (SDPs) in two-sided markets (Arm-
strong 2006) have attracted attention in academia and indus-
try over recent years. Several telecom companies have al-
ready provided sponsored data plans. The motivation of the
sponsored data plan is to introduce more profits to both ISPs
and CPs by attracting more users, to finally reach a win-win-
win situation.

2The classic ski-rental problem studies whether to pay by PAYG
(rent) or upfront fee (buy) for one commodity. The non-extension
mode studied in this paper is equivalent to the ski-rental problem if
there is one app only and one directional plan is available for this
app.

Different from the scope of this work, one typical class of
research investigates SDPs as games among users, ISPs, and
CPs. For example (Hande et al. 2009; Andrews et al. 2014)
studied the impact of SDPs on market competition. (Njoroge
et al. 2014) studied the impact of neutral and non-neutral
networks, and it showed that the neutral networks motivate
CPs’ participation. (Ma 2016) showed that CPs’ competitive
subsidy to users will increase the ISP’s investment in net-
work infrastructure. (Zhang, Wu, and Wang 2015) employed
the two-stage Stackelberg Game to study the impact of spon-
sored data plan on competition among CPs suggesting that
small CPs are benefited in the short term and large CPs are
benefited in the long term. Another work (Zhao et al. 2020)
additionally considered user diversity preferences. It is be-
lieved that the competitive advantage of large CPs will be
weakened after considering diversified demand.

The above category of studies addressed the question:
why does SDP exist and how is the price determined as a
consequence of games among ISPs, CPs, and (a large num-
ber of) users. Different from them, we focus on the problem
that given that SDPs are set, how to reserve them in an online
fashion with unknown future, in the perspective of a single
user.

Ski-Rental and Applications
Online algorithms are widely used to solve problems where
the future is unknown or adversary. The ski-rental prob-
lem (Karlin, Kenyon, and Randall 2003), which is to de-
cide whether to “buy” (upfront cost) or “rent” (PAYG cost)
without the knowledge of future, is a typical one to be ad-
dressed by online algorithms and competitive analysis. This
problem is also known as the Bahncard problem in a pub-
lic transportation system (Fleischer 2001). Variants of ski-
rental problems are investigated in recent years. (Shi et al.
2018) studied the ski-rental problem with nonlinear cost
function. (Khanafer, Kodialam, and Puttaswamy 2013) al-
lowed constraints (first or second moment) on the stochas-
tic adversary. (Feldkord, Markarian, and Der Heide 2017)
generalized the problem by considering fluctuations in rental
prices. (Meyerson 2005) considered that the choices of pur-
chase are limited in time. (Wang, Li, and Wang 2020) con-
sidered multiple shops, and the customer has to stick with
one shop to rent or buy. (Zhang and Conitzer 2020) consid-
ers the ski-rental problem with multiple desired resources.
The cost of requiring a new resource is a submodular func-
tion of the set of the resources that have not been purchased.
(Wang, Li, and Wang 2020) considered the predictions by
machine-learning approaches.

Variants of ski-rental problems are also investigated in
real-world Information and Communications Technology
(ICT) systems. (Yang, Pan, and Liu 2019; Wang, Liang, and
Li 2015) focused on the cloud instance reservation problem
(e.g. whether to reserve with upfront or rent it on demand),
and gave the online solutions with competitive ratio. (Dinh
et al. 2020) studied how edge nodes rent or buy remote re-
sources to meet the capacity requirement. (Zang et al. 2019)
developed an online ski-rental algorithm considering both
computation instance reservation and communication chan-
nel reservation. A range of caching problems can also be
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formulated as ski-rental problems. (Bansal, Buchbinder, and
Naor 2012) studied the generalized caching problem with
cache size K and developed a randomized online algorithm.
In (Rosenthal and Veloso 2012), a robot is waiting for human
assistance. It uses the ski-rental algorithm to decide whether
to wait in place or actively go to the office to find someone
for help.

However, the above studies are substantially different
from our study in terms of dimensions, hierarchy of choices,
and temporal correlations: in this work, (1) the number of
apps is an arbitrary integer, instead of 1 or 2; (2) the plans
are hierarchical, where the all-in-one plan can further cover
directional plans; (3) some apps do not have directional
plans and they can only be covered by PAYG or the all-
in-one plan; (4) we further consider the extension mode,
which adds more complicated temporal correlations among
the plans. To the best of our knowledge, this is the first study
investigating two-level (all-in-one plan plus directional plan)
and multiple-dimension (multiple directional plans) online
data plan reservation problem, based on the ski-rental ap-
proach.

Problem Formulation
System Overview
The system is operated in continuous time t ∈ [0, Tmax),
where Tmax remains unknown till the end. K apps are in-
stalled on a user’s smart device. At t, the user may use one
app, which generates data traffic, to be charged by its ser-
vice provider. Please note that one app may also represent a
cluster of apps operated by a same content provider. For ex-
ample, Today’s Headlines and TikTok are regarded as one
app offered by ByteDance. For presentation convenience,
we stick to the term “app” throughout the rest of this paper.

There are three charge options: (1) Pay-as-you-go
(PAYG), (2) Directional plan, and (3) All-in-one-plan. (2)
and (3) can be further divided into two modes detailed as
follows.
(1) PAYG: Each 1 unit of data volume will incur a cost of
∆p. Data volume of V will incur a PAYG cost of V∆p. We
assume that data volume is an integer value.
(2a) Directional plan (non-extension mode): At time t, the
user can subscript to a directional plan for one app k. It will
incur an immediate upfront fee Cd∆p. In [t, dt/T e · T ), the
data volume generated by app k will not incur any further
cost. This means that the plan is valid from t to the next
multiple of T (e.g., a plan is valid till the end of each month).
(2b) Directional plan (extension mode): At time t, the user
can subscript to a directional plan for one app k. It will incur
an immediate upfront fee Cd∆p. In [t, t + T ), the data vol-
ume generated by app k will not incur any further cost. This
means that the plan is valid for a complete T (e.g., a plan is
valid for one month).
(3a) All-in-one plan (non-extension mode): At time t, the
user can subscript an all-in-one plan for all apps. It will incur
an immediate upfront fee Co∆p. Then, from [t, dt/T e · T ),
the data volume generated by all apps will not incur any fur-
ther cost.

(3b) All-in-one plan (extension mode): At time t, the user
can subscript an all-in-one plan for all apps. It will incur an
immediate upfront fee Co∆p. Then, from [t, t+T ), the data
volume generated by all apps will not incur any further cost.

In this paper, we consider two modes: 1© Non-extension
mode: (1), (2a), and (3a) are available; 2© Extension mode:
(1), (2b), and (3b) are available. Please note that we consider
two modes since both of them are possible in reality.

Among the K apps, only M apps, M ≤ K, will offer
the three payment options. These apps are called directional
feasible apps. For the rest of apps, directional plan is not of-
fered, only PAYG and the all-in-one plan are offered. These
apps are called directional infeasible apps. Please note that
both directional feasible and directional infeasible apps are
possible in reality. An example is given in Table 1, where
three directional feasible apps are available, and all the rest
of apps do not have directional plans.

We assume that Cd is uniform among different apps. This
is because CPs should be deemed as fair competitors of the
market to ensure network neutrality (Janevski 2019). Indeed,
in the real example in Table 1, the same monthly fee of dif-
ferent CPs is applied.

At one time, the user uses one app and generate data traf-
fic. For presentation convenience, such app usage is called a
task. The task is labeled by i = 1, 2, . . . , I in chronological
order. Task i can be presented by a 3-tuple: (d(i), a(i), t(i)),
where d(i) represents the data volume generated by task i.
a(i) represents the app index a(i) ∈ {1, 2, . . . ,K}. t(i) rep-
resents the time when task i arrives. For any task i and task
j, i < j indicates t(i) < t(j).

Due to the uncertainty of data traffic usage, we assume
that users do not have any future information about data us-
age. For task i, the user only knows (d(i), a(i), t(i)) at time
t(i). This model does not assume that the sequence of the
tasks respects any prior distribution, so this is an online sys-
tem.

Since ∆p remains the same for all costs, it is regarded as
1 without loss of generality in the rest of the paper, unless
otherwise specified. We assume Cd � 1, as the price of a
plan is much higher than that of a unit of data volume. We
assume Co ≥ 2Cd and K ≥ 2 as the user uses at least two
apps.

Cost Minimization
We aim to minimize the overall cost, such that each task is
covered by PAYG, directional plan, or all-in-one plan.

Let τkl denote the time we purchase a directional plan of
app k, where l = 1, 2, . . . , Lk denotes the lth purchase, and
Lk denotes the total number of purchases.

Let τ0l denote the time we purchase an all-in-one plan,
where l = 1, 2, . . . , L0 denotes the lth purchase, and L0 de-
notes the total number of purchases. L denotes {Lk}, k =
0, 1, . . . ,M and τ denotes {τkl}, k = 0, 1, . . . ,M, l =
1, 2, . . . , Lk.

We aim to minimize the overall cost
minτ ,L

∑I
i=1 PAYG(i) + Cd

∑M
i=1 Li + CoL0, where

PAYG(i) is the PAYG cost of the task i. PAYG(i) = 0 if it
is covered by a plan. Otherwise, it is equal to d(i). For the
non-extension mode, task i is covered by a directional plan
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if ∃l such that t(i) ∈ [τa(i)l, dτa(i)l/T e · T ); it is covered by
an all-in-one plan if ∃l such that t(i) ∈ [τ0l, dτ0l/T e · T ).
For the extension mode, task i is covered by a directional
plan if ∃l such that t(i) ∈ [τa(i)l, τa(i)l + T ); it is covered
by an all-in-one plan if ∃l such that t(i) ∈ [τ0l, τ0l + T ).

Online Algorithm and Performance Evaluation
Due to the online setting, we do not know the future. Hence,
it is not possible to derive the minimum cost as an offline
optimization problem. In this paper, we focus on online plan
reservation, and evaluate the proposed algorithm by com-
petitive analysis, which is commonly adopted for online al-
gorithms. Let s = {(d(i), a(i), t(i))}, i = 1, 2, . . . , I , be
any input sequence of tasks. A randomized online algorithm
ALG is called c-competitive if it satisfies the following in-
equality for all possible input sequences: E(ALG(s)) ≤
c · OPT(s), where ALG(s) is the cost of algorithm ALG
and we consider its expectation. OPT(s) is the cost of the
optimal offline algorithm when the input s is known.

A randomized online algorithm makes randomized deci-
sions according to designed random distributions, and thus
we need to consider its mean performance. Our proposed
algorithm is a randomized online algorithm.

Online Hedge Reservation Algorithm
In this section, we introduce the Online Hedge Reservation
(OHR) Algorithm. We first introduce two important con-
cepts: typical cost and hedge values. Then, we formally pro-
pose the OHR Algorithm. Finally, we list the probability dis-
tribution of the hedge values.

Typical Cost
Before presenting the OHR Algorithm, we first define the
typical costs. Suppose current time (now) is t, the typical
cost of app k at t, θk(t), is defined as the PAYG costs of
app k generated from the last multiple of T till now, i.e., in
[bt/T c ·T, t], if we do not reserve any plan now. The overall
typical cost at t, θo(t), is defined as the overall PAYG cost of
all apps generated since the last multiple of T till now, i.e.,
in [bt/T c · T, t], if we do not reserve any plan now.

θk(t) =
∑

i:bt/Tc·T≤t(i)≤t and a(i)=k
task i is not covered by plan reserved before t

d(i), (1)

θo(t) =
∑

i:bt/Tc·T≤t(i)≤t
task i is not covered by plan reserved before t

d(i). (2)

Please note that we may reserve a plan at t when a task ar-
rives, but its PAYG fee d(i) can be counted in the typical
cost.

Hedge Values
We define γd and γo as two hedge values. If the typical cost
of (directional feasible) app k reaches γd, we reserve a di-
rectional plan of app k. If the overall typical cost reaches γo,
we reserve an all-in-one plan.

At time t, the typical cost reflects the user’s recent PAYG
cost, implying the user’s tendency to use app k (or all apps).

Algorithm 1: Online Hedge Reservation (OHR)
1 if current time is a multiple of T then
2 (Re)generate γd and γo according to PMFs in

(3)–(4).
3 end
4 if new arrival of task i: (d(i), a(i), t(i)) then
5 Set θo be the overall typical cost calculated in (2)
6 if There is no active all-in-one plan then
7 if θo ≥ γo then
8 Reserve all-in-one plan.
9 else

10 if If a(i) is directional infeasible then
11 Pay the task i’s data by PAYG.
12 else
13 if There is no active directional plan

for app a(i) then
14 Set θa(i) be the typical cost by (1).
15 if θa(i) ≥ γd then
16 Reserve directional plan of

app a(i).
17 else
18 Pay the task i’s data by PAYG.
19 end
20 end
21 end
22 end
23 end
24 end
25 Repeat from Line 1

We reserve plans if the typical costs reach the hedge val-
ues. However, since the future is completely unknown and
could be adversarial, the worst case is that the app is never
used after the reservation. To this end, values of γd and γo
are designed as random values. Large values γd and γo will
counteract the risk of small values, and vice versa. There-
fore, they are called hedge values.

Online Hedge Reservation Algorithm

Algorithm 1 shows the OHR Algorithm. Whenever a task ar-
rives, if is already covered by an active plan (Lines 6 and 13),
no action is needed. Otherwise, the typical costs will be cal-
culated (Lines 5 and 14). If they reach the hedge values, then
a plan will be reserved (Lines 8 and 16). A directional infea-
sible app will always be covered by PAYG (Line 18). Also,
the hedge values will be regenerated every T to avoid adap-
tive adversary sequence to “learn” the hedge values, causing
worse performance (Komm 2016).

Please also note that Algorithm 1 is the same for both non-
extension and extension modes. The duration of the plans
will differ for the two modes, so that the typical costs are
calculated differently and thus plans are reserved differently.
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Distributions of γd and γo
The probability mass functions (PMFs) of γd and γo are

P(γd = i) , P
(d)
i =

{
1, if i = Cd,

0, otherwise,
(3)

P(γo = i) , P
(o)
i =


aqi−1, if i ∈ [1, Cd − 1],
Co

2Co−1aq
Cd−2, if i = Co,

0, otherwise,
(4)

where q , Co
Co−1 and a , ( 1−qCd−1

1−q + Co
2Co−1q

Cd−2)−1.

Please note that this distributions will lead to eβ

eβ−1 com-

petitive ratio for the non-extension mode, and 2eβ

eβ−1 for the
extension mode. Detailed derivations will be given in Ap-
pendix (Proof of Theorem 1).

Another observation is that the γd is equal to Cd with
probability 1. This is derived by the analysis in Appendix
(Proof of Theorem 1). We do not assume γd is deterministic
at the beginning, but deterministic γd will lead to the nice
form of bound, and will give a local minimum competitive
ratio compared with other PMFs. This means the random
distribution of γo is already good enough to counteract risks.
There is no need to further randomize γd.

Useful Definitions for Further Analysis
In what follows, we introduce some important definitions to
analyze the competitive ratio. Especially, the analysis will
need to consider the realizations when γd and γ0 are given.
Then, we can quantify the mean performance by averaging
through the PMFs of γd and γ0.

Definition 1 (Algorithm output cost). For a sequence
s, and given γd and γo, let ALG(n)(s, γd, γo) (resp.
ALG(e)(s, γd, γo)) denote the overall cost generated by the
OHR Algorithm if γd and γo are fixed for non-extension
plans (resp. for extension plans).

Definition 2 (Optimal cost). For a sequence s, let
OPT(n)(s) (OPT(e)(s)) denote the minimum cost to cover
all the tasks if s is known in advance, for non-extension
plans (resp. for extension plans).

Definition 3 (Deterministic competitive ratio). For a se-
quence s, and given γd and γo, the deterministic compet-
itive ratio of the OHR Algorithm with non-extension and
extension plans are R(n)(s, γd, γo) , ALG(n)(s,γd,γo)

OPT(n)(s)
, and

R(e)(s, γd, γo) ,
ALG(e)(s,γd,γo)

OPT(e)(s)
, respectively.

Analysis for Non-Extension Plans
In this section, we focus on the non-extension mode. Plans
will terminate at iT, i = 1, 2, . . .. As a consequence, the
plan reservation and cost analysis in each [iT, (i+1)T ), i =
0, 1, . . . is independent. Without loss of generality, we study
the time range [0, T ) in this section, which is representative
to sequence with any length. A sequence from 0 to arbitrary
Tmax can be divided in to sub-sequences in [iT, (i+1)T ) and

each sub-sequence follows the same analysis. Please note
that such setting follows a range of ski-rental problems, such
as (Wang, Liang, and Li 2015; Zang et al. 2019). Therefore,
we focus on typical sequences, which is defined as follows.
Definition 4 (Typical sequence). If a sequence only has data
volume in [0, T ), it is called a typical sequence.

Pruning the Typical Sequence
For a typical sequence, we focus on its performance oper-
ated by Algorithm 1. Let s0 denote a typical sequence. V (k)
is defined as its total data volume of app k. We establish
“worse cases” to bound the performance.

First, we find that by moving data volume from one app
to another, the cost of Algorithm 1 may increase but the op-
timal cost does not, so that we can derive upper bounds. We
have the following two Lemmas.
Lemma 1. Given any γd and γo, for any typical sequence
s0, if there exist two apps, say apps k and l, such that
V (k) < γd and V (l) < γd, then the deterministic competi-
tive ratio will not decrease if we move min(γd−V (k), V (l))
data volume from app l to app k. In other words, let s′0 be
a sequence as we move min(γd − V (k), V (l)) data volume
from app l to app k. We have

ALG(n)(s0, γd, γo)

OPT(n)(s0)
≤ ALG(n)(s′0, γd, γo)

OPT(n)(s′0)
. (5)

The proof is shown in Appendix.
Lemma 2. Given any γd and γo, for any typical sequence
s0, if there exists two apps, say apps k and l, such that
V (k) < γd and Cd > V (l) > γd, then the deter-
ministic competitive ratio will not decrease if we move
min(γd − V (k), V (l) − γd) data volume from app l to k.
In other words, let s′0 be a sequence as we move min(γd −
V (k), V (l)− γd) data volume from app l to app k. We have

ALG(n)(s0, γd, γo)

OPT(n)(s0)
≤ ALG(n)(s′0, γd, γo)

OPT(n)(s′0)
. (6)

The proof is shown in Appendix.
By applying the above two Lemmas, we can construct a

pruned sequence by moving data volume among the apps,
and the deterministic competitive ratio is not reduced. Then,
we can focus on analyzing the pruned sequence, which pro-
vides performance bound of any typical sequence.

For any given typical sequence s0, we can apply the fol-
lowing procedure:

1. We create B directional infeasible apps with 0 data vol-
ume, as they will not influence the performance. B is suf-
ficiently large.

2. While there exist two apps k and l such that γd < V (l) <
Cd and V (k) < γd, we move min(γd−V (k), V (l)− γd)
data volume form l to k. V (k) < γd can always be found
as we create a large number of apps with 0 volume in Step
1).

3. While there exist two apps k and l s.t. V (k) < γd and
V (l) < γd, then move min(V (l), γd−V (k)) data volume
form l to k.
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4. The outcome sequence is s1, which is called a pruned typ-
ical sequence.
We further define s1 = P(s0) to denote s1 is a pruned se-

quence of s0, and S1 denote the set of any pruned sequence.
It is straightforward to show that a pruned typical se-

quence satisfies the following properties
• m directional feasible apps have data volume no less than
Cd, where m ≥ 0.

• n directional feasible apps have data volume equal to γd,
where n ≥ 0.

• a directional infeasible apps have data volume no less
than Cd, where a ≥ 0.

• b directional infeasible apps have data volume equal to γd,
where b ≥ 0.

• At most 1 app has data volume x in (0, γd).
• All other apps have 0 data volume.

From Lemmas 1 and 2, and the above procedure to gen-
erate the pruned typical sequence, we know Steps 2) and
3) will not reduce the deterministic competitive ratio. Thus
the deterministic competitive ratio of the pruned sequence
will not be reduced compared to the original typical se-
quence. Therefore, it is straightforward to reach the follow-
ing Lemma.
Lemma 3. Given γd and γo, s0 is any typical sequence, and
s1 is the pruned sequence generated by s0. s1 = P(s0).
Then, we have

ALG(n)(s0, γd, γo)

OPT(n)(s0)
≤ ALG(n)(s1, γd, γo)

OPT(n)(s1)
. (7)

In what follows, we can focus to bound the performance
of a pruned typical sequence instead of an arbitrary se-
quence.

Bounding Pruned Typical Sequence
For a pruned typical sequence, we first investigate the deter-
ministic competitive ratio when γd ≤ N and γd ≤ γo. N is
the total data volume.
Lemma 4. Given γd and γo, s1 is any pruned sequence with
total data volume N . When γd ≤ N and γd ≤ γo, the upper
bound of the deterministic competitive ratio is 2Co+Cd−1

γd
.

ALG(n)(s1, γd, γo)

OPT(n)(s1)
≤ 2Co + Cd − 1

γd
. (8)

The proof is shown in Appendix.
By combining the above Lemmas, we can derive the com-

petitive ratio.
Theorem 1. The competitive ratio of Algorithm 1 in the non-
extension mode is

E[ALG(n)(s)]

OPT(n)(s)
≤ eβ

eβ − 1
, (9)

for any sequence s, where β = Cd−1
Co−1 '

Cd
Co

.
The proof is shown in Appendix.

Theorem 1 finally concludes the competitive ratio of Al-
gorithm 1. This is a neat extension of the competitive ratio
e
e−1 of the classic ski-rental problem (Karlin, Kenyon, and
Randall 2003). Our problem is equivalent to the ski-rental
problem if there is one app only and one directional plan is
available for this app.

Analysis for Extension Plans
In this section, we focus on the extension mode. An exten-
sion plan is valid for a complete T since it is reserved. Dif-
ferent from the non-extension case, it will introduce tempo-
ral correlations among durations [iT, (i+1)T ), i = 1, 2, . . ..
Therefore, the competitive analysis will be more challeng-
ing compared with the non-extension case. Additional ef-
forts are required to bridge typical sequences and arbitrary
sequences.

One observation is that if the input sequence is a typical
sequence with only data volume in [0, T ), then the extension
case is equivalent to non-extension case, and we have

ALG(e)(s0, γ0, γd) = ALG(n)(s0, γ0, γd), (10)

OPT(e)(s0, γ0, γd) = OPT(n)(s0, γ0, γd), (11)

for any typical sequence s0. Through applying this property,
in what follows, we prove that the deterministic competi-
tive ratio of any sequence is bounded by that of typical se-
quences.

Lemma 5. For any given γd and γo, and for any input se-
quence s, we can find a typical sequence s0 satisfying the
following bound

ALG(e)(s, γd, γo)

OPT(e)(s)
≤ 2

ALG(e)(s0, γd, γo)

OPT(e)(s0)
(12)

= 2
ALG(n)(s0, γd, γo)

OPT(n)(s0)
. (13)

The proof is shown in Appendix.

Therefore, we can see that the performance bound of any
sequence can be bounded by twice of that of a typical se-
quence. Then by further combining the approach to reach
Theorem 1, we can straightforwardly reach the following
Theorem.

Theorem 2. The competitive ratio of the Algorithm 1 in the
extension mode is

E[ALG(e)(s)]

OPT(e)(s)
≤ 2eβ

eβ − 1
, (14)

for any sequence s.

Performance Evaluation
Trace-Driven Simulation
In this section, we use real-world trace data (Rojas 2018) to
evaluate the performance of the OHR Algorithm. The data
set contains 6-day network traffic, collected by packet snif-
fer tools. To the best of our knowledge, there is no publicly
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(c) Extension, T = 1 week.
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(d) Extension, T = 0.5 week.

Figure 1: Performance comparison.

available data set to trace individual users’ data usage (with
labels of different types of application-layer traffic) for a
sufficiently long time. (Rojas 2018) is the most similar one
and we pre-process it to emulate one user’s data traffic. The
simulation is run on MacBook Air, 1.6GHz i5 Core, 8GB
LPDDR3, a laptop-level computer.

Data Pre-processing: In the data set, each line of data
is labeled with multiple features. We utilize timestamp,
data volume, and L7Protocol. L7Protocol is to distinguish
the upper layer apps. In the trace, there are 227 different
L7protocols, and we randomly category them into 5 apps (5
groups of apps), where 4 of them have directional plans and
the rest one does not. The collected data is from multiple
users within a short period of time, and we scale the time
from 6 days to 144 weeks to emulate the traffic of one user.
The traffic density is reduced 168 times to represent a single
user.

Plan Pricing: Other simulation parameters used in this
section are obtained from real-world examples. According
to the package tariff standard of China Mobile in 2020 3

, we set the pricing granularity as 1MB and PAYG price
as ∆p = CNY 0.29/MB, all-in-one plan upfront fee as

3 https://service.bj.10086.cn/poffice/package/showpackage.acti
on?PACKAGECODE=GPRSYW&productShowCode=sjllkxb

Co∆p = CNY 30, and directional plan upfront fee as
Cd∆p = CNY 9. T = 1 week. These values are regarded
as default values. Without otherwise specified, these default
values are employed throughout this section.

Benchmarks
We consider the following benchmarks:

• Directional Plan for Top 1 [K]: At iT, i = 1, 2, . . ., the
algorithm calculates the PAYG costs of different apps in
the past T , and reserves the directional plan for the app
with the highest PAYG cost. Others use PAYG.

• Directional Plan for Top 2 [L]: Similar to Algorithm [K],
but it reserves directional plans for the two apps with the
highest PAYG costs.

• Directional Plan for Top 3 [M]: Similar to Algorithm [K],
but it reserves directional plan for the three apps with the
highest PAYG costs.

• Ski-rental All-in-one Only [O]: Using the ski-rental algo-
rithm(Karlin, Kenyon, and Randall 2003) by only allow-
ing all-in-one plan.

• Ski-rental Directional Only [D]: Using the ski-rental al-
gorithm by only allowing directional plans.
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Figure 2: Competitive ratio verification.

Performance
The experimental results are shown in Fig. 1. Our proposed
the OHR Algorithm is marked as [A] and the rest are bench-
marks. Since the OHR Algorithm is a randomized algo-
rithm, each data point is averaged over 10 rounds of sim-
ulation. Figs. 1 (a)–(d) include three sub-graphs from top
to bottom. The top graph shows the total cost (with break-
downs) of different algorithms in the experiment. The mid-
dle graph shows the number of reserved plans for differ-
ent algorithms. The bottom graph shows the traffic cov-
ered by PAYG. Moreover, each sub-graph has three groups
of experiment outcomes with directional plan upfront fee
CNY 9 (left), CNY 13.5 (middle), and CNY 18 (right). Ac-
cordingly, β is 0.3, 0.45, and 0.6 respectively.

In all results, OHR has the best performance. Figs. 1(a)–
(b) show the results for the non-extension mode. In Fig. 1(a),
OHR performs the best. Compared to [O], the number of
reserved all-in-one plans is almost same, but OHR could
strategically use directional plans to further save cost. Al-
gorithms [K], [L], and [M] try to use historical experiences
to make the current decision. However, as the users may use
very different apps in different periods, once the algorithm
reserves a directional plan, another app’s traffic may become
very large, causing delayed reservation. [D] performs worst
as it reserves too many directional plans, which could be
merged as an all-in-one plan.

Fig. 1(b) shows the simulation result when T is reduced to
0.5 week. Shorter T indicates inflation of plans. The results
in Fig. 1(b) are roughly similar to those in 1(a), indicating
that the advantages of the OHR still hold for different T val-
ues.

Figs. 1(c)–(d) show the simulation result of the exten-
sion mode. Compared to the non-extension mode, the over-
all costs are slightly smaller as each plan is valid for full T
no matter when it is reserved. Still, the results show a sim-
ilar trend, demonstrating that OHR also works well for the
non-extension mode.

Competitive Ratio Verification
In this subsection, the competitive ratios are verified. We
simulate the competitive ratio by running Algorithm 1 on
randomly selected 30-week pieces in the trace. We have 10
pieces with 10 output data points and the outcome in each

piece is averaged over 10 rounds of simulation. The optimal
cost can be derived by exhausted search.

Figs. 2(a) and (b) show the results in the non-extension
mode. Fig. 2(a) shows the theoretical and experimental val-
ues of competitive ratios with different Cd. It illustrates that
the theoretical value decreases with the increase of Cd due
to (9). All the experimental results are bounded by the theo-
retical ones. Fig. 2(b) shows results with different Co. Still,
all the experimental results are bounded by the theoretical
ones, verifying the competitive ratio in Theorem 1.

Figs. 2(c) and (d) show the results in the extension mode.
All the experimental results are bounded by the theoretical
ones, verifying the competitive ration in Theorem 2. Note
that the theoretical competitive ratio in the extension mode
is twice as much as that in the non-extension mode. How-
ever, almost all the experimental results are less than half
of the theoretical results, demonstrating that the real-world
performance of the OHR Algorithm in the extension mode
is almost as good as that in the non-extension mode.

Conclusion and Future Work
In this paper, we investigate the online plan reservation
scheme where three payment methods are considered: (1)
PAYG, (2) All-in-one plan, and (3) Directional plan. We
proposed the OHR Algorithm to address the problem and
evaluate the competitive ratios considering two modes: non-
extension mode and extension mode. For the non-extension
mode, we conclude that the competitive ratio is eβ

eβ−1 . It is
a neat extension to the classic ski-rental problem with com-
petitive ratio e

e−1 . For the extension mode, we prove that

the competitive ratio is 2eβ

eβ−1 . Finally, the theoretical results
are verified by trace-driven simulation. We compare the per-
formance of the OHR Algorithm with benchmarks, showing
that OHR performs the best.

In some real-world instances, a data cap may be employed
to limit the overall data volume in a period of time. In this
case, our model still works for a wide range of situations
when the data cap is sufficiently large, and users do not ex-
ceed the cap. However, rigorous characterization of data cap
substantially increases the difficulty as it leads to coupled
decisions in the temporal dimension and volume dimension.
How to quantify competitive ratios is thus drastically more
challenging. Therefore, we leave it for future work.
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