
Privacy-Preserving Algorithm for Decoupling of
Multi-Agent Plans with Uncertainty

Yuening Zhang, Brian Williams
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
zhangyn@mit.edu, williams@mit.edu

Abstract

The execution of multi-agent plans often requires communi-
cation between agents in order to synchronize their tasks. In
cases where communication is unreliable or undesirable, tem-
poral decoupling algorithms allow agents to find a distributed
execution strategy beforehand without requiring perfect com-
munication on the fly. The state-of-the-art Multi-Agent Sim-
ple Temporal Network with Uncertainty (MaSTNU) frame-
work extends the decoupling problem for Multi-Agent Sim-
ple Temporal Network (MaSTN) to allow the modeling of
uncertain durations and allow agents to communicate when
certain events occur and communication is available. How-
ever, the existing approach assumes centralized knowledge of
the MaSTNU, whereas in the multi-agent context, privacy is
an important concern. In this paper, we propose a distributed,
privacy-preserving algorithm for finding distributed execu-
tion strategies for MaSTNU. Experiments also showed sig-
nificant speed-up of the proposed algorithm when the multi-
agent plan is loosely coupled and mostly private.

Introduction
In many robotic tasks, such as the deployment of an AUV
fleet to scout an interesting region of the ocean, robots may
communicate with each other and with the operator, but such
communication may be intermittent. When we consider hu-
man teams in collaboration, communication is important but
they also do not update their progress too frequently. In these
multi-agent plans, inter-dependencies between agents result
in precedence or synchronization constraints. While com-
munication between agents helps ensure the satisfaction of
those constraints, in real life, communication may be unre-
liable during execution or simply undesirable.

The temporal decoupling problem, first introduced by
Hunsberger (Hunsberger 2002), remedies the situation by
finding distributed execution strategies for the multi-agent
temporal plans, so that there is no need for communica-
tion between agents during execution. Temporal decoupling
problem is first defined for Multi-Agent Simple Temporal
Network (MaSTN) (Boerkoel Jr and Durfee 2013), which
is a Simple Temporal Network (STN) (Dechter, Meiri, and
Pearl 1991) partitioned among a set of agents. The decou-
pling solution is a set of local temporal constraints im-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

posed on each agent’s local network, such that when satis-
fied, the joint execution is guaranteed to succeed. Casanova
et al. (Casanova et al. 2016) later extended the result to
Multi-Agent Simple Temporal Network with Uncertainty
(MaSTNU), which is a Simple Temporal Network with Un-
certainty (STNU) (Vidal 1999) partitioned among a set of
agents. In addition to allowing the modeling of uncertain
durations, it also introduces communication links between
agents, represented by inter-agent contingent temporal con-
straints, where an agent is allowed to report the occurrence
of an event to another agent with some delay. Compared to
the traditional decoupling problem where no communica-
tion is allowed, such a model is more realistic in reality, and
it solves more decoupling problems where such communi-
cation is necessary for the execution to succeed.

On the other hand, distributed and privacy-preserving al-
gorithms for the temporal decoupling problem have also
generated interests (Boerkoel Jr and Durfee 2013; Mogali,
Smith, and Rubinstein 2016). When agents coordinate on
a shared task, they may not want to expose private or ir-
relevant information about their plan to others, such as
their lunchtime, or other personal commitments they may
have. Previous distributed algorithms have only considered
MaSTNs. In this paper, we propose a distributed, privacy-
preserving algorithm for the temporal decoupling problem
for MaSTNUs. Instead of using a centralized approach
(Casanova et al. 2016) that assumes centralized knowledge
of the multi-agent plan, we adopt a generate-and-test ap-
proach where a master algorithm generates candidate de-
coupling solutions using only the limited shared informa-
tion, and agents independently test the candidate on its lo-
cal network, and report conflicts to guide the decoupling so-
lution generation process. Our experiments showed signifi-
cant performance gain of the distributed approach on loosely
coupled MaSTNU problems, where the agents’ networks are
large but mostly private.

Background
Multi-Agent Simple Temporal Network with
Uncertainty
Our multi-agent plan with uncertainty is represented by a
MaSTNU (Casanova et al. 2016), which is a partition of an
STNU (Vidal 1999) among a set of agents.

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

426

Definition 1 (STNU). A Simple Temporal Network with Un-
certainty (STNU) is a tuple 〈V , E , C〉, where

• V is a set of events representing designated points in time.
• E is a set of simple temporal constraints scoped on V ,

where e ∈ E is a tuple 〈s, t, lb, ub〉, in which
– s, t ∈ V is the start and end event of the constraint.
– lb ∈ R ∪ {−∞}, ub ∈ R ∪ {+∞} is the lower bound

and upper bound from s to t, i.e. lb ≤ t− s ≤ ub.
• C is a set of simple contingent temporal constraints, one

for each uncontrollable event, where e ∈ C is a tuple
〈s, t, lb, ub〉, in which
– s, t ∈ V is the start and end event of the constraint,

where t is an uncontrollable event.
– lb, ub ∈ R is the lower bound and upper bound from s

to t and 0 ≤ lb < ub <∞, i.e. lb ≤ t− s ≤ ub.

STNUs are an extension to STNs (Dechter, Meiri, and
Pearl 1991) that, instead of assuming full control over the
execution of all events, allows the modeling of uncontrol-
lable events that can only be observed by the agent. A con-
tingent constraint specifies the bound in which an uncon-
trollable event may occur. For example, it may take any time
between 15 to 30 minutes to travel to a destination, depend-
ing on the traffic, and such a duration is not directly con-
trolled by the agent. We also refer to E as requirement con-
straints to differentiate from the contingent constraints C.
An STNU is dynamically controllable (Vidal 1999) if there
exists a dynamic and valid execution strategy. Intuitively, dy-
namic means that the strategy dynamically assigns values to
the executable events based on the observed outcomes of un-
controllable events up to the present time, and valid means
that all the temporal constraints are satisfied (Morris 2014;
Casanova et al. 2016).

Definition 2 (MaSTNU). A Multi-Agent Simple Tem-
poral Network with Uncertainty (MaSTNU) is a tuple
〈A, f,V, E , C, vZ〉, where

• 〈V , E , C〉 is an instance of STNU.
• A is a set of agents.
• vZ is a reference event, an absolute time point preceding

all other events and shared by all agents, such as 12 pm.
• f : V\{vZ} → A is a partition function, which is a map-

ping of each event to a unique agent, except for vZ .

The partition function f uniquely partitions the STNU into a
set of local networks, one for each agent, and a set of exter-
nal requirement and contingent constraints 〈NA, EX , CX〉,
where:

• Each Na ∈ NA is the local network for agent a ∈ A,
which is an STNU 〈Va, Ea, Ca〉, where Va = {v ∈
V|f(v) = a} ∪ {vZ} is the set of local events owned
by agent a, and Ea and Ca are the set of local constraints
for agent a, which are constraints from E and C that are
scoped on Va.

• EX = {e = 〈s, t, lb, ub〉 ∈ E|f(s) 6= f(t)} is a set of
inter-agent requirement constraints, or external require-
ment constraints.

Figure 1: MaSTNU example modified from (Bhargava et al.
2018)

• CX = {e = 〈s, t, lb, ub〉 ∈ C|f(s) 6= f(t)} is a set of
inter-agent contingent constraints, or external contingent
constraints.
Figure 1 shows an example MaSTNU, where two agents,

Alice and Bob, are coordinating on a mission. Alice’s lo-
cal network is 〈{vZ , vA},∅, {eZA}〉, and Bob’s local net-
work is 〈{vZ , vA′ , vB , vC}, {eBC , eZC},∅〉, where vZ is
the reference event 7 pm. Additionally, eAC is an external
requirement constraint, and eAA′ is an external contingent
constraint. We also refer to external contingent constraints
as communication links, since in this example, eAA′ means
that Bob can observe event vA′ with a delay between 0 to 5
time units after the occurrence of event vA that is unobserv-
able to Bob.

Multi-Agent Temporal Decoupling Problem
While Casanova (Casanova et al. 2016) frames the problem
as dynamic controllability for MaSTNU, its approach can
be considered as one for the generalized temporal decou-
pling problem for MaSTNU, following from the definition
of temporal decoupling problem for MaSTN (Boerkoel Jr
and Durfee 2013):
Definition 3 (Temporal Decoupling). Given a MaSTNU, the
set of agents’ local networks NA forms a temporal decou-
pling of the MaSTNU if:
• All local networks NA = {Na1 , Na2 , . . . , Nan} are dy-

namically controllable, that is, there exists a dynamic and
valid execution strategy for each local network.

• Merging any combination of dynamic and valid execution
strategies for the local networks NA yields a solution to
the MaSTNU, that is, given that CX are satisfied, all the
external requirement constraints EX are also satisfied.

Definition 4 (Temporal Decoupling Problem). The objec-
tive of the temporal decoupling problem for MaSTNU is to
find a set of decoupling constraints for each agent 〈Ead , Cad 〉,
such that the set of augmented local networks Na

+∆ =
〈Va, Ea ∪ Ead , Ca ∪ Cad 〉 for each agent a forms a temporal
decoupling of the MaSTNU.

We define 〈Ed, Cd〉 := 〈∪a∈AEad ,∪a∈ACad 〉. Additionally,
we say that 〈Ed, Cd〉 is a feasible decoupling solution, if the
augmented local networks Na

+∆ for all a ∈ A satisfy the
first bullet point in Definition 3, that is, the addition of de-
coupling constraints does not make any local network be-
come dynamically uncontrollable. We say that 〈Ed, Cd〉 is a
valid decoupling solution, if the second bullet point is satis-
fied, that is, if the execution strategies satisfy the decoupling
constraints, then the external constraints must be satisfied.

427

Figure 2: Example MaSTNU decoupling solution

Figure 3: Infeasible decoupling without communication

A decoupling solution for our example is shown in Fig-
ure 2. In this case, Alice’s network is augmented with de-
coupling constraint 〈{eZA},∅〉, and Bob’s network is aug-
mented with 〈{eA′C}, {eZA′}〉. The decoupling solution is
feasible, since both local networks are dynamically control-
lable. Alice will communicate the occurrence of vA to Bob,
and Bob knows that he will receive the update at vA′ some-
time between 7:20 to 7:45 and continue his execution. The
decoupling solution is also valid, because if eAA′ is satisfied,
then the merged local execution results will satisfy eAC . No-
tice that while the local contingent constraint eZA′ speci-
fies the possible occurrence of vA′ from Bob’s perspective,
we still assume that eAA′ is the actual functional contingent
constraint guaranteed to be satisfied, since such communica-
tion is guaranteed by nature. This requires that eZA′ covers
all possible time occurrences of vA′ , which is the case as
[20, 45] captures all possible realizations of eZA and eAA′ .

Without the communication link eAA′ , there is no decou-
pling solution in the above example. The traditional notion
of decoupling would try to satisfy eAC by fixing the time
window for vA and vC with respect to the reference event
vZ , i.e. by enforcing eZA and eZC . As shown in Figure 3,
even if we leave the full flexibility to Alice, her local net-
work is not dynamically controllable due to the constraints
involving vZ and vA. This shows that by allowing some de-
gree of communication between agents during execution, the
MaSTNU framework can solve more temporal decoupling
problems than the traditional notion of decoupling.

Temporal Decoupling Algorithms
We describe the key ideas behind temporal decoupling algo-
rithms (Hunsberger 2002; Casanova et al. 2016). The key in-
tuition is to ensure that all the external constraints are made
redundant by imposing a set of local decoupling constraints
that are tighter or more restrictive, so that the external con-
straints can be satisfied without the need to explicitly propa-
gate their values during execution.

Decoupling with Communication We will illustrate the
idea using the following example in Figure 4 and 5 with
two agents, the reference event vZ = 0, an external require-
ment constraint eAB , and optionally an external contingent

Figure 4: Temporal decoupling without communication

Figure 5: Temporal decoupling with communication

constraint eCC′ . First, we consider the decoupling of the re-
quirement constraint eAB . As shown in Figure 4, if we do
not take advantage of any communication, we can satisfy
eAB by imposing two local constraints eZA and eZB , since
vB − vA = [10, 10] − [0, 5] = [5, 10], which implies that
5 ≤ vB − vA ≤ 10. In Figure 5, if we take the commu-
nication opportunity eCC′ , we can satisfy eAB by impos-
ing two local constraints eAC and eC′B . In this case, eAC ,
eCC′ and eC′B also implies the satisfaction of eAB , since
vB − vA = (vB − vC′) + (vC′ − vC) + (vC − vA) =
[5, 5] + [0, 2] + [0, 3] = [5, 10] implies 5 ≤ vB − vA ≤ 10.
This decoupling procedure is called the internalization of ex-
ternal requirement constraints (Casanova et al. 2016).

Second, when communication is involved, as in Figure 5,
the agent who receives vC′ needs some expectation of when
vC′ will be received, since it cannot observe vC . Therefore,
we can impose local requirement constraint eZC and local
contingent constraint eZC′ , so that the agent is guaranteed
to receive vC′ some time between 0 and 3. Since eZC′ is a
contingent constraint that describes when vC′ might occur,
eZC′ should cover all possible occurrences of time for vC′ ,
and in this case, vC′ − vZ = (vC′ − vC) + (vC − vZ) =
[0, 2] + [0, 1] = [0, 3], which covers all cases of eZC and
eCC′ . This decoupling procedure is called the internalization
of external contingent constraints (Casanova et al. 2016).

A temporal network can also be represented as a distance
graph (Dechter, Meiri, and Pearl 1991), which is a directed
graph where a temporal constraint eij = 〈vi, vj , Lij , Uij〉
induces two linear inequalities vj − vi ≤ Uij and vi − vj ≤
−Lij , and is represented by two weighted directed edges

vi
Uij−−→ vj and vj

−Lij−−−→ vi. To compute the above internal-
izations, we solve a mixed-integer linear program (MILP)
by looking at the problem in its distance graph. In the fol-
lowing, we introduce continuous variables uij for each pair
of events vi and vj that imposes constraint vj − vi ≤ uij ,
which represents the weighted directed edge from vi to vj .

Internalization of External Requirement Constraints
To internalize eAB , we can look at the distance graph in Fig-
ure 6 (a). To make the constraints uAB and uBA redundant,
the key is to enforce a shorter path that dominates uAB and

428

Figure 6: (a) Internalization of eAB in the distance graph.
(b) Shorter path though multiple communication links.

Figure 7: (a) Internalization of eCC′ in the distance graph.
(b) Choosing an arbitrary local event vk for internalization.

uBA, either through the reference point vZ or through the
communication link eCC′ . If we consider using the commu-
nication link first, we require that uAC + uCC′ + uC′B ≤
uAB , and uBC′ + uC′C + uCA ≤ uBA. The temporal con-
straints eAB and eCC′ also induce the constraints uAB ≤
UAB = 10, uBA ≤ −LAB = −5, uCC′ ≥ UCC′ = 2
and uC′C ≥ −LCC′ = 0. Therefore, we can satisfy the
linear inequalities by setting uAC = 3, uCC′ = 2, uC′B =
5, uBC′ = −5, uC′C = 0, uCA = 0. Similarly for the case
of going through vZ , we require uAZ + uZB ≤ uAB ≤
UAB = 10, and uBZ + uZA ≤ uBA ≤ −LAB = −5.

In general, as shown in Figure 6 (b), when there are multi-
ple agents involved, the shorter path can go through multiple
communication links across agents. Given such a path vi →
vk → vm → · · · → vn → vj that dominates uij , the linear
inequalities to be satisfied is uik+ukm+ · · ·+unj ≤ uij ≤
Uij , where each upq either belongs to an agent’s local con-
straints, or is part of a communication link shaded in grey.
The case of when no communication links are used becomes
a special case, where we choose the path of vi → vZ → vj ,
and uiZ + uZj ≤ uij .

Internalization of External Contingent Constraints To
internalize the communication link eCC′ , we illustrate it
with the distance graph in Figure 7 (a). We need to replace
the communication link with a local contingent constraint
that starts from a local event. In this case, we can use the ref-
erence event vZ , and we require that uZC′ ≥ uZC + uCC′

and 0 ≥ uC′Z ≥ uCZ+uC′C , so that uZC′ and uC′Z covers
all possible occurrences of vC′ . Since uCC′ ≥ UCC′ = 2
and uC′C ≥ −LCC′ = 0, we satisfy the linear inequali-
ties by setting uZC′ = 3, uZC = 1, uCC′ = 2, uC′Z =
0, uC′C = 0, uCZ = 0.

In general, as shown in Figure 7 (b), to internalize an ex-
ternal contingent link eij , we can choose any local event
vk 6= vj to construct a local contingent constraint ekj . Given
that we have chosen the event vk, we need to satisfy that
ukj ≥ uki + uij , 0 ≥ ujk ≥ uik + uji, uij ≥ Uij and

uji ≥ −Lij . The result is a new internal contingent con-
straint ekj = 〈vk, vj ,−ujk, ukj〉 introduced to the agent
that owns vj . Notice also that this may introduce an addi-
tional external requirement constraint between event vi and
vk, that is, eki = 〈vk, vi,−uik, uki〉, unless vk = vZ , which
needs to be internalized as well.

The problem is combinatorial, since it involves deciding
which communication links and which local events to se-
lect. We can encode the problem as a MILP, with the list of
MILP constraints summarized below. Readers should refer
to (Casanova et al. 2016) for more detail. When no commu-
nication links exist, the problem is effectively solving for a
traditional decoupling solution. Notice that the constraints
only guarantee finding a valid decoupling solution, rather
than enforcing its feasibility.

MILP Formulation Given MaSTNU 〈A,V, E , C, f, vZ〉,
the MILP formulation includes the following variables:

(1) Real variables uij for vi, vj ∈ V , with uii = 0, vi ∈ V .

(2) Boolean variables ckj for (vi, vj , vk) ∈ T , where T =

{(vi, vj , vk)|eij ∈ CX , vk ∈ Vf(vj)\{vj}}.
(3) Boolean variables bij for (vi, vj) ∈ EX , where EX =
{(vi, vj)|f(vi) 6= f(vj), eij /∈ CX , eji /∈ CX}.

(4) Boolean variables zijkl for (vi, vj , vk, vl) ∈ Q, where
Q = {(vi, vj , vk, vl)|(vi, vj) ∈ EX , (vk = vl = vZ)∨
(f(vk) = f(vi) ∧ (ekl ∈ CX ∨ elk ∈ CX))}.

(5) Integer variables hij ∈ [0, H] for each tuple (vi, vj) ∈
EX , where H = max(|A| − 2, |CX |).

The MILP constraints include:

(1) ∀(vi, vj), uij + uji ≥ 0

(2) ∀eij ∈ EX , (uij ≤ Uij) ∧ (uji ≤ −Lij)

(3) ∀eij ∈ CX , (uij ≥ Uij) ∧ (0 ≥ uji ≥ −Lij)

(4) ∀eij ∈ EX , bij = 1 ∧ bji = 1

(5) ∀(vi, vj) ∈ EX , bij =
∑

vk,vl|(vi,vj ,vk,vl)∈Q zijkl

(6) ∀(vi, vj , vk, vl) ∈ Q, uij ≥ uik + ukl + ulj + (zijkl −
1)M, where M is a large constant

(7) ∀(vi, vj , vk, vl) ∈ Q s.t. (vl, vj) ∈ EX , zijkl ≤ blj

(8) ∀(vi, vj , vk, vl) ∈ Q s.t. (vl, vj) ∈ EX , hij + (1 −
zijkl)(H + 1) ≥ hlj + 1

(9) ∀eij ∈ CX ,
∑

vk|(vi,vj ,vk)∈T ckj = 1

(10) ∀(vi, vj , vk) ∈ T, (ukj ≥ uki + uij + (ckj − 1)M) ∧
(0 ≥ ujk ≥ uik + uji + (ckj − 1)M)

(11) ∀(vi, vj , vk) ∈ T s.t. (vi, vk) ∈ EX , ckj ≤ bik and
∀(vi, vj , vk) ∈ T s.t. (vk, vi) ∈ EX , ckj ≤ bki

Distributed Decoupling Algorithm
Previously, a centralized algorithm is proposed (Casanova
et al. 2016) that computes an optimal decoupling solution
for MaSTNU by encoding both the constraints for finding a
valid decoupling and the constraints for ensuring dynamic
controllability (Cui and Haslum 2017) of the local networks

429

Figure 8: Generate-and-test approach for finding a decou-
pling solution. Each row represents an iteration of the al-
gorithm. Left column shows the decoupling candidate with
decoupling constraints highlighted in red, and right column
shows the feasibility checking, with negative cycles high-
lighted in red. Extracted conflicts are shown in boxes.

in a single mixed-integer linear program (MILP). However,
when privacy is of concern, and the agents do not want to
expose the private parts of their local networks, a privacy-
preserving algorithm is desirable. We define what privacy
means as follows.
Definition 5 (Privacy). We say that privacy is satisfied if
each agent only communicates information about its shared
events Va

S , and any temporal constraints scoped on the
shared events Va

S . The shared events Va
S ⊆ Va for an agent

a are the set of local events that the agent is willing to
share, and must include the reference event vZ and the set
of local events connected to external constraints, that is,
{vZ} ∪ (Va ∩ VX) ⊆ Va

S , where VX = {s|e = 〈s, ·, ·, ·〉 ∈
EX ∪ CX} ∪ {t|e = 〈·, t, ·, ·〉 ∈ EX ∪ CX} is the set of all
events connected to external constraints. The rest of the lo-
cal events are private events Va

P = Va\Va
S . VS = ∪a∈AVa

S
is the set of all shared events.

The key to a privacy-preserving algorithm is two-fold.
First, we adopt a generate-and-test approach, where a master
algorithm iteratively generates a valid candidate decoupling
solution based on the information on the external constraints
EX ∪CX and the shared events VS , and agents test the feasi-
bility of the candidate independently on their local network,
and extract any feedback in the form of conflicts to guide the
master algorithm. Second, since the decoupling constraints
sent to each agent and the extracted conflicts returned to the
master are only scoped on the shared events Va

S , it also satis-
fies privacy requirement. Figure 8 illustrates the solving pro-
cess for our example MaSTNU, where a valid and feasible
decoupling solution is found in three iterations.

Note that for a fully distributed algorithm, any agent could
take the role of the master to generate the candidate decou-
pling solutions, as long as the agent has the knowledge of
EX ∪CX and VS . Additionally, our definition of privacy can
be considered as a notion of weak privacy instead of strong
privacy. That is, the agents do not exchange private informa-

Algorithm 1: DistributedDecoupling
Input : external constraints EX , CX , shared events

VS
Output: decoupling solution 〈Ed, Cd〉

1 conflicts← {}
2 〈Ed, Cd〉 ← DECOUPLE(EX , CX ,VS , conflicts)
3 while 〈Ed, Cd〉 6= None do
4 suc← True
5 foreach a ∈ A, in parallel do
6 controllable, conflict←

CHECKDECOUPLING(a, 〈Ead , Cad 〉)
7 if ¬controllable then
8 suc← False
9 conflicts← conflicts ∪ {conflict}

10 if suc then
11 return 〈Ed, Cd〉
12 〈Ed, Cd〉 ← DECOUPLE(EX , CX ,VS , conflicts)
13 return None

tion about the network, but information about the network
may potentially be deduced under adversarial context.

Algorithm The distributed algorithm is shown in Algo-
rithm 1. At each iteration, the master algorithm finds a valid
candidate decoupling solution 〈Ed, Cd〉 (line 2 and line 12),
and sends the corresponding decoupling constraints 〈Ead , Cad 〉
to each agent to check its feasibility, that is, if the decou-
pling constraints over-constrain its local network (line 6).
This step can be done in a distributed and parallel fashion. If
the local network is not dynamically controllable, the agent
returns a conflict to the master algorithm, which is incorpo-
rated in order to generate a new candidate that avoids those
conflicts (line 9). If all the local networks are controllable,
then the decoupling solution is also feasible, and thus is re-
turned as a solution (line 10 - 11).

For the sub-routine DECOUPLE, a candidate decoupling
solution is generated based on the external constraints EX
and CX , the set of shared events VS , and the set of conflicts
returned from the agents. This sub-routine solves a MILP
problem that includes three sets of constraints: first, the con-
straints for a valid decoupling solution summarized above,
second, encoding for the resolution of conflicts, and third
and optionally, any other pre-compiled constraints that can
be added in the beginning, instead of being discovered in
the iterative process. The MILP formulation is described in
more detail later.

The sub-routine CHECKDECOUPLING is shown in Algo-
rithm 2. The agent receives the candidate decoupling con-
straints 〈Ead , Cad 〉 from the master and checks the controlla-
bility of the local network after it is augmented with the de-
coupling constraints Na

+∆ (line 1 - 2). For this paper, we re-
quire that the dynamic controllability checker supports con-
flict extraction, such as Bhargava’s fast DC checker (Bhar-
gava, Vaquero, and Williams 2017). If the network is not
controllable, the checker returns a temporal conflict. The
algorithm then compiles the conflict so that it is privacy-

430

Algorithm 2: CheckDecoupling
Input : local network Na = 〈Va, Ea, Ca〉,

decoupling constraints 〈Ead , Cad 〉
Output: boolean controllable, conflict conflict

1 Na
+∆ ← 〈Va, Ea ∪ Ead , Ca ∪ Cad 〉

2 controllable, conflict←
DYNAMICALLYCONTROLLABLE(Na

+∆)
3 if ¬controllable then
4 conflict← COMPILECONFLICT(conflict)

5 return controllable, conflict

Figure 9: Conflict in STNU and labeled distance graph

preserving and only conveys information about the decou-
pling constraints, and sends it to master (line 3 - 5). Next, we
describe what conflicts are, and how they are made privacy-
preserving.

Privacy-Preserving Conflicts In constraint satisfaction
problems (CSP), a minimal conflict as a minimal set of con-
straints that make the problem inconsistent. For dynamic
controllability of STNUs, a conflict is a subset of the tempo-
ral constraints that makes the network uncontrollable. Fig-
ure 9 (left) shows an example conflict from iteration (ii) of
Figure 8, which is the set of constraints {eZA′ , eA′C , eZC}.
An STNU is determined as dynamically uncontrollable if a
semi-reducible negative cycle is found in its equivalent la-
beled distance graph (Morris 2006, 2014), as shown in Fig-
ure 9 (right). Yu (Yu and Williams 2013) extended the idea
of a conflict from a discrete set of constraints to a contin-
uous conflict in the temporal domain, expressed as a linear
inequality, so that we can express the degree of violation in
the negative cycle such as lb(eZA′)+ub(eA′C)− lb(eZC) =
−20 < 0, where lb(e) and ub(e) represents the lower and
upper bound of a temporal constraint.

More generally, a hybrid conflict (Yu, Fang, and Williams
2014) is a conflict that allows both discrete and continuous
elements, that is, a conjunction of linear inequalities and dis-
crete constraints. In general, we need a hybrid conflict to
capture the semi-reducible negative cycle from an uncon-
trollable STNU, as it may have additional supporting condi-
tions. In the example in Figure 9, ub(eA′C) − lb(eZC) < 0
is a necessary condition for the cycle to be semi-reducible,
and hence the hybrid conflict is (lb(eZA′) + ub(eA′C) −
lb(eZC) < 0)∧ (ub(eA′C)− lb(eZC) < 0). Additionally, if
any temporal constraint is conditional, for example, if eZA′

has a guard condition cZA′ = 1, meaning that eZA′ only
needs to hold if the decoupling candidate imposes such a
contingent constraint by assigning cZA′ = 1, then such a
guard cZA′ = 1 is also included in the conjunction as a
discrete constraint. Hybrid conflicts in the temporal domain

have proven useful in solving the temporal relaxation prob-
lems (Yu, Fang, and Williams 2014), but this is the first time
it is applied to the temporal decoupling problem.

In our algorithm, the dynamic controllability checker ex-
tracts a hybrid conflict, which may involve local constraints
that are private information. Therefore, the conflict is pro-
cessed by COMPILECONFLICT (line 4) before sending to the
master. For example, the extracted conflict from the checker
(lb(eZA′) + ub(eA′C) − lb(eZC)) < 0) ∧ (ub(eA′C) −
lb(eZC) < 0) in Figure 9 is compiled to (cZA′ = 1) ∧
(lb(eZA′) + ub(eA′C) < 60) ∧ (ub(eA′C) < 60) as shown
in Figure 8 (ii).

In order to compile an extracted conflict into a privacy-
preserving one as desired, we need to add any necessary dis-
crete guards and compile out the private constraints. First,
any contingent constraint ekj in the conflict that is also a
decoupling constraint received from the master needs to in-
clude its guard condition ckj = 1 in the hybrid conflict.
This is because ekj only needs to hold when the master
assigns ckj = 1 when internalizing some external contin-
gent constraint eij . In our example, since eZA′ is a contin-
gent constraint and also a decoupling constraint, cZA′ = 1
is included. Second, we project out any constraints in the
conflict that are not part of the decoupling constraints by
replacing the corresponding terms by constant values. For
example, by replacing lb(eZC) by its value 60, we obtain
the projected linear inequalities (lb(eZA′) + ub(eA′C) <
60)∧ (ub(eA′C) < 60), which includes only the decoupling
constraints eZA′ and eA′C .

Finally, the compiled conflict is a tuple 〈O, I〉, where O
and I in conjunction form the hybrid conflict. Each c ∈ O
is a constraint of the form ckj = 1, where ckj is a ref-
erence to the corresponding variable defined in MILP For-
mulation. Each ineq ∈ I is a linear inequality of the form∑

eij∈Ead∪C
a
d
±bound(eij) < N , where bound can be either

the lb or the ub function, and N is a constant.

Solving Decoupling as a MILP Problem We encode the
temporal decoupling problem as a MILP, which includes
constraints (1) - (11) summarized before, encoding for the
resolution of conflicts, and any other pre-compiled con-
straints. For constraints (1) - (11), it suffices to apply those
linear inequality constraints to the shared network made up
of the shared events and the external constraints, that is,
〈VS , EX , CX〉. We now describe how to encode the other two
sets of constraints.

(1) Encoding Conflicts To ensure the decoupling solution
avoids any conflicts, we encode the negation of conflicts
in our MILP formulation. A hybrid conflict returned by an
agent is a tuple 〈O, I〉, which can be resolved if the con-
junction is negated, that is, if any of the conjuncts in O or
I is negated. More specifically, a constraint ckj = 1 in O
can be negated by setting ckj = 0. For a linear inequal-
ity in I, we can rewrite it so that it is expressed in vari-
ables uij as defined in the MILP formulation, by substitut-
ing lb(eij) = −uji and ub(eij) = uij . The linear inequality
then becomes

∑
uij
±uij < N . The negation of such an in-

equality is
∑

uij
±uij ≥ N . To put it in logical statement,

431

we need to enforce:(∨
(ckj=1)∈O

ckj = 0
)
∨
(∨

(
∑

uij
±uij<N)∈I

∑
uij

±uij ≥ N
)

To encode it in a mixed-integer linear program, we introduce
an indicator variable ind for each linear inequality constraint∑

uij
±uij ≥ N to indicate when the constraint should

hold. Additionally, since ckj is a boolean variable, at least
one of the indicator variables or the negation of ckj should
hold. The above logical statement can be encoded as:
• ∀(

∑
uij
±uij < N)k ∈ I,

∑
uij
±uij ≥ N + (indk −

1)M , where (
∑

uij
±uij < N)k is the kth inequality

constraint in I, indk is the auxiliary boolean indicator
variable, and M is a large constant.

•
∑

ckj |(ckj=1)∈O(1− ckj) +
∑

k indk ≥ 1.

(2) Pre-compiled Constraints Since each iteration of the
algorithm aims to discover conflicts, we can potentially im-
prove the efficiency by adding some universal constraints, or
any pre-compiled constraints from the agents to avoid dis-
covering less informative conflicts. For example, one uni-
versal constraint that should hold is the shortest path con-
straint ∀vi, vj , vk ∈ Va

S , uij ≤ uik + ukj for each agent.
Additionally, the agents may choose to pre-compile a set of
abstracted constraints scoped on V a

S that must hold. For ex-
ample, our agent Bob can inform the master generator that
60 ≤ vC − vZ ≤ 75. There may be a variety of compilation
strategies, such as using bucket elimination to project the lo-
cal network onto a subset of the shared network. We will not
go into details for the scope of this paper.

Objective Function We can define the objective func-
tion for the MILP problem according the desired condi-
tion of optimality, or simply find a feasible solution. Ex-
amples of objective functions include maximizing temporal
flexibility

∑
i<j uij + uji (Hunsberger 2002), maximizing

the minimum normalized flexibility for any individual, i.e.
mina∈A

1
|Va|

∑
i,j∈Va,i<j(uij+uji) (Casanova et al. 2016).

It is important to note that in the distributed setting, the op-
timal decoupling is considered at the abstracted level of the
shared network, instead of considering the entirety of all of
agents’ local networks.

Post-Processing MILP Solution When the solver returns
a solution, it provides an assignment to each variable in the
MILP Formulation, including uij , ckj , bij , zijkl, hij . To ex-
tract the decoupling solution between iterations, we take the
simplest approach of:
• For each (vi, vj) and f(vi) = f(vj) = a, such that there

exists no cij assigned to 1, create a simple temporal con-
straint e = 〈vi, vj ,−uji, uij〉 for agent a. If cij = 1,
create a contingent constraint instead.
Notice that the compiled decoupling constraints may not

all be necessary. Since decoupling constraints in general re-
duce the overall flexibility of the network, we extract a min-
imal and necessary set of decoupling constraints at the last

iteration when a valid and feasible decoupling solution is
found. We can do so by going through each external require-
ment or contingent constraint, checking the variables zijkl,
ckj to identify the path that internalizes the constraint, and
only record those decoupling constraints on the path.

Discussion & Experiments
While MaSTNU is a powerful framework for modeling dis-
tributed multi-agent execution, two current limitations of the
centralized approach (Casanova et al. 2016) may hinder its
practical adoption: (1) the centralized approach implicitly
requires centralized knowledge of the local networks, (2) be-
cause of the combinatorial nature of the problem, solving the
MILP problem tends to be slow. Our proposed algorithm re-
solves the first limitation since it is privacy-preserving. We
also show that it mitigates the second limitation in the fol-
lowing experiments, by showing its runtime improvement
over the centralized approach for loosely coupled MaSTNU
problems with large local networks that are mostly private.

Experiments
We compare the runtime of the distributed algorithm (dis)
and the centralized MILP approach (milp). We use Gurobi
as the solver, and the experiments are run on a machine with
8 GB RAM and 2.4 GHz CPU. The experiments are run on a
set of randomly generated MaSTNUs, parameterized by the
number of agents Na, the number of local activities Nlocal,
the number of external requirement constraints Nreq , and the
number of external contingent constraints Ncont. Each local
network is dynamically controllable, with Nlocal contingent
constraints of bound [0, 1 - 5], representing local activities,
and Nlocal requirement constraints of bound [0, 5 - 20] ran-
domly connecting local events. Each external requirement
constraint randomly connects two events from two agents,
with lower bound 0 and an upper bound sampled from {10,
20, 30, 40, +inf}. Each external contingent constraint ran-
domly samples an event v from an agent, and creates a cor-
responding received event v′ at another sampled agent with
a bound of [0, 1]. The shared events include vZ and VX .
The objective function maximizes

∑
i<j uij + uji. Notice

that we simulate the distributed algorithm by running it in
a sequential fashion, and no pre-compilation techniques are
used. Each case is run over 30 samples with a 3-minute time-
out, where we show the average runtime.

Varying Local Network Size With Na = 2, Nreq = 3,
we vary the size of the local networks by changing Nlocal

under Ncont ∈ [0, 5]. The result in Figure 10 shows that
as Nlocal increases, the distributed algorithm has an obvi-
ous advantage over the centralized MILP algorithm, which
mostly timed out when Nlocal is large with the curves lev-
eling off at the 180-seconds timeout. Overall, we observe
that the runtime of the distributed algorithm is minimally af-
fected by the size of the local networks Nlocal compared
to the centralized approach, when the shared network is
fixed. The performance gain is attributed to the separation
of the dynamic controllability checking process from the
core decoupling solving process, and the use of state-of-
the-art O(n3) dynamic controllability checkers, whereas the

432

Figure 10: Overall runtime in relationship to Nlocal, under
varying Ncont. Left: distributed. Right: centralized

Figure 11: Overall runtime in relationship to Nreq , under
varying Ncont. Left: distributed. Right: centralized

centralized approach encodes a single MILP problem using
Cui’s MILP dynamic controllability formulation (Cui and
Haslum 2017).

Varying Number of Agents With Nlocal = 6, Nreq = 3,
we vary the number of agents Na ∈ [2, 7] under Ncont ∈
[0, 5]. The results (figure not shown) show that when Ncont

= 0, the overall runtime for centralized MILP grows at a lin-
ear rate, whereas the distributed algorithm is barely affected.
However, with a larger Ncont, we observe that the overall
runtime decreases as Na increases for both algorithms. We
conjecture that this is because with fixed Ncont, the fewer
the agents, the denser the external constraints are, which in-
creases the complexity of the core decoupling problem that
ended up dominating the runtime. The relatively small size
of the local network Nlocal = 6 also means that the feasi-
bility condition of the decoupling solution contributes less to
the runtime. While the empirical results are inconclusive, we
think that theoretically, by distributing the feasibility check-
ing process, the distributed algorithm should provide bene-
fits as the number of agents grows in problems where ensur-
ing the feasibility condition is dominating the runtime.

Varying Number of External Constraints With Na = 2,
Nlocal = 9, we vary the number of external requirement
constraints Nreq under Ncont ∈ [0, 3]. As seen in Figure 11,
while the distributed algorithm shows smaller runtime over-
all, its runtime starts to grow at a faster rate when Ncont = 2.
The distributed algorithm may be less effective with a larger
Ncont, as there tend to be more hybrid conflicts discovered
and more iterations to go through.

Relationship with Number of Conflicts We also charac-
terize how the runtime of the distributed algorithm depends
on the number of conflicts discovered, which roughly cor-

Figure 12: (Left) Overall runtime VS number of conflicts,
showing 95% of the data points. (Right) Overall runtime VS
last-iteration runtime, showing 96% of the data points.

responds to how many iterations the algorithm has to go
through. We use the data from the first experiment. Figure
12 (left) shows that there is a strong positive correlation be-
tween runtime and the number of conflicts. When Ncont is
larger, the rate of increase is larger, which may be due to
the increase in the complexity of the core decoupling MILP
problem resulting in the increase in the solving time for
each iteration, as evidenced by Figure 12 (right). Addition-
ally, Figure 12 (right) shows that a single iteration solving
time takes much less time than the centralized MILP solv-
ing time, with 93% of the cases having a last-iteration solv-
ing time under 0.5 seconds.

Discussion
When no communication is allowed, the distributed algo-
rithm almost always performs better than the centralized
approach. In this case, it can be considered as an exten-
sion to the previous distributed decoupling algorithms by
allowing local networks to be STNUs rather than STNs
(Boerkoel Jr and Durfee 2013; Mogali, Smith, and Rubin-
stein 2016). However, the distributed algorithm still does
not solve the scalability problem of MaSTNUs with larger
Ncont and Nreq . The distributed algorithm is thus more suit-
able for loosely coupled MaSTNUs where the agents’ local
networks are large but mostly private.

Conclusion
We proposed a privacy-preserving distributed temporal de-
coupling algorithm for the MaSTNU problems with two
contributions. First, it does not assume centralized knowl-
edge of the MaSTNU, and preserves the agents’ privacy on
their local networks. Second, we showed empirically that it
has significant performance gain in runtime over the cen-
tralized approach (Casanova et al. 2016) on MaSTNU prob-
lems where agents’ local networks are loosely coupled and
mostly private. The MaSTNU framework is powerful, and
we take one step further to its practical application in mod-
eling multi-agent execution.

Future work can look into approaches providing stronger
privacy guarantees, and extending the generate-and-test de-
coupling framework to allow richer types of local plan rep-
resentations such as temporal plan networks (TPN) (Kim,
Williams, and Abramson 2001), as long as solvers exist that
support similar notions of conflict extraction.

433

Acknowledgments
This material is based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA) under
Contract No. HR001120C0035. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency
(DARPA).

References
Bhargava, N.; Muise, C.; Vaquero, T.; and Williams, B.
2018. Delay Controllability: Multi-Agent Coordination un-
der Communication Delay. Technical report, MIT Computer
Science and Artificial Intelligence Laboratory.

Bhargava, N.; Vaquero, T.; and Williams, B. 2017. Faster
Conflict Generation for Dynamic Controllability. In Pro-
ceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence.

Boerkoel Jr, J. C.; and Durfee, E. H. 2013. Distributed rea-
soning for multiagent simple temporal problems. Journal of
Artificial Intelligence Research 47: 95–156.

Casanova, G.; Pralet, C.; Lesire, C.; and Vidal, T. 2016.
Solving dynamic controllability problem of multi-agent
plans with uncertainty using mixed integer linear program-
ming. In Proceedings of the Twenty-second European Con-
ference on Artificial Intelligence, 930–938. IOS Press.

Cui, J.; and Haslum, P. 2017. Dynamic controllability
of controllable conditional temporal problems with uncer-
tainty. In 27th International Conference on Automated Plan-
ning and Scheduling (ICAPS 2017).

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial intelligence 49(1-3): 61–95.

Hunsberger, L. 2002. Algorithms for a temporal decoupling
problem in multi-agent planning. In AAAI/IAAI.

Kim, P.; Williams, B. C.; and Abramson, M. 2001. Execut-
ing Reactive, Model-Based Programs through Graph-Based
Temporal Planning. In Proceedings of the 17th International
Joint Conference on Artificial Intelligence, 487–493.

Mogali, J. K.; Smith, S. F.; and Rubinstein, Z. B. 2016.
Distributed decoupling of multiagent simple temporal prob-
lems. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, 408–415.

Morris, P. 2006. A structural characterization of tempo-
ral dynamic controllability. In International Conference on
Principles and Practice of Constraint Programming, 375–
389. Springer.

Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In International Conference on AI and OR
Techniques in Constriant Programming for Combinatorial
Optimization Problems, 464–479. Springer.

Vidal, T. 1999. Handling contingency in temporal constraint
networks: from consistency to controllabilities. Journal
of Experimental & Theoretical Artificial Intelligence 11(1):
23–45.

Yu, P.; Fang, C.; and Williams, B. C. 2014. Resolving Un-
controllable Conditional Temporal Problems Using Contin-
uous Relaxations. In Proceedings of the Twenty-Fourth In-
ternational Conferenc on International Conference on Auto-
mated Planning and Scheduling, 341–349.
Yu, P.; and Williams, B. C. 2013. Continuously relax-
ing over-constrained conditional temporal problems through
generalized conflict learning and resolution. In Twenty-Third
International Joint Conference on Artificial Intelligence.

434

