
Temporal Reasoning with Kinodynamic Networks

Han Zhang1, Neelesh Tiruviluamala2, Sven Koenig1, T. K. Satish Kumar1
1 Department of Computer Science, University of Southern California

2 Department of Mathematics, University of Southern California
{zhan645, tiruvilu, skoenig}@usc.edu, tkskwork@gmail.com

Abstract

Temporal reasoning is central to Artificial Intelligence (AI)
and many of its applications. However, the existing algo-
rithmic frameworks for temporal reasoning are not expres-
sive enough to be applicable to robots with complex kinody-
namic constraints typically described using differential equa-
tions. For example, while minimum and maximum velocity
constraints can be encoded in Simple Temporal Networks
(STNs), higher-order kinodynamic constraints cannot be rep-
resented in existing frameworks. In this paper, we present a
novel framework for temporal reasoning called Kinodynamic
Networks (KDNs). KDNs combine elements of existing tem-
poral reasoning frameworks with the idea of Bernstein poly-
nomials. The velocity profiles of robots are represented using
Bernstein polynomials; and dynamic constraints on these ve-
locity profiles can be converted to linear constraints on the
to-be-determined coefficients of their Bernstein polynomials.
We study KDNs for their attractive theoretical properties and
apply them to the Multi-Agent Path Finding (MAPF) problem
with higher-order kinodynamic constraints. We show that our
approach is not only scalable but also yields smooth velocity
profiles for all robots that can be executed by their controllers.

Introduction
Many problems of interest in Artificial Intelligence (AI)
and robotics require rich representations of time and ef-
ficient algorithms for reasoning with them. For example,
in AI, temporal reasoning has applications in autonomous
space exploration (Knight et al. 2001), domestic activity
management (Pecora and Cirillo 2009), job scheduling on
servers (Ji, He, and Cheng 2007), human-robot interac-
tion (Wilcox, Nikolaidis, and Shah 2013) and airport surface
operations (Morris et al. 2016).

Many formalisms, with varying degrees of complexity
and expressiveness, are used for reasoning with metric time.
Simple Temporal Problems (STPs) are on the lower end of
the scale with respect to complexity. Although their expres-
siveness is limited compared to other formalisms, STPs are
widely used, as they can be solved in polynomial time us-
ing shortest path computations (Dechter, Meiri, and Pearl
1991). Disjunctive Temporal Problems (DTPs) (Stergiou
and Koubarakis 2000) are significantly more expressive than

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

STPs, as they can encode disjunctive constraints. They can
be used to model a large variety of real-world problems,
such as scheduling problems with resource contentions and
positive and negative time lags (Brucker, Hilbig, and Hurink
1999). However, DTPs are NP-hard to solve in general. Sim-
ple Temporal Problems with Preferences (STPPs) (Khatib
et al. 2001) are STPs with additional soft binary constraints,
interpreted as local preference functions. An optimal solu-
tion for an STPP is one that satisfies all simple temporal
constraints and optimizes the global preference function,
interpreted as a combination of local preference functions.
STPPs are also NP-hard to solve in general, although certain
subclasses of them can be solved in polynomial time. Sim-
ple Temporal Problems with Uncertainties (STPUs) (Vidal
1999) are extensions of STPs that are defined by a set of
timepoints V = VC ∪ VU . VC and VU are the sets of con-
trollable and uncontrollable timepoints, respectively. STPUs
also have a set of contingent edges that have uncertain dura-
tion. Controllability, instead of consistency, is the main char-
acteristic feature of STPUs.

Despite the many successful applications of the above-
mentioned temporal reasoning frameworks in various do-
mains, they are not expressive enough to be directly appli-
cable to complex robots operating in the real world. This
is so because most real-world robots operate under com-
plex kinodynamic constraints typically described using dif-
ferential equations. For example, suppose a robot travels
from point A to point B along a straight line. Let vmin and
vmax be the minimum and maximum velocities constrain-
ing the motion of the robot. This straightforward dynamic
constraint can be encoded as a simple temporal constraint
τ(XB) − τ(XA) ∈ [L/vmax, L/vmin] in the STP frame-
work. Here, τ(XA) and τ(XB) represent the times at which
the robot is at A and B, respectively, and L is the distance
between A and B. However, the STP framework is inca-
pable of representing any higher-order dynamic constraints
such as minimum and maximum accelerations or minimum
and maximum jerks. Generalizations of STPs, such as DTPs,
STPPs and STPUs, are also ineffective because they focus
on generalizability in ways unrelated to the consideration
of infinitesimal timescales needed for properly describing
the kinodynamic constraints on robots. Such kinodynamic
constraints are most naturally specified using differential
equations in continuous time. The existing temporal reason-

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

415

ing frameworks mentioned above are incapable of reasoning
with differential equations.

In this paper, we present a novel framework for tempo-
ral reasoning called Kinodynamic Networks (KDNs). KDNs
combine elements of existing temporal reasoning frame-
works with the idea of Bernstein polynomials. Bernstein
polynomials have a number of useful mathematical proper-
ties. They can uniformly approximate any continuous func-
tion; and their derivatives are also Bernstein polynomi-
als (Lorentz 1986). Furthermore, they are closely related
to Bézier curves, which are defined by a finite number of
control points. A Bézier curve lies entirely within the con-
vex hull of its control points. Because of their mathematical
properties, Bernstein polynomials and Bézier curves have
been widely used in many applications, including Computer
Graphics (Mortenson 1999), Computer-Aided Design (Farin
1992), path planning (Choi, Curry, and Elkaim 2008) and
trajectory planning (Tang and Kumar 2016).

In our work, each robot’s distance function, that is, the
distance traveled by the robot on a given path, is represented
using Bernstein polynomials with to-be-determined coeffi-
cients. Using the mathematical properties of Bernstein poly-
nomials, any dynamic constraints on the capabilities of a sin-
gle robot, such as minimum and maximum velocities, mini-
mum and maximum accelerations, minimum and maximum
jerks, or any other higher-order constraints, can be con-
verted to linear constraints on the coefficients of the Bern-
stein polynomials representing the robot’s distance function.
In the case of multiple robots coordinating with each other,
any kinematic constraints between them, such as having to
maintain a safety distance between each other, can be con-
verted to simple temporal constraints between “landmark”
events (Hönig et al. 2016). Overall, KDNs allow us to rep-
resent both kinematic and dynamic constraints suitable for
problems in robotics and multi-agent systems.

We study KDNs for their attractive theoretical properties
and apply them to the Multi-Agent Path Finding (MAPF)
problem (Hönig et al. 2016; Ma and Koenig 2017) with
higher-order kinodynamic constraints. The MAPF problem
involves a team of robots that are required to plan collision-
free paths from their start locations to their goal locations
in a common environment. Examples include autonomous
aircraft towing vehicles, automated warehouse systems, of-
fice robots, and game characters in video games. We show
that our approach is not only scalable but also yields smooth
velocity profiles for all robots that can be executed by their
controllers. Overall, our paper is about the general theory of
KDNs as a powerful temporal reasoning framework with a
chosen application in the MAPF domain. Of course, KDNs
have many applications outside of the MAPF domain as
well.

Bernstein Basis Polynomials and Bézier
Curves

In mathematics, Bernstein basis polynomials of degree n are
defined to be

Bi,n(t) =

(
n

i

)
ti (1− t)n−i , i ∈ {0, 1 . . . n},

0 2 4 6 8

3

4

5

6

p0

p1

p2

p3

Bézier curve

control point

convex hull of
control points

Figure 1: Illustrates an important property of Bézier curves:
A Bézier curve is enclosed entirely within the convex hull of
its control points. Here, the Bézier curve has 4 control points
in a 2-dimensional space.

where
(
n
i

)
is the binomial coefficient equal to n!

i!(n−i)! .
A k-dimensional Bézier curve of degree n is of the form

B(t) =
n∑

i=0

piBi,n(t), t ∈ [0, 1],

where P = {p0,p1 . . .pn} are n + 1 k-dimensional con-
trol points. Therefore, it is a curve parameterized by t and
interpretable as a linear combination of the Bernstein basis
polynomials of degree n. The coefficients of the linear com-
bination are the n+ 1 k-dimensional control points.

A Bernstein polynomial B(t) of degree n is a 1-
dimensional Bézier curve of degree n. Therefore, it is a lin-
ear combination of the Bernstein basis polynomials of de-
gree n. The coefficients of the linear combination are n+ 1
real numbers acting as 1-dimensional control points. These
control points are also referred to as the Bernstein coeffi-
cients.

Bernstein polynomials and Bézier curves have a number
of useful mathematical properties. For example, the Weier-
strass Approximation Theorem (Lorentz 1986) establishes
that any continuous real-valued function defined on the real
interval [0, 1] can be uniformly approximated by Bernstein
polynomials.

Two other useful properties of Bernstein polynomials and
Bézier curves are with respect to their derivatives and their
control points.

The derivative of a Bézier curve B(t) of degree n is a
Bézier curve of degree n− 1. In particular,

dB(t)

dt
=

n−1∑
i=0

p′iBi,n−1(t),

where the control point p′i = n (pi+1 − pi), i ∈
{0, 1 . . . n− 1}.

A Bézier curve B(t) is bounded by the convex hull of its
control points P for t ∈ [0, 1], as shown in Figure 1. Intu-
itively, this is so because, for any given value of t ∈ [0, 1], (a)
Bi,n(t) ≥ 0 for i ∈ {0, 1 . . . n} and (b)

∑n
i=0Bi,n(t) = 1.

416

0 2 4 6
time t

0

2

4

6

8
ve

lo
ci

ty
d
`(
t)

d
t

(a)

0 2 4 6
time t

0

2

4

6

8

ve
lo

ci
ty

d
`(
t)

d
t

(b)

Figure 2: Illustrates two possible scenarios for the optimal
velocity profile in our motivating example. In both (a) and
(b), L = 12 m, amax = 4 m/s2 and amin = −4 m/s2. In
(a), vmax = 8 m/s, and in (b), vmax = 4 m/s.

Therefore, B(t) for t ∈ [0, 1] is interpretable as a non-
negative linear combination of its control points, necessitat-
ing its presence in the convex hull. In particular, B(0) = p0

and B(1) = pn. In the case of Bernstein polynomials, the
control points are 1-dimensional real numbers, andB(t) lies
entirely within [inf(P), sup(P)].

A Formalization of KDNs
In this section, we formalize KDNs and the task of solving
them. We define a KDN as a generalization of the Simple
Temporal Network (STN), and the task of solving a KDN
as a generalization of the task of solving an STN, that is,
the STP. Of course, further generalizations of KDNs are
also possible by incorporating preferences and uncertainties
analogous to STPPs and STPUs, respectively.

A KDN is characterized by a graph G = 〈V , E〉, where
V = {X0, X1 . . . XN} is the set of vertices and E is the
set of edges. Each Xi ∈ V represents an event, τ(Xi) rep-
resents the to-be-determined execution time of Xi, X0 rep-
resents the “beginning of time”, and τ(X0) is convention-
ally set to 0. Each edge e = 〈Xi, Xj〉 ∈ E , annotated with
the interval [LB(e), UB(e)], is a simple temporal constraint
between Xi and Xj , indicating that Xj must be scheduled
between LB(e) and UB(e) time units after Xi, that is,
τ(Xj) − τ(Xi) ∈ [LB(e), UB(e)]. A subset of the edges
EM ⊆ E contains special edges called motion edges. A mo-
tion edge e = 〈Xi, Xj〉 ∈ EM corresponds to the traversal of
a physical distance from location `es to location `ef by robot
Re. It is annotated with a set of dynamic constraints D(e)
imposed on Re during its traversal of the distance from `es
to `ef . The task of solving a KDN is to simultaneously find τ
and a velocity profile for robotRe, for each e ∈ EM , that sat-
isfies the dynamic constraints D(e). We are also required to
correctly report so whenever no such τ and velocity profiles
can jointly exist.

Dynamic Constraints on a Single Motion Edge
Although the formalization of KDNs is akin to that of STNs,
KDNs are significantly more complex than STNs. Even a
single motion edge can introduce dynamic constraints that
are hard to solve. Consider the following simple motivating
example. Suppose a robot is required to travel a distance L

in a straight line between two points A and B. Suppose it
is required to start at A and end at B with 0 velocities; and
suppose it has maximum velocity vmax ≥ 0, maximum ac-
celeration amax ≥ 0 and minimum acceleration amin ≤ 0.1
The goal is to minimize the traversal time T . Intuitively, the
optimal solution is to start with maximum acceleration amax

and stop with maximum deceleration |amin|. In between, the
robot should cap off at the maximum velocity vmax. The two
possible scenarios are illustrated in Figure 2.

Despite the fact that the above example problem can be
solved by humans intuitively, it is not easy for a computer
to do so. Without the physical interpretation of the math-
ematical problem, solving it is not straightforward even
from the perspective of techniques available in calculus.
This is primarily so because of inequalities imposed on the
derivatives of continuous functions. For example, if `(t) is
the distance function that represents the distance covered at
time t starting from A, the above example problem stated
completely mathematically is as follows (with K = 2,
c0init = 0, c0final = L, c1init = 0, c1final = 0, c1high = vmax,
c2low = amin and c2high = amax).

Find `(t) : [0, T]→ R and minimum T

s.t. dk`(t)
dtk

∣∣∣
t=0

= ckinit ;
dk`(t)
dtk

∣∣∣
t=T

= ckfinal

∀k ∈ {0, 1 . . .K}

cklow ≤
dk`(t)
dtk

≤ ckhigh

∀t ∈ [0, T], ∀k ∈ {0, 1 . . .K}.

(1)

We note that the above formalization uses ckinit , ckfinal , c
k
low

and ckhigh for all k ∈ {0, 1 . . .K} for simplicity of abstract
analysis. In general, not all of them need to be specified.

We refer to such mathematical formulations as kinody-
namic differential programs (KDDPs), analogous to linear
programs (LPs), mixed integer linear programs (MILPs) and
convex programs. KDDPs are hard to solve both analyti-
cally and computationally without a physical interpretation.
Even with a physical interpretation, they are not amenable to
human intuition when higher-order dynamic constraints are
imposed on the robot. In fact, even for a given value of T ,
the KDDP feasibility problem is not easy.

We now present a novel approach for solving KDDPs
computationally. The advantages of solving KDDPs com-
putationally are that (a) we can solve complex dynamic con-
straints associated with a single motion edge and (b) we can,
combined with other procedures, solve an entire KDN with
many motion edges and temporal constraints. Neither (a) nor
(b) is amenable to physical interpretations or human intu-
ition with increasing complexity.

Our approach uses four main ideas for efficiently solv-
ing KDDPs. First, we represent `(t) using a Bernstein poly-
nomial with to-be-determined control points. With a large
enough number of control points, the Weierstrass Approxi-
mation Theorem (Lorentz 1986) guarantees that a Bernstein

1Therefore, the maximum deceleration is |amin| ≥ 0.

417

polynomial can approximate the required `(t) to any de-
gree of accuracy. Second, any kth-order derivative `(k)(t) =
dk`(t)
dtk

is also a Bernstein polynomial since Bernstein poly-
nomials are closed under the operation of differentiation.
Third, inequality bounds on any function represented as a
Bernstein polynomial can be enforced by imposing linear
constraints on each of its control points. While these three
ideas are sufficient to address the feasibility problem of find-
ing `(t) for a given T , a fourth idea is required for minimiz-
ing T . This idea invokes binary search enabled by the Single
Interval Theorem, discussed and formally proved later.

The Feasibility Problem
For the feasibility problem, we are given the value of T
and are required to find the distance function `(t). Sup-
pose we represent `(t) as a scaled Bernstein polynomial
BT (t) of degree n with to-be-determined control points
P = {p0, p1 . . . pn}. For mathematical convenience, we
would like to interpret the parameter t inBT (t) as represent-
ing time. In order to do this successfully, we need to scale
the interval [0, 1] to the interval [0, T] since any Bernstein
polynomial is only defined in the interval [0, 1]. The scaled
Bernstein basis polynomials are now of the form

BT
i,n(t) =

(
n

i

)(
t

T

)i(
T − t
T

)n−i

, i ∈ {0, 1 . . . n}.

Therefore, the distance function `(t) approximated using a
scaled Bernstein polynomial is now of the form

BT (t) =

n∑
i=0

piB
T
i,n(t), t ∈ [0, T].

The scaled Bernstein polynomials defined in the interval
[0, T] have properties that are very similar to those of the
Bernstein polynomials defined in the interval [0, 1]. In par-
ticular, BT (t) with a sufficiently large number of control
points can be used to approximate any continuous function
to any degree of accuracy in the interval [0, T]. Similarly,
dBT (t)

dt is another scaled Bernstein polynomial of degree
n−1 with control points { nT (p1−p0), n

T (p2−p1) . . . n
T (pn−

pn−1)}. Moreover, BT (t) is also bounded by the convex
hull of its control points P for t ∈ [0, T], and BT (0) = p0

and BT (T) = pn. Following the same arguments, dkBT (t)
dtk

is a scaled Bernstein polynomial of degree n − k with
control points n!

(n−k)!Tk

(∑k
j=0(−1)j

(
k
j

)
pk+i−j

)
for i ∈

{0, 1 . . . n− k}.
We now consider the KDDP in Equation 1. The first two

constraints translate to n!
(n−k)!Tk

(∑k
j=0(−1)j

(
k
j

)
pk−j

)
=

ckinit and n!
(n−k)!Tk

(∑k
j=0(−1)j

(
k
j

)
pn−j

)
= ckfinal ,

respectively, for k ∈ {0, 1 . . .K}. The next
two constraints translate to the linear inequalities
cklow ≤ n!

(n−k)!Tk

(∑k
j=0(−1)j

(
k
j

)
pk+i−j

)
≤ ckhigh

for i ∈ {0, 1 . . . n − k} and k ∈ {0, 1 . . .K}. This is so
because of the convexity property of Bézier curves, that is,

all control points of dkBT (t)
dtk

constrained to be in the interval
[cklow , c

k
high] ensures that the entire curve is also within that

interval. Overall, the KDDP in Equation 1 is now translated
to an LP on the to-be-determined control points of `(t)
represented as a Bernstein polynomial BT (t):

Find {p0, p1 . . . pn}

s.t. n!
(n−k)!Tk

(∑k
j=0(−1)j

(
k
j

)
pk−j

)
= ckinit

∀k ∈ {0, 1 . . .K}

n!
(n−k)!Tk

(∑k
j=0(−1)j

(
k
j

)
pn−j

)
= ckfinal

∀k ∈ {0, 1 . . .K}

n!
(n−k)!Tk

(∑k
j=0(−1)j

(
k
j

)
pk+i−j

)
≥ cklow

∀i ∈ {0, 1 . . . n− k}, ∀k ∈ {0, 1 . . .K}

n!
(n−k)!Tk

(∑k
j=0(−1)j

(
k
j

)
pk+i−j

)
≤ ckhigh

∀i ∈ {0, 1 . . . n− k}, ∀k ∈ {0, 1 . . .K}.

(2)

An LP can be solved very efficiently in polynomial time,
therefore allowing us to decode BT (t) and use it as an ap-
proximation to the required `(t). At first glance, the above
reformulation seems to have the drawback that it is possible
for a Bézier curve to satisfy the dynamic constraints without
the control points necessarily satisfying the corresponding
linear inequalities. However, this drawback is obviated as n
gets larger. This is so because the Weierstrass Approxima-
tion Theorem (Lorentz 1986) guarantees that any feasible
solution can be approximated by a Bézier curve to any de-
gree of accuracy as n gets larger.

The Single Interval Theorem
In the previous subsection, we showed how to solve the fea-
sibility version of a KDDP. As mentioned before, solving the
optimization version, that is, minimizing T , is more compli-
cated and requires a binary search procedure. In general, a
binary search procedure relies on the exploitation of a rec-
ognized monotonic property of the domain, for example, a
sorted order of its elements, and an indicator function that
indicates how to halve the interval of search in each itera-
tion. In our case, the corresponding important property of
KDDPs that we will recognize and exploit is encapsulated
in the Single Interval Theorem, stated and proved below.

In simple words, the Single Interval Theorem states that,
if it is possible for a robot to traverse the distance L from
A to B in time T by meeting all constraints of the KDDP
and if T can have two possible values T1 and T2 > T1, then
it is also feasible for the robot to do the traversal in time
T3 for any T3 ∈ [T1, T2]. While this is a credible statement
from the perspective of human experience about moving ob-
jects, proving it formally is not straightforward. Therefore,
we present a rigorous formal proof in the appendix of this
paper.
Theorem 1. [Single Interval Theorem] Suppose that
〈f̃(s), T1〉 and 〈g̃(s), T2〉, T1 < T2, are feasible for a KDDP

418

Algorithm 1: SOLVE-KDDP: A binary search algo-
rithm for solving KDDPs of the form in Equation 1
using our Bézier curve approach. M is a sufficiently
large number or any other upper bound on T ∗. thr is
a user-specified threshold parameter.

Input : A KDDP L of the form in Equation 1.
Output: Minimum feasible T ∗ and function

`∗(t) : [0, T ∗]→ R, if they exist.
1 Function ApproximateGradient(f , x)
2 Let ∆x be a sufficiently small positive number;
3 return f(x+∆x)−f(x)

∆x
;

4 end
5 Let P(T) denote the LP in Equation 2 derived from the

Bézier approximation of L for T ;
6 Let P ′(T) denote the modified version of P(T) in

Equation 3 with δ as the slack variable;
7 Let slack(T) denote the value of δ∗ in P ′(T);
8 Initialize lb← 0, ub←M ;
9 Initialize T ∗ ← Null;

10 while ub− lb > thr do
11 mid← (lb+ ub)/2;
12 if slack(mid) = 0 then
13 ub← mid;
14 T ∗ ← mid;
15 else
16 if ApproximateGradient(slack,mid) > 0

then
17 ub← mid;
18 else
19 lb← mid;
20 end
21 end
22 end
23 if T ∗ = Null then
24 return No Solution;
25 else
26 return T ∗ and `∗(t) constructed from P(T ∗);
27 end

L of the form in Equation 1. Assume further that f̃(s) and
g̃(s) have Lipschitz K th derivatives with Lipschitz constant
C. Then, for any T3 ∈ [T1, T2], there exists a function
h̃(s) : [0, T3] → R such that 〈h̃(s), T3〉 is also feasible for
L and the K th derivative of h̃(s) has Lipschitz constant C.

Proof. See the appendix.

The Optimization Problem
Algorithm 1 presents the pseudocode of a binary search pro-
cedure for solving the optimization problem of finding T ∗,
that is, the minimum feasible value of T in Equation 1. It
reduces the optimization problem to a series of feasibility
problems for fixed values of T . This series is guided by a
binary search on the current value of T in the outer loop that
uses an intelligently chosen indicator for deciding whether
T ∗ ≤ T or T ∗ > T . The failure of the binary search to find
a feasible value of T is indicative of an infeasible KDDP.

From the Single Interval Theorem, we know that the
feasible values of T are in some continuous interval [T1, T2].

0 2 4 6
time t

0

2

4

6

8

ve
lo

ci
ty

d
`(
t)

d
t

(a)

0 2 4 6
time t

0

2

4

6

8

ve
lo

ci
ty

d
`(
t)

d
t

(b)

Figure 3: Shows the result of applying Algorithm 1 to the
running examples from Figure 2. The blue curves are the
optimal velocity profiles derived from the physical inter-
pretation. The orange curves are close approximations pro-
duced by our Bézier curve approach. In both cases, 40 con-
trol points are used for the approximation.

Therefore, T ∗ = T1. In order to find T ∗ by binary search,
for any given value of T , we need to be able to efficiently
determine whether T ∗ ≤ T or T ∗ > T . We derive such
an indicator from an auxiliary LP that introduces a slack
variable δ ≥ 0 to the LP in Equation 2. We show that
its optimal value δ∗ has a distinctive behavior in each
of the intervals (0, T1), [T1, T2] and (T2,+∞), hence
establishing the correctness of the binary search procedure
in Algorithm 1. The auxiliary LP is as follows.

Min δ

s.t. δ ≥ 0

n!
(n−k)!Tk

(∑k
j=0(−1)j

(
k
j

)
pk−j

)
= ckinit

∀k ∈ {0, 1 . . .K}

n!
(n−k)!Tk

(∑k
j=0(−1)j

(
k
j

)
pn−j

)
= ckfinal

∀k ∈ {0, 1 . . .K}

n!
(n−k)!Tk

(∑k
j=0(−1)j

(
k
j

)
pk+i−j

)
≥ cklow − δ

∀i ∈ {0, 1 . . . n− k}, ∀k ∈ {0, 1 . . .K}

n!
(n−k)!Tk

(∑k
j=0(−1)j

(
k
j

)
pk+i−j

)
≤ ckhigh + δ

∀i ∈ {0, 1 . . . n− k}, ∀k ∈ {0, 1 . . .K}.
(3)

Theorem 2. For a KDDP of the form in Equation 1, if the
feasible interval of T is [T1, T2], then δ∗ in the correspond-
ing LP of the form in Equation 3, for a sufficiently large n, is
monotonically decreasing in the interval (0, T1), 0 in the in-
terval [T1, T2], and monotonically increasing in the interval
(T2,+∞).

Proof. By the Weierstrass Approximation Theorem, a suffi-
ciently large n allows us to use the formulations in Equa-
tions 1 and 2 interchangeably. Therefore, Equation 3 can
also be used interchangeably with Equation 1 with the same
slack. Furthermore, the LP in Equation 2 is equivalent to that

419

in Equation 3 when δ = 0. Therefore, any feasible value of
T in Equation 2 is also feasible in Equation 3 with δ = 0.
In fact, this is also the value of δ∗ since δ ≥ 0. This proves
that δ∗ = 0 in the interval [T1, T2]. We now prove that δ∗
is monotonically increasing in the interval (T2,+∞). The
proof for it monotonically decreasing in the interval (0, T1)
is analogous.

We first prove by contradiction that the minimum slack
is monotonically non-decreasing in the interval (T2,+∞).
Suppose there exist τ and τ ′ such that τ ′ > τ > T2 and δ∗ >
δ′∗, where δ∗ and δ′∗ are the minimum slacks required for
τ and τ ′, respectively. Now consider Equation 1 with slack
δ′∗. By definition, τ ′ is feasible for δ′∗. T2 is also feasible for
δ′∗ since T2 requires no slack at all. By the Single Interval
Theorem, this implies that τ should also be feasible for δ′∗
since τ ∈ [T2, τ

′]. This contradicts the assumption that the
minimum slack required for τ is δ∗ > δ′∗.

We finally prove by contradiction that the minimum slack
cannot be constant in an interval [τ, τ ′] with τ ′ > τ > T2.
Suppose the minimum slack is δ∗ > 0 within the interval
[τ, τ ′]. Without loss of generality, let τ be the minimum
value of T for which the minimum slack is δ∗. Consider
Equation 3 and a constraint in it that utilizes slack. From
the first principles of calculus, an infinitesimal increase in
slack for this constraint can only lead to an infinitesimal in-
crease in the set of feasible values for any of the participat-
ing variables. Therefore, the set of feasible values of T for
all constraints considered together increases only infinitesi-
mally with an infinitesimal increase in the slack. Now con-
sider the slack δ∗ − ∆δ for an infinitesimal ∆δ > 0. The
measurable non-infinitesimal interval [τ, τ ′] is not feasible
for δ∗−∆δ but is feasible for (δ∗−∆δ) + ∆δ, leading to a
contradiction.

Figure 3 shows the result of applying Algorithm 1 on the
running examples from Figure 2. The algorithm produces
the minimum feasible time T ∗ as well as the required dis-
tance function `∗(t), from which the velocity profile, accel-
eration profile and any other higher-order profile can be ob-
tained. In fact, even for this simple example, the solution
produced by Algorithm 1 is technically more accurate than
the human-constructed solution since bounds on the maxi-
mum and minimum accelerations prohibit the velocity pro-
files from having sharp corners.

Our approach has many advantages compared to methods
that try to approximate a function numerically by discretiz-
ing the timeline and finding a value for the function at each
of the discrete timepoints. First, such methods do not pro-
duce analytical forms of the functions. They produce values
only at discrete timepoints, requiring further interpolation,
which often makes them unusable. Second, they need to de-
termine a large number of unknowns depending on the gran-
ularity of the discretization. On the other hand, Bézier curves
use significantly fewer control points, making them popu-
lar in such diverse areas as Computer Graphics (Morten-
son 1999), Computer-Aided Design (Farin 1992), path plan-
ning (Choi, Curry, and Elkaim 2008) and trajectory plan-
ning (Tang and Kumar 2016). Third, they are not well suited
for reasoning with high-order derivatives of functions since

they need to represent the values of the function and all its
higher-order derivatives at each of the discrete timepoints
separately. Finally, they are also not well suited for facilitat-
ing indicators that can be used in an outer-loop binary search
procedure often required for optimization problems.

Solving KDNs
In the previous section, we showed how to solve KDDPs
efficiently using our Bézier curve approach. These methods
reformulate KDDPs as regular LPs, which can be solved in
polynomial time. However, KDDPs are associated with the
dynamic constraints of a single motion edge in a KDN. In
this section, we show how to solve entire KDNs efficiently.

At a high level, our approach for solving KDNs invokes
the Single Interval Theorem and converts a KDDP with fixed
boundary conditions to an induced simple temporal con-
straint. For a feasible KDDP associated with the dynamic
constraints of any motion edge e = 〈Xi, Xj〉, we know that
there exists a single feasible time interval [T e

1 , T
e
2]. In fact,

Algorithm 1 not only can be used to find T e
1 but can also

be adapted to find T e
2 with the same indicator function guid-

ing the binary search in the outer loop. Therefore, for fixed
boundary conditions at `es and `ef , we have the induced sim-
ple temporal constraint τ(Xj)− τ(Xi) ∈ [T e

1 , T
e
2]. A KDN

can now be solved by searching in the space of all combina-
tions of boundary conditions at the landmarks defined to be
∪e∈EM {`es, `ef}. This can be done using a MILP solver.

To illustrate the working of our KDN solver, we choose
examples from the MAPF domain. The MAPF problem in-
volves a team of robots that are required to plan collision-
free paths from their start locations to their goal locations
in a common environment modeled as an undirected graph.
The vertices of the graph represent locations, and the edges
of the graph represent connections between locations that
can be traversed in unit time. In any timestep, a robot can
choose to wait at its current vertex or move to a neighbor-
ing vertex. No two robots can be in the same vertex at the
same timestep; and no two robots can traverse an edge in op-
posite directions at the same timestep. The MAPF problem
arises in many real-world domains, including autonomous
aircraft towing vehicles, automated warehouse systems, of-
fice robots, and game characters in video games. A survey
of MAPF research and its applications can be found in (Ma
and Koenig 2017).

Despite the success of MAPF research, scalable MAPF
solvers produce discrete solutions that prescribe robots to
move in synchronized discrete timesteps and are not di-
rectly executable on their controllers. They do not incorpo-
rate complex dynamic constraints of the robots in the form
of KDDPs.2 MAPF-POST (Hönig et al. 2016) proposes the
use of a Temporal Plan Graph (TPG) to reinstate dynamic
constraints of the robots after a discrete plan has been found.
However, MAPF-POST incorporates only maximum veloc-
ity constraints and makes the unrealistic assumption that
robots are capable of instantaneous velocity changes.

2Some solvers use motion primitives, but these are not as ex-
pressive as KDDPs, and the solvers are not very scalable.

420

A

s1

B

s2

C D

g2

E

g1

F

(a)

Agent t = 1 t = 2 t = 3 t = 4
1 A→ B B → C C → D D → E
2 B → C C → F F → C C → D

(b)

A1
0 B1

1 C1
2 D1

3 E1
4

B2
0 C2

1 F 2
2 C2

3 D2
4

(c)

A1
0 B1

1 C1
2 D1

3 E1
4

B2
0 C2

1 F 2
2 C2

3 D2
4

(d)

Figure 4: Illustrates the application of KDNs to MAPF. (a) shows a MAPF instance on an undirected graph with s1 and s2

indicating the start vertices of two robots, and g1 and g2 indicating their corresponding goal vertices. (b) shows a discrete plan
of minimum makespan generated by a MAPF solver. (c) shows the TPG. Superscripts refer to robots, and subscripts refer to
timesteps. Horizontal edges indicate motion edges for individual robots, and cross edges indicate coordination edges between
robots. (d) shows the augmented TPG, in which safety distances between the robots are ensured by placing safety markers
(smaller circles) around the location vertices (bigger circles). More details of safety markers and augmented TPGs can be found
in (Hönig et al. 2016).

1

2

1

2

(a)

A

s1

B C

g1

E
g2

D

s2

(b)

A1
0 B1

2 C1
3

D2
0 B2

1 E2
2

(c)

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

A

B

C

(d)

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

D

B

E

(e)

Figure 5: (a) shows a small MAPF instance with 2 robots on a four-neighbor grid map. The darker-colored circles with solid
boundaries are the start locations of the robots, and the lighter-colored circles with dashed boundaries are their corresponding
goal locations. (b) shows the same MAPF instance in a graph representation with vertices representing free cells and edges
representing transitions between neighboring free cells. (c) shows the augmented TPG of a discrete plan generated by a MAPF
solver. (d) and (e) show the velocity profiles of Robots 1 and 2, respectively, generated by our Bézier curve approach.

Figure 4 shows an example TPG generated by MAPF-
POST. It also shows an augmented TPG, in which kinematic
constraints representing safety distances between the robots
are enforced. The augmented TPG is essentially a KDN in
which arrival times of robots at various locations or safety

markers represent events. The horizontal edges in it repre-
sent motion edges annotated with complex dynamic con-
straints of the corresponding robots. The cross edges rep-
resent non-motion coordination edges annotated with prece-
dence constraints between robots. While MAPF-POST uses

421

#Robots MAPF time KDN time
04 00.053 (30/30) 10.064 (30/30)
06 00.214 (30/30) 18.551 (30/30)
08 11.409 (30/30) 31.882 (30/30)
10 25.819 (28/30) 43.191 (28/28)
12 68.112 (19/30) 72.172 (19/19)
14 36.938 (02/30) 92.952 (02/02)

(a)

%Obstacles MAPF time KDN time
10 00.296 (30/30) 5.170 (30/30)
15 00.507 (30/30) 5.468 (30/30)
20 01.142 (30/30) 6.694 (30/30)
25 19.076 (26/30) 6.757 (26/26)
30 53.692 (16/30) 9.707 (16/16)
35 08.621 (03/30) 6.144 (03/03)

(b)

Figure 6: (a) and (b) show experimental results on some
MAPF instances with a varying numbers of robots and ob-
stacle rates, respectively, on four-neighbor grid maps. In
both cases, time is measured in seconds. MAPF time refers
to the average time taken by a MAPF solver to generate the
discrete plans. KDN time refers to the average runtime of
our KDN solver for generating the velocity profiles of the
robots given the output of the MAPF solver. In both cases,
the average is computed over the A successfully solved in-
stances (within a runtime limit of 5 minutes) out of the given
B instances, indicated by (A/B).

only maximum velocity constraints, it can now be improved
with richer dynamic constraints using the theory devel-
oped in this paper for KDNs. More generally, KDNs model
many real-world multi-robot coordination problems. There
are some temporal constraints that model the capabilities of
the individual robots and are best specified as KDDPs. There
are other temporal constraints that model the coordination
between the robots and are typically precedence constraints
or simple temporal constraints.

As mentioned before, the Single Interval Theorem allows
us to solve a KDN by searching in the space of all combina-
tions of boundary conditions at the landmarks. For this, we
discretize the possible values of the velocities and accelera-
tions of robots at each landmark. This discretization does not
have to be fine-grained to produce good results. It is much
better than discretizing the entire timeline to reason about
complex differential equations. For each motion edge e =
〈Xi, Xj〉, let ∆i and ∆j be the set of possible boundary con-
ditions associated with robot Re at `es and `ef , respectively.
Let ∆ij ⊆ ∆i × ∆j be the subset of combinations that are
feasible, that is, combinations (b, b′) ⊆ ∆i ×∆j for which
Algorithm 1 returns a feasible time interval [LBe

b,b′ , UB
e
b,b′].

We can solve a KDN using a MILP formulation as fol-
lows. For each event Xi, we create a continuous variable
tXi

representing its execution time τ(Xi). For each motion
edge e = 〈Xi, Xj〉, we create a 0/1 variable xeb,b′ for each
(b, b′) ∈ ∆ij . Here, xeb,b′ = 1 indicates that robot Re has
boundary conditions b when it reaches `es and boundary con-

ditions b′ when it reaches `ef . We add the constraint∑
(b,b′)∈∆ij

xeb,b′ = 1 (4)

to enforce exactly one physical realization of the traversal.
We also add the constraints∑

(b,b′)∈∆ij
xeb,b′LB

e
b,b′ ≤ tXj

− tXi∑
(b,b′)∈∆ij

xeb,b′UB
e
b,b′ ≥ tXj

− tXi

(5)

to indicate that fixing the boundary conditions induces sim-
ple temporal constraints by virtue of the Single Interval The-
orem. Finally, for each pair of consecutive motion edges
e = 〈Xi, Xj〉 and e′ = 〈Xj , Xk〉, we add the constraint∑

(b,b′)∈∆ij

xeb,b′ =
∑

(b′,b′′)∈∆jk

xe
′

b′,b′′ , ∀b′ ∈ ∆j (6)

to ensure that the boundary conditions are consistently cho-
sen at each landmark.

The resulting MILP containing the above constraints and
the constraints for the coordination edges can be efficiently
solved using any MILP solver. An objective function, like
makespan minimization, can also be included by simply
adding the constraint tXi ≤ T , for all Xi, and mini-
mizing T . Figure 5 shows a small example of solving a
KDN coming from a MAPF instance. Here, each edge has
length 1 m, the safety markers are placed 0.25 m away from
the location vertices, vmax = 1 m/s, amin = −1 m/s2

and amax = 1 m/s2. The velocity is discretized to be in
{0 m/s, 0.6 m/s, 1 m/s}, and the acceleration is discretized
to be in {−1 m/s2, 0 m/s2, 1 m/s2} at the landmarks. Us-
ing 20 control points for each stretch between consecutive
landmarks yields the required velocity profiles of the robots.
To minimize the makespan while maintaining a safety dis-
tance between robots, Robot 1 slows down just enough in
the beginning to allow Robot 2 to cross the intersection first.

We conducted a few more experiments to test the scala-
bility of our KDN solver. Although this paper is not about
MAPF but about the general framework of KDNs, we used
KDNs corresponding to MAPF instances. Figure 6 shows
experimental results on MAPF instances derived from (a)
a 9 × 19 warehouse map from (Felner et al. 2018) with a
varying number of robots and (b) random 8 × 8 grid maps
with 10 robots and varying obstacle rates. We used a state-
of-the-art MAPF solver called ICBS-h4 (Felner et al. 2018),
which solved a subset of the 30 instances for each setting.
All our maps are four-neighbor grid maps. We ran all exper-
iments on a laptop computer with an Intel i7 3.1GHz pro-
cessor and 16GB of memory. We used SCIP 6.0 (Gleixner
et al. 2018) as our MILP solver. 20 control points were used
for each stretch between consecutive landmarks. The robots
were modeled with the same specifications as in Figure 5.
The KDN solver successfully solved all KDNs that are gen-
erated from the MAPF discrete plans. This shows that con-
verting discrete plans to kinodynamically feasible plans for
the robots using KDNs is viable, and, perhaps contrary to
popular belief, rich dynamic constraints will not be the bot-
tleneck in making multi-robot coordination scalable.

422

Conclusions and Future Work
Existing temporal reasoning frameworks do not efficiently
incorporate differential equations or inequalities that arise in
robotics. We presented KDNs to address these drawbacks.
KDNs represent temporal constraints related to both coor-
dination and motion. While the coordination kinematic con-
straints are usually simple temporal, the dynamic constraints
on the motion of a robot can constitute a complex KDDP. We
used the idea of Bernstein polynomials and Bézier curves to
efficiently solve KDDPs. We also proved the Single Interval
Theorem, by virtue of which KDNs can be solved efficiently
using MILP solvers. We also showed that our approach is
viable for converting MAPF discrete plans to smooth ve-
locity profiles for all robots that can be executed by their
controllers. An important avenue of future work is to gen-
eralize our techniques to include uncertainties, controllable,
and uncontrollable events.

Acknowledgments
Han, Sven and Satish thank Neelesh for providing the proof
of the Single Interval Theorem in this paper. The research
at the University of Southern California was supported by
the National Science Foundation (NSF) under grant num-
bers 1409987, 1724392, 1817189, 1837779 and 1935712.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the sponsoring organizations, agencies, or the U.S. govern-
ment.

Appendix: Formal Proof of the Single Interval
Theorem

Proof. Let S ⊂ [T1, T2] be the subset of T values for which
such a function h̃(s) described in the statement of the theo-
rem exists. We will show that S = [T1, T2].

Lemma 1. S is a closed subset of [T1, T2].

Lemma 2. S is an open subset of [T1, T2].

The main work lies in proving these lemmas. Then,
since [T1, T2] is a connected set, and S is an open, closed,
and nonempty subset of [T1, T2], it will follow that S =
[T1, T2]. For reference, one can consult a real analysis text-
book (Rudin 1976).

Proof of Lemma 1. Let {sm} in S be a sequence such that
sm → s. We will show that s ∈ S. For each sm, let gm be
the corresponding function satisfying the statement of the
theorem. If s = T1, we are done, so assume T1 < s and fix
r1 such that T1 < r1 < s.

Without loss of generality, we can assume that all of the
gm are defined on [0, r1] since we can drop the earlier terms
of the sequence gm until this is the case. Let g(k)

m denote
the sequence of kth derivatives. By the low-high constraints
and the universal Lipschitz constant C, each sequence g(k)

m

is uniformly bounded and equicontinuous for 0 ≤ k ≤ K.
Thus, by the Arzelà-Ascoli Theorem (Rudin 1976), g(k)

m ad-
mits a convergent subsequence. By repeatedly passing to

subsequences, we can find a subsequence hn of gm and a
function g defined on [0, r1] such that

h(k)
n

uniformly−−−−−→ g(k) on [0, r1] for 0 ≤ k ≤ K.

Now fix r1 < r2 < s. Start with the hn sequence instead
and repeat the process above to find a subsequence hnl

and
a function g2 (automatically an extension of g) such that

h(k)
nl

uniformly−−−−−→ g
(k)
2 on [0, r2] for 0 ≤ k ≤ K.

Now pick a sequence r1, r2, . . . increasing to s and repeat
the above process for each ri. We will construct a sequence
pn by using a diagonalization argument illustrated in Fig-
ure 7a. For every t ∈ [0, s), define g?(t) as limn→∞ pn(t),
where these numbers will be defined past a large n value

depending on t. By the above, p(k)
n

uniformly−−−−−→ g?(k) on all in-
tervals [0, r], r < s and for 0 ≤ k ≤ K. Thus, since each
pn satisfies the low-high conditions, so does g?. Since each
pn satisfies the t = 0 constraints, so does g?. Uniform limits
of Lipschitz functions with Lipschitz constant C retain this
property, and so, g?(K) has this property. By the uniform
continuity of g? and its derivatives, g? extends to a function
on [0, s] which is K times differentiable (proved easily with
the mean value theorem). Furthermore, each pi is associated
with an si in the original sm sequence and si → s. Fix k
with 0 ≤ k ≤ K. Without loss of generality, we can assume
si ↗ s or si ↘ s.

If si ↗ s:

|g?(k)(s)− ckfinal | ≤ |g?
(k)(s)− g?(k)(si)|

+ |g?(k)(si)− p(k)
i (si)|

+ |p(k)
i (si)− ckfinal | −→ 0.

If si ↘ s:

|g?(k)(s)− ckfinal | ≤ |g?
(k)(s)− p(k)

i (s)|

+ |p(k)
i (s)− p(k)

i (si)|

+ |p(k)
i (si)− ckfinal | −→ 0.

Thus, g? satisfies the t = s constraints as well and so g?
is the required function. In other words, s is in S.

Proof of Lemma 2. Take a point s ∈ S with s < T2. We
want to show that there exists some ε > 0 such that [s, s+ε)
is contained in the set S. (Then, by a symmetrical argument,
it will hold that for all r ∈ S with r > T1, (r − δ, r] will be
contained in S for some small δ. Combining these two facts
will give us that all points in S are interior points, which
means that S is open.) Let g be the function associated to s
that meets the above theorem constraints.

Case 1: For some s? ∈ [0, s], g(K)(s?) /∈ {0, cKlow , c
K
high}.

In this case, by continuity, ∃s` and sr such that

g(K)([s`, sr]) ∩ {0, cKlow , c
K
high} = ∅.

This implies that there is an s̃? in [s`, sr] such that
g(K−1)(s̃?) /∈ {0, cK−1

low , cK−1
high } and so there is a subinterval

423

h1 h2 h3 h4 h5 . . .

hn1
hn2

hn3
hn4

hn5
. . .

...
...

...
...

...

call this sequence pn
(a)

1

s̃0 t0 s̃
t

φ′(t)

(b)

Figure 7: Shows the visual aids for the proof of the Single Interval Theorem. (a) shows the sequence pn for the proof of Lemma
1. (b) shows the figure of φ′(t) for the proof of Lemma 2. In φ′(t), we build a divot with a smooth bump function around the
point t0 so that the total area between t = 0 and t = s̃ under the curve of φ′(t) is s. This gives us that φ(s̃) = s, and φ(t) will
be smooth.

I of [s`, sr] such that g(K−1)(I) ∩ {0, cK−1
low , cK−1

high } = ∅.
Continuing in this way, we can find a subinterval J of [0, s]
such that

g(k)(J) ⊂ (cklow , c
k
high) for k = 0, 1 . . .K.

Pick t0 in the interior of J . Define s̃ = s+ε, where ε > 0
will be determined later. Define φ: [0, s̃]→ [0, s] as follows

• φ(0) = 0

• φ′(t) is given by Figure 7b

Define f : [0, s̃]→ R as f(t) := g(φ(t)). Intuitively, f is
a deformation of g around the point t0 that has the effect of
stretching the graph of g slightly about this point. By conti-
nuity (since the bump function used in building the divot is
small and so are its derivatives), the derivatives of f near t0
will not differ much from those of g. Thus, since we have
wiggle room near t0, f will still obey the low-high condi-
tions.

Whenever φ′(t) = 1, which is most of the time, and in
particular, at t = 0 and t = s̃:

f (k)(t) = g(k)(φ(t))(φ′(t))k = g(k)(φ(t))

⇒ The low-high conditions are satisfied at such t.

⇒
{
f (k)(0) = g(k)(φ(0)) = g(k)(0)

f (k)(s̃) = g(k)(φ(s̃)) = g(k)(s).

Therefore, the boundary conditions are met.
To see what happens at other t, consider k = 3:

f (3)(t) = g(3)(φ(t))[φ′(t)]3 + 2g′′(φ(t))φ′(t)φ′′(t)

+ g′′(φ(t))φ′′(t)φ′(t) + g′(φ(t))φ′′′(t)

= g(3)(φ(t))[φ′(t)]3 + 3g′′(φ(t))φ′(t)φ′′(t)

+ g′(φ(t))φ′′′(t)

≈ g(3)(φ(t))[φ′(t)]3

≈ g(3)(φ(t)) ≈ g(3)(t0).

Thus, f (3) at such t is close to g(3)(t0) and we picked t0
to allow for a margin of error. Thus, for s̃ close to and to

the right of s, we can construct a function f as in the above
which meets the required constraints.

Case 2: g(K)(t) is constant and equal to 0, cKlow or cKhigh .
Subcase 1: 0 < cKlow < cKhigh .
Suppose g(K)(t) = cKlow

⇒ cK−1
final − c

K−1
init =

∫ s

0

g(K)(t)dt =

∫ s

0

cKlowdt

<

∫ T2

0

cKlowdt ≤
∫ T2

0

f
(K)
2 (t)dt = cK−1

final − c
K−1
init .

This is clearly impossible. The only other case to worry
about that is not already covered in Case 1 is g(K)(t) =
cKhigh . Then,

cK−1
final − c

K−1
init =

∫ s

0

cKhighdt ≥
∫ T1

0

cKhighdt

≥
∫ T1

0

f
(K)
1 (t)dt = cK−1

final − c
K−1
init .

The only way that the inequality is an equality is if s = T1.
In this case, we can show that the proof in Case 1 still works.
In other words, we do not need wiggle room on both sides,
and the constructed f (K) will stay within bounds.

Subcase 2: cKlow < cKhigh < 0.
A symmetrical argument to Subcase 1.
Subcase 3: cKlow < 0 < cKhigh .
By a similar argument to Subcase 1, g(K)(t) is neither

identically cKlow or cKhigh . The only situation in which the ar-
gument in Case 1 may not work is if g(K)(t) = 0 identically.
In this case, we are only worried that g(K−1) is constant, and
we proceed inductively.

References
Brucker, P.; Hilbig, T.; and Hurink, J. 1999. A branch and
bound algorithm for a single-machine scheduling problem
with positive and negative time-lags. Discrete Applied Math-
ematics 94(1-3): 77–99.

424

Choi, J.; Curry, R.; and Elkaim, G. 2008. Path planning
based on Bézier curve for autonomous ground vehicles.
In Advances in Electrical and Electronics Engineering -
IAENG Special Edition of the World Congress on Engineer-
ing and Computer Science (WCECS), 158–166.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3): 61–95.

Farin, G. 1992. Curves and surfaces for computer-aided
geometric design: a practical guide. Elsevier, 3rd edition.

Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar,
T. K. S.; and Koenig, S. 2018. Adding Heuristics to Conflict-
Based Search for Multi-Agent Path Finding. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 83–87.

Gleixner, A.; Bastubbe, M.; Eifler, L.; Gally, T.; Gam-
rath, G.; Gottwald, R. L.; Hendel, G.; Hojny, C.; Koch, T.;
Lübbecke, M. E.; Maher, S. J.; Miltenberger, M.; Müller,
B.; Pfetsch, M. E.; Puchert, C.; Rehfeldt, D.; Schlösser, F.;
Schubert, C.; Serrano, F.; Shinano, Y.; Viernickel, J. M.;
Walter, M.; Wegscheider, F.; Witt, J. T.; and Witzig, J. 2018.
The SCIP Optimization Suite 6.0. Technical report, Zuse
Institute Berlin.

Hönig, W.; Kumar, T. K. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-agent path finding with
kinematic constraints. In International Conference on Auto-
mated Planning and Scheduling (ICAPS), 477–485.

Ji, M.; He, Y.; and Cheng, T. E. 2007. Single-
machine scheduling with periodic maintenance to minimize
makespan. Computers & Operations Research 34(6): 1764–
1770.

Khatib, L.; Morris, P.; Morris, R.; and Rossi, F. 2001. Tem-
poral constraint reasoning with preferences. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
322–327.

Knight, S.; Rabideau, G.; Chien, S.; Engelhardt, B.; and
Sherwood, R. 2001. Casper: space exploration through con-
tinuous planning. IEEE Intelligent Systems 16(5): 70–75.

Lorentz, G. G. 1986. Bernstein polynomials. American
Mathematical Society, 2nd edition.

Ma, H.; and Koenig, S. 2017. AI Buzzwords Explained:
Multi-Agent Path Finding (MAPF). AI Matters 3(3): 15–19.

Morris, R.; Pasareanu, C. S.; Luckow, K. S.; Malik, W.; Ma,
H.; Kumar, T. K. S.; and Koenig, S. 2016. Planning, schedul-
ing and monitoring for airport surface operations. In AAAI
Workshop: Planning for Hybrid Systems, 608–614.

Mortenson, M. E. 1999. Mathematics for computer graphics
applications. Industrial Press Inc., 2nd edition.

Pecora, F.; and Cirillo, M. 2009. A constraint-based ap-
proach for plan management in intelligent environments. In
Scheduling and Planning Applications woRKshop (SPARK)
of the International Conference on Automated Planning and
Scheduling (ICAPS), 19–23.

Rudin, W. 1976. Principles of Mathematical Analysis.
McGraw-Hill, 3rd edition.

Stergiou, K.; and Koubarakis, M. 2000. Backtracking al-
gorithms for disjunctions of temporal constraints. Artificial
Intelligence 120(1): 81–117.
Tang, S.; and Kumar, V. 2016. Safe and complete trajec-
tory generation for robot teams with higher-order dynamics.
In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 1894–1901.
Vidal, T. 1999. Handling contingency in temporal constraint
networks: from consistency to controllabilities. Journal
of Experimental & Theoretical Artificial Intelligence 11(1):
23–45.
Wilcox, R.; Nikolaidis, S.; and Shah, J. 2013. Optimization
of temporal dynamics for adaptive human-robot interaction
in assembly manufacturing. Robotics 441–456.

425

