
In-Station Train Dispatching: A PDDL+ Planning Approach

Matteo Cardellini,1 Marco Maratea,1 Mauro Vallati,2 Gianluca Boleto,1 Luca Oneto1

1 DIBRIS, University of Genoa, Italy
2 School of Computing and Engineering, University of Huddersfield, UK

matteo.cardellini@edu.unige.it, marco.maratea@unige.it, m.vallati@hud.ac.uk,
gianluca.boleto@edu.unige.it, luca.oneto@unige.it

Abstract

In railway networks, stations are probably the most critical
points for interconnecting trains’ routes: in a restricted geo-
graphical area, a potentially large number of trains have to
stop according to an official timetable, with the concrete risk
of accumulating delays that can then have a knockout effect
on the rest of the network. In this context, in-station train dis-
patching plays a central role in maximising the effective util-
isation of available railway infrastructures and in mitigating
the impact of incidents and delays. Unfortunately, in-station
train dispatching is still largely handled manually by human
operators in charge of a group of stations.
In this paper we make a step towards supporting the operator
with some automatic tool, by describing an approach for per-
forming in-station dispatching by means of automated plan-
ning techniques. Given the mixed discrete-continuous nature
of the problem, we employ PDDL+ for the specification of
the problem, and the ENHSP planning engine enhanced by
domain-specific solving techniques. Results on a range of
scenarios, using real-data of a station of the North West of
Italy, show the potential of our approach.

Introduction
Railways play a significant economical role in our society
for transporting either goods or passengers, but the increas-
ing volume of people and freight transported on railways
is congesting the networks (Bryan, Weisbrod, and Martland
2007). Within a railway network, stations are probably the
most critical points for interconnecting trains’ paths. This is
because, in a station, a number of trains need to stop accord-
ing to a given timetable, and a number of possible routes
are thus occupied, with the concrete risk of accumulating
delays, that may boil down to cost penalties and inconve-
niences for passengers. In the context of railway stations,
one of the main problems is how to mitigate delays and deal
with incidents with the aim of minimising their overall nega-
tive impacts. This problem is generally defined as in-station
train dispatching and plays a pivotal role to maximise the
capacity of the railway infrastructures. Unfortunately, still
today, this problem is handled manually by experienced op-
erators in charge of a large set of connected stations. These
operators are in charge of monitoring the conditions, and to

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

give instructions to train conductors with regards to the path
to follow, and the platform to reach (if needed). This job is
currently receiving very limited support by the railway con-
trol systems which provide an abstract overview of the traffic
conditions of the station focusing mainly on the safety of the
passengers.

In this paper we concentrate on the in-station train dis-
patching problem and make a significant step towards sup-
porting the operator with a tool able to solve the problem in
an automated way by means of automated planning. Given
the mixed discrete-continuous nature of the problem, we
employ PDDL+ (Fox and Long 2006) for the specification
of the models. Notably, PDDL+ has been already success-
fully exploited in a number of application domains includ-
ing UAV manoeuvring (Ramı́rez et al. 2018), battery man-
agement (Fox, Long, and Magazzeni 2012), and urban traffic
control (McCluskey and Vallati 2017). Given the complexity
and the characteristics of the railway application domain, we
extended the state-of-the-art planning engine ENHSP (Scala
et al. 2016, 2020) with customised techniques such as an
adaptive notion of delta, a domain-specific heuristic, and a
set of ad-hoc constraints.

For evaluating our solution, we considered real-world his-
torical data of a medium-sized railway station from North-
West of Italy provided by Rete Ferroviaria Italiana (RFI),1
and tested our approach in a large number of scenarios. Re-
sults show the potentiality of our solution in each of the eval-
uated scenario; in particular, our solution (i) models histor-
ical data in an accurate way, (ii) is in general able to (par-
tially) absorb delays that trains may have when entering the
station, and (iii) can support in evaluating an increment of
the railway station capacity. Further, our analysis shows that
the proposed extended ENHSP outperforms significantly the
basic ENHSP on the instances of this domain.

Research Context
The broader topic of train traffic control in railway net-
works deals with the problem of finding appropriate routes
for trains in order to respect a given official timetable. The
traffic control topic can be divided into two main areas: line

1Because of confidentiality issues we cannot report the name
of the station and other details regarding the data that cannot be
disclosed by RFI.

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

450

dispatching and the in-station train dispatching. The former
considers the overall railway network and focuses on the
routing between different railway stations, while the latter
is focused on the routing of trains inside a specific station.
An orthogonal problem is the generation of the train timeta-
bles which involves knowledge at both railway network and
station levels.

With respect to line dispatching, Lee and Chen (2009) in-
troduced an heuristic-based approach for tackling the prob-
lem of finding routes for train while generating an overall
timetable. Böcker, Lind, and Zirkler (2001) explored the use
of a multi-agent scheduling system considering the railway
transport system as a case study. On the topic of multi-
agent, more recently Atzmon, Diei, and Rave (2019) ex-
ploited multi-agent path finding to search for a route for a
set of trains from a given origin point to a required indi-
vidual destination. A different line of work exploits prob-
lem decomposition, where a master-slave algorithm is used
to control the train traffic of large railway networks (Lam-
orgese and Mannino 2013, 2015; Lamorgese, Mannino, and
Piacentini 2016).

For what concerns instead in-station train dispatching,
Mannino and Mascis (2009) introduced a mixed-integer lin-
ear programming (MILP) model for controlling a metro sta-
tion. Their experimental analysis demonstrated the ability of
the proposed technique to effectively control a metro sta-
tion but also highlighted scalability issues when it comes
to control the much larger and more complex railway sta-
tions. More recently, Kumar et al. (2018) introduced a con-
straint programming model for performing in-station train
dispatching in a large Indian terminal: this approach demon-
strates to be able to deal with a large railway station, at the
cost of considering very short time horizons (less than 10
minutes) and station-specific optimisations.

Given the complexity of the train dispatching problem,
many works focused on related sub-problems or on a more
abstract formulation of the overall problem. For exam-
ple, Rodriguez (2007) formulated a constraint programming
model for performing train scheduling at a junction, which
shares some of the characteristics of a station, but does
not include platforms and stops. Differently from Rodriguez
(2007), a number of works (Cardillo and Mione 1998; Bil-
lionnet 2003; Chakroborty and Vikram 2008) focused on the
problem of assigning trains to available platforms, given the
timetable and a set of operational constraints. Taking another
perspective, Caprara et al. (2010) focused on the identifica-
tion and evaluation of recovery strategies in case of delays.
These strategies include actions such as the use of different
platforms or alternative paths.

Finally, the problem of generating train timetables can
be further divided into two different levels. The first one,
the planning level, consists in generating the railway net-
work timetable over a long period of time (in general sea-
sonal); the resulting timetable is then visible to the pas-
sengers. The second one, the operational level, focus on
timetable rescheduling which is the daily task of the oper-
ators of adjusting the timetable in case of disruptions, main-
tenance, or addition of trains (usually freight trains). Prob-
lems at the first level can be naturally expressed as con-

ESTWEST

Figure 1: A subsection of the real-world railway station con-
sidered in the experimental analysis. Flags are used to in-
dicate itineraries; shorter segments represent the track seg-
ments; bold has been used to indicate platform stops.

straint satisfaction problems. The vast majority of works on
this topic exploits MILP models, while considering different
set of constraints and different levels of detail (Caprara, Fis-
chetti, and Toth 2002; Barrena et al. 2014; Cacchiani, Furini,
and Kidd 2016). A number of domain-specific approaches
have also been introduced, and the interested reader is re-
ferred to Cacchiani and Toth (2012) for an extensive review
of the field. The literature on the second level is much more
variegated but less extensive, given the multifaceted nature
of the problem to be addressed. D’ariano, Pacciarelli, and
Pranzo (2007) introduced a branch and bound algorithm to
recompute a conflict-free and feasible timetable, given the
current network conditions. A method to avoid conflicts and
to early identify unfeasible timetable schedules is presented
by D’Ariano, Pranzo, and Hansen (2007). Finally, given a
timetable and a current set of delayed trains, Corman et al.
(2012) focused on algorithms to explore the trade-off be-
tween cancelling trains to reduce congestion and delays, and
the inconvenience caused to passengers due to missed con-
nections and limited service.

The In-Station Train Dispatching Problem
We now describe the in-station train dispatching problem,
following the formalisation introduced by Lamorgese and
Mannino (2015).

A railway station can be represented as a graph, composed
by a set of connected track segments, the minimal control-
lable rail units. Their status can be checked via track circuits,
that provide information about occupation of the segment
and about corresponding timings. Track segments can be di-
vided into two classes, stopping points and interlocking. A
stopping point is a track segment in which a train can stop:
this is if there is a connected platform, or at the entrance
and the exit point of the railway station. Entry points are
segments where the train stops before being allowed into
the station (or queues behind other trains); similarly, exit
points allow the train to leave the station and enter the out-
side railway network. Interlocking track segments are seg-
ments where a train is not allowed to stop. Sequences of
connected track segments are organised in itineraries; this is
manually done by experts of the specific railway station. Fig-
ure 1 provides a schematic representation of part of the Ital-
ian railway station we use in our experimental analysis. In
the figure, track segments and platforms are easily recognis-
able, and flags are used to indicate initial and ending points
of itineraries.

A track segment can be occupied by a single train at the

451

time. For safety reasons, a train is required to reserve an
itinerary, and this can be done only if the itinerary is cur-
rently not being used by another train. While a train is nav-
igating the itinerary, the track segments left by the train
are released. This is done to allow trains to early reserve
itineraries even if they share a subset of the track segments.

A train going through the controlled railway station is run-
ning a route in the station graph, by reserving an itinerary
and moving through the corresponding track segments. In
the common case of passenger trains, the route contains one
or more track segments connected with a platform. Also, if
the train enters (exits) the station, the path will contain an en-
try (exit) point. Cases where either exit or entrance are miss-
ing from a train route include Origin trains, that are those
whose route starts from the controlled railway station and
Destination trains, that terminate at the controlled station.

A timetable is the schedule that includes information
about when trains arrive at the controlled station, when they
arrive at a platform, and the time when they leave a platform.

We are now in the position to define the in-station train
dispatching problem as follows: Given a railway station in-
frastructure, a set of trains and their current position within
the station or their time of arrival at the controlled station,
find a route for every train that allows to respect the pro-
vided timetable, as much as possible.

The PDDL+ Domain Model
In this section, we introduce and specify the PDDL+ model
we designed for dealing with the problem described in the
previous section.

Figure 2 provides a graphical representation of how ac-
tions and events are interleaved with regards to different po-
tential states of a train: Parallelograms indicate train states,
grey rectangles indicate operators, and white rectangles indi-
cate events. Train states are not explicitly represented in the
PDDL+ model, but they can help understanding the structure
and the dynamics of the encoding. In particular, a train can
be: Approaching, ready to enter the controlled station; Ori-
gin, train that originates from the controlled station – so the
train is stopped at a platform; Destination, the train termi-
nates at the station; Intermediate stop, the train is currently
stopped at a platform, and the station is one of its calling
points, and finally Left indicates that the train has left the
controlled railway station.

The core of the proposed PDDL+ encoding is the way
in which the movement of trains in the railway station is
modelled and controlled. The operators Enter Station, Leave
Origin, and Begin Overlap are all allowing the correspond-
ing train to reserve an itinerary and to start moving on it.
They have differences in terms of preconditions and effects,
as they deal with trains in different logical states. For in-
stance, the Enter Station operator can be used only by a train
that is at an entry point, one of the effects is that the train
is no longer approaching the train station, but is navigating
through the controlled station. The use of these operators
trigger a process that is used to model the time needed by the
train to reach the end of the itinerary. Over time, track seg-
ments of the itinerary that are not occupied by the train any-
more, are released via the Completed Track Segment events.

At EntryPoint

Completed
Track Segment

Completed
Overlap

Completed
Stop

Enter Station Leave Origin

Begin OverlapBegin StopExit Station

Reach
Destination

Approaching

Origin

Left

Destination

Intermediate
Stop

Figure 2: Valid state transitions for a train in a controlled
railway station. Parallelograms indicate train states, grey
rectangles indicate operators (whose name is in red for read-
ability), and white rectangles indicate events. Edges indicate
valid sequences. Processes are omitted for readability.

Notably, when a train reaches the end of an itinerary, it is still
occupying part of its segment tracks: the precise number de-
pends on the type of train, and on the length of the segments.
The Begin Overlap operator is used by a train moving be-
tween two subsequent itineraries of the station, to take into
account the “overlapping” time needed by a train to com-
pletely leave the previous itinerary.

Figure 2 also shows the Exit Station operator, that is used
to allow a train that reached an exit point to actually leave
the station and release the occupied track segments, and the
Begin Stop operator, that is used to stop a train at a plat-
form to allow the disembarking/embarking of passengers.
The duration of the stop is variable: each type of train has
a minimum time that is required to stop to safely allow the
movement of passengers; further, a train is not allowed to
leave a platform before its timetabled leaving time. This is
encoded in the corresponding action using appropriate pre-
conditions. Finally, the Reach Destination operator is used
to model the fact that a destination train has terminated, and
should not move any further.

Dedicated processes, not shown in Figure 2 for the sake
of readability, are used to keep track of the time spent by a
train: (i) navigating an itinerary; (ii) overlapping, i.e., mov-

452

(:action T1_entersStation_I1-2
:parameters()
:precondition (and
(trainIsAtEndpoint T1 EP1)
...
(not (trainHasExitedStation T1))
(not (trainHasEnteredStation T1))
(not (trackSegBlocked cdb1))
(not (trackSegBlocked dev1))
...
(not (trackSegBlocked cdb6)))

:effect (and
(not (trainIsAtEndpoint T1 EP1))
(itineraryIsReserved I1-2)
(trainInItinerary T1 I1-2)
(trainHasEnteredStation T1)
(trackSegBlocked cdb1)
...
(trackSegBlocked cdb6)))

(:event T1_completeTrackSegment_I1-2_cdb1
:parameters()
:precondition (and
(>= (timeReservedIt I1-2) 29)
(trainInItinerary T1 I1-2)
(trackSegBlocked cdb1))

:effect (and
(not (trackSegBlocked cdb1))))

Figure 3: Part of the PDDL+ encoding of the Train Dis-
patching domain.

ing from one itinerary to the next; and (iii) stopping at a
platform. Further, in order to encode an explicit notion of
the time that is passing, in our model we employ a dedicated
timePassing process. This helps when dealing with the time-
related aspects of the problems to be solved, by avoiding the
need to use timed initial literals.

A pivotal point of the PDDL+ model relates to the way
in which the structure of the railway station is encoded. To
deal with the potentially huge size of the hybrid problem
ground in a non-effective way (Scala and Vallati 2020), due
to the presence of itineraries, trains, track circuits, etc. the
domain model is fully ground for a given problem to solve.
The grounding is done via a pre-processing step that takes
into account the actual structure of the network, and the con-
sidered trains. The structure of the railway station is directly
encoded in the ground actions that are provided in the do-
main model. As an example, Figure 3 shows a grounded in-
stance of the Enter Station operator and of the Completed
Track Segment event. The action incorporates the structure
of the network: it allows to reserve an itinerary connected to
the entry point, and to block all the corresponding track seg-
ments (this is done via the trackSegBlocked predicate list).
The ordering of release of track segments is encoded via
ground events, such as the one presented in the figure, that
are timed accordingly.

A planning problem is specified in terms of the initial lo-
cation of trains, and of the required goal state. Figure 4 pro-

(:init
...
(trainEntersStationAt T1 EP1)
(= (trainStayInStation T1) 0)
...
(trainIsStopping T2)
(trainIsStoppingAtStop T2 SI)
(stopIsOccupied SI)
(trackSegBlocked cdb12)
(trackSegBlocked cdb13)
(= (trainStayInStation T2) 0)
...

(:goal (and
(trainHasEnteredStation T1)
(trainHasStopped T1)
(<= (trainStayInStation T1) 500)
(trainExitsStationAt T1 Ex01)
...
(<= (trainStayInStation T2) 340)
(trainExitsStationAt T2 Ex03)
...

Figure 4: Excerpt of the initial state and goal specification,
for a train (T1) doing an intermediate stop at, and for a train
(T2) that originates from, the controlled station.

vides and excerpt of the PDDL+ description of the initial
and goal states for two hypothetical trains; T1 that is yet to
arrive at the controlled station, and has to do an interme-
diate stop before leaving, and T2 that originates from the
controlled station. In the case of T1, the entry point is de-
scribed (EP1), and the goal indicates that the train has to en-
ter the station (trainHasEntered), to do a stop at the station
(trainHasStopped) and has to leave the station via a speci-
fied exit point (trainExitsStationAt). The time in which T1
arrives at the station is not specified in the problem model,
as it is encoded via a grounded event in the domain model.
After the specified amount of time, the At EntryPoint event
corresponding to T1 is triggered, and the train can then be
controlled by the planning engine. As soon as the train enters
the station, the corresponding action can be executed by the
planning engine – the action for train T1 is shown in Figure
3. Beside other functions used to measure the time spent by
the train navigating the station or stopping at platforms, there
is also a trainStayInStation function, that is used to monitor
the overall time spent by the train in the station, and to force
the planning engine to optimise routes and stops. This has
been done for avoiding undesired behaviours such as trains
waiting at entry or exit points – which creates congestion
and can have a knockout effect on the rest of the railway
network. While the way in which goals are encoded for each
train can be seen as redundant, at least in terms of PDDL+,
this has been done for supporting the heuristic search, as de-
scribed in the corresponding section.

Figure 4 also shows the initial state specification of train
T2: this train originates from the controlled station, and
is initially stopped at platform SI. The platform is there-
fore occupied (stopIsOccupied), as well as the correspond-
ing track segments (trackSegBlocked) cdb12 and cdb13.

453

For this train, the only goal is to leave the station within a
given time limit.2

Forward Heuristic Search for Train
Dispatching

The ENHSP planning engine (Scala et al. 2016, 2020) has
been used to solve in-station train dispatching problems en-
coded in PDDL+. ENHSP is a modular planning engine, and
includes a range of off-the-shelf search and heuristic tech-
niques. Overall, ENHSP is a forward search planning engine
that deals with continuous processes using the Discretise and
Validate approach, where the continuous model is initially
discretised, then solved, and finally the found solution is val-
idated against the original continuous model. Discretisation
is done on the basis of a given delta, that controls the ex-
ecution, planning, and validation processes of the planning
engine. The delta for execution and planning is used to de-
fine, respectively, how often the planning engine is updating
the state of the world checking for events and processes, and
how often the planning engine is allowed to take a planning
decision. The off-the-shelf version of ENHSP proved to be
capable of solving prototypical instances, hence demonstrat-
ing the feasibility of the approach. To allow ENHSP to solve
large and complex PDDL+ in-station train dispatching prob-
lems, we then leveraged on its modularity and specialised
its behaviour in three ways: we designed an adaptive notion
of execution and planning delta, we introduced a domain-
specific heuristic, and we added three constraints to prune
unpromising areas of the search space.

Adaptive Delta
In the proposed PDDL+ model, it is possible to know a priori
when events will be triggered. For Approaching trains, the
moment in which the At EntryPoint event will be triggered
is given in the ground formulation. All the other events are
the result of actions executed by the planning engine, and the
moment in which they will be triggered is only related to the
time in which the corresponding action has been executed.
This implies that there is no need to use a fixed execution
and planning delta, but the delta value can be adjusted ac-
cording to when the next event will be triggered, or an action
will be available. From a planning perspective, it is useless
to consider all the steps in between, because the state of the
world does not change. This is similar in principle to the
approach exploited by decision-epoch planning engines for
dealing with temporal planning problems (Cushing, Kamb-
hampati, and Weld 2007).

We designed an Adaptive Delta Queue, that is initialised
as shown in Algorithm 1. Taking into account the set of
ground events E, ground actions A, and the initial state de-
scription I , it is possible to identify when to stop the exe-
cution to take decisions and update the state of the world.
Given the proposed PDDL+ model, in the function GENER-
ATE INITIAL QUEUE it is straightforward to extract the time
at which an At EntryPoint event will be triggered, and the

2Anonymised example domain and problem models can be
found at https://github.com/matteocarde/icaps2021

Algorithm 1 Adaptive Delta Queue

1: function GENERATE INITIAL QUEUE(E,A, I)
2: Q = INITQUEUE()
3: for e in E | e = ”AtEntryPoint” do
4: ENQUEUE(Q, e.time)
5: for a in A | e = ”LeaveOrigin” do
6: ENQUEUE(Q, a.earlyT ime)
7: for p in GETACTIVEPROCESSES(I) do
8: for e in IDENTIFYEVENTS(p) do
9: ENQUEUE(e.time)

10: return SORT(Q)
11:
12: function EXTEND QUEUE(Qp, a)
13: Q = Qp

14: TE = CALCTRIGEVENTS(a)
15: for e in TE do
16: ENQUEUE(e.time)
17: return SORT(Q)

earliest time at which an action Leave Origin will be avail-
able. Similarly, it is straightforward to check the presence
of trains already in the controlled station, and identify the
time of the corresponding events, if any. When an action is
executed, a new queue Q is created, and attached to the re-
sulting search state. The function EXTEND QUEUE, shown
in Algorithm 1, is used to extend the delta queue of the par-
ent state Qp taking into account the events TE that will be
triggered by the applied action a, and their trigger time.

In each state, the next delta step is identified by consid-
ering the corresponding delta queue, and by picking up the
time of the next event that will be triggered. Between two
events, nothing will happen, so there is no need to generate
and assess additional states.

Specialised Heuristic
Following the traditional A* settings, the cost of a search
state s is calculated as f(s) = g(s) + h(s), where g(s) rep-
resents the cost to reach s, while h(s) provides an heuristic
estimation of the cost needed to reach a goal state from s.
In our specialisation, g(s) is calculated as the elapsed mod-
elled time from the initial state to s. The h(s) is a heuristic
calculated according to Equation 1:

h(s) =
∑
t∈N

(reachTime(t) + penalisation(t)) (1)

where N is the set of trains of the given problem that
did not yet achieve their goals at s. The reachTime method
measures the time that, starting from the current position and
using a Manhattan heuristic, the considered train needs to
reach its final destination. The reachTime method returns 0
for trains that have not yet left their origin platform (origin
trains) or not yet entered the controlled station (any other
train). The penalisation method gives a very high penalisa-
tion value P for each goal specified for the considered train
t that has not yet been satisfied at state s. For instance, con-
sidering the example provided in Figure 4, the train T1 has

454

initially a penalisation of 3×P , because there are three goals
related to the train that are not satisfied in the initial state.

In cases where several different states have the same
heuristic value, our approach prioritises the application of
the actions Leave Origin, Reach Destination and Exit Sta-
tion, and penalises the use of the action Begin Stop for trains
that are not required to stop (i.e., origin trains, trains that al-
ready made a stop, trains that are passing through the station
but does not have to stop).

Constraints
Finally, the implemented constraints focus on the time spent
by the trains. In particular, for every train t of a given prob-
lem to solve, the following constraints are enforced.

stayInStationTime(t) < MaxStayInStation (2)

fromArrivalTime(t) < MaxFromArrival (3)
stoppingTime(t) < MaxStoppingT ime (4)

Equation 2 indicates that a train is not allowed to stay in
the station more than a given maximum value. Similarly,
Equations 3 and 4 constraint, respectively, the time passed
from the arrival of the train in the station, and the time spent
stopping at a platform. The idea behind such constraints is to
avoid situations where trains are left waiting for long peri-
ods of time, occupying valuable resources. The maximum
times are calculated a priori, according to historical data,
and depends on the structure of the railway station. Such
constraints are also used to implement an anytime planning
framework, able to generate solution of increasing quality
over time. Starting from an initial value corresponding to
worst case scenarios observed in historical data, the con-
straints’ value are then reduced if a plan is generated: this
process is repeated until either the cutoff time is reached, or
the planning engine returns that no solution can be found.

Evaluation
We tested the proposed PDDL+-based approach by exploit-
ing the real-world data coming from the Italian railway net-
work and provided by RFI. RFI provided the access to the
data of 5 months (January to May 2020) of train move-
ments of one medium-sized railway station of the Liguria
region, situated in the North West of Italy. A subsection
of the station is shown in Figure 1; the station has been
anonymised, and the complete structure can not be pro-
vided due to confidentiality issues. For the same reason,
train identifiers have been anonymised. The modelled sta-
tion includes 130 track segments (out of which 34 are track
switches), 107 itineraries, 10 platforms, 3 entry points, and
3 exit points. The average number of trains per day was 130
before COVID-19-related lockdown and 50 after movement
restrictions were enforced in Italy. As described in the corre-
sponding section, the PDDL+ models provide a fully ground
description of the problem to solve. The size of the consid-
ered problems, represented as the sum of actions, processes
and events, ranges from approx. 300 to 1, 200.

The travel times information needed by the PDDL+
model, e.g., the time needed by each train to complete a
track segment, to leave a platform, maximum times, etc.,

were calculated by leveraging on historical data provided
by RFI. The whole dataset of historical tracks’ travel times
were clustered by a variety of features, such as train charac-
teristics (e.g. passengers, freight, high speed, intercity, etc.),
station transit characteristics (i.e. overall train trip inside
the rail-network, and entry and exit points), weekdays, and
weather conditions. According to the characteristics of the
problem at hand, it is then possible to estimate the travel
times of every train by assigning the average value of the
times inside the corresponding cluster.

All the tests were run on a 2.5GHz Intel Core i7 Quad-
processors with 16GB of memory made available and a Mac
OS operating system. The cutoff time was set to 5 CPU-
time minutes, but plans are usually generated in less than 30
seconds.

Validation of generated plans consisted of: (i) comparison
with what would be expected in a common sense solution,
by the visual inspection of the generated plans by a domain
expert, and (ii) automated validation of the generated plans
using the planner’s internal validator.

Evaluation Scenarios
We considered three evaluation scenarios, for assessing the
capability of the approach to: (i) accurately model historical
data; (ii) minimise delays, and (iii) increment the railway
station capacity.

Validation Against Historical Data. As initial test, we in-
vestigated the accuracy of the proposed PDDL+ formulation
for modelling historical data. In other words, we are inter-
ested in assessing if the PDDL+ formulation is capable of
representing how the addressed in-station train dispatching
problem is currently faced by the human operators. This step
is fundamental for at least two reasons: (i) to ensure that the
PDDL+ formulation is realistic and can capture all the nu-
ances of the real-world application, and (ii) to support the
use of historical plans as baseline for validation and compar-
ison purposes. To perform this analysis, we selected the day
– in February 2020, before the start of the COVID-19 lock-
down in Italy – with the minimum mean squared deviation of
recorded train timings from the official timetable. This was
done to guarantee that no emergency operations were exe-
cuted by the operators. We encoded the recorded happenings
of that day under the form of a single PDDL+ plan, using
the operators introduced in the corresponding section. We
then successfully validated such a plan, using the ENHSP
validator, against our PDDL+ model. Notably, the fact that
the PDDL+ model can correctly model the real-world dy-
namics, implies that planning-based tools can be straightfor-
wardly exploited, and the planning engine can provide an
encompassing framework for comparing different strategies
to deal with recurrent issues, and for testing new train dis-
patching solutions. This result already represent a significant
leap forward for the state of the art of the application field.

Minimisation of Delays. The next step is to focus on the
benefits that the proposed PDDL+-based approach can de-
liver when dealing with delayed trains. Here we performed
two different sets of experiments. First, we assessed how the

455

30 60 90 120 150 180 210 240 270 300

Historic Delay

-100

-80

-60

-40

-20

0
D

if
fe

re
n

c
e

Figure 5: A box and whisker representation of the delay re-
duction achieved by our approach (y-axis), with regards to
the recorded historical delay (x-axis). Whiskers refer to the
highest and lowest reduction in delay, while the box (in blue)
indicates the first, second, and third quartiles. Red indicates
the median value. Negative y-axis values indicate that the
planning approach reduced the delay, wrt historical records.

plans generated with our technique compares with the strate-
gies currently implemented in the considered train station,
in order to assess the improvement over the state of the art.
Second, we performed an extensive analysis aimed at quan-
tifying the ability of the approach to cope with increasingly
large widespread delay. In order to deal with the first aspect,
we considered data collected between January and March,
prior to the COVID-19 related lockdown, and identified all
cases where at least one train was delayed with regards to
the official timetable. As for the planning scenario, we con-
sidered a time window centred on the delayed train(s) and
bounded by the first time where no trains are in movement
in the controlled station. What falls inside such time window
is encoded in the considered planning problem. This allows
to consider the entirety of the context in which the delayed
trains have to operate, thus maximising the comparability of
the results. In total, 311 scenarios including one or more de-
layed trains were identified using the described technique.
Overall results are presented in Figure 5, where scenarios
are clustered, in bins of 30 seconds, according to the aver-
age recorded delay (x-axis). The clusters’ size vary between
2 (300 seconds delay) and 59 (30 seconds delay on average)
instances; the number of trains per instance ranges between
1 and 12. Whiskers refer to the highest and lowest reduction
in delay from the relative clustered recorded delay, while
the box indicates the first, second, and third quartiles. Red
is used to represent the median value. A value of 0 indicates
that our approach performed exactly as the human operator
in the recorded historical data; negative values on the y-axis
indicate that we improved over the historical record. Results
indicate that the PDDL+-based approach is never worse than
the current strategy exploited at the controlled railway sta-
tion, and that instead it is usually able to reduce the average
delay. For instance, taking the clustered bin of 90 seconds,
i.e. historical cases where trains were delayed by 90 seconds,
our approach reduced the delay by up to 40 seconds. This is
remarkable if we also take into account that the delay can be
reduced only for trains that terminate or do an intermediate
stop at the controlled station: there is no way to reduce the

-1000 -500 0 500 1000 1500 2000

Injected Delay

-500

0

500

1000

1500

M
it
ig

a
te

d
 D

e
la

y

Adjusted data

Fit: y=0.720178*x

95% conf. bounds

Figure 6: The relation between the injected Gaussian de-
lay (x-axis) and the average mitigated delay obtained by ex-
ploiting the generated plans (y-axis), when considering the
evening peak hours (17.00-20.30) on the controlled station.

delay of trains that originate at the station – as they leave the
platform late. By looking at the generated plans, our intu-
ition is that the delay reduction is due to a better use of the
available infrastructure, leading to shorter waiting times for
trains entering the station.

To quantify the ability of our approach to handle delays
we considered the peak hours time slots for the controlled
railway station: (i) 06.30-09.30, with 24 moving trains, (ii)
12.00-14.30 with 17 trains, and (iii) 17.00-20.30 with 29
trains. (i) and (iii) include the commuters trains, while (ii)
has a large number of trains used by students going home
from school. Focusing on these three time slots, we selected
the day, before the COVID-19 travel restrictions were put
in operation, with the minimum mean squared deviation of
recorded timings from the official timetable to be sure to
have a levelled ground for performing the analysis. After
that, we delayed every train of the considered time slot us-
ing a Gaussian-distributed delay N(µ, σ) with an increasing
µ and a fixed σ of 5 minutes. µ ranged from −10 to +30
minutes, with 5 minutes steps.3 For each value of µ, we ran-
domly generated 10 planning instances using a Monte Carlo
approach to inject delays to all the trains of the instance.
Average results over the 10 instances are then considered.
Figure 6 shows the achieved performance, as the relation-
ship between the injected delay and the final observed aver-
age delay, on the time slot 17.00-20.30. Results on the other
time slots are analogous. The behaviour can be interpolated
by a straight line with an angular coefficient of 0.72; in other
words, our proposed approach is able to plan the movement
of trains to absorb 28% of the injected delay. For example,
considering an injected Gaussian delay of 500 seconds, the
final measured average delay is of 350 seconds: the proposed
approach is able to absorb almost two minutes of the initial
delay. These results are of particular relevance since in the
considered scenarios all the trains are delayed (which is a
worst case scenario) and the approach is still capable of re-
ducing the average delay by almost a third.

Increment of the Railway Station Capacity. For this sce-
nario, we conducted a stress test with the aim of understand-
ing if the proposed approach can lead to an increment of the

3In our analysis, a negative delay is used to model a train that is
early with regards to the official timetable.

456

-1000 -500 0 500 1000 1500 2000

Injected Delay

-500

0

500

1000

1500
M

it
ig

a
te

d
 D

e
la

y

+1 trains

+2 trains

+3 trains

+4 trains

+5 trains

+6 trains

+7 trains

Figure 7: The relation between the injected Gaussian de-
lay (x-axis) and the average mitigated delay obtained by ex-
ploiting the generated plans, in the presence of an increas-
ingly large number of additional trains, when considering
the evening peak hours (17.00-20.30) on the controlled rail-
way station.

railway station capacity. Using the same settings exploited
for the previous scenario, we add an increasingly large num-
ber of synthetically generated trains as follows. Considering
historical data, we randomly selected a train that originates,
terminates, or does an intermediate stop at the station. The
arrival/departure time of this synthetically generated train
is then scheduled in between of existing trains in the time
slot. After that, the usual Gaussian distributed delay (as de-
scribed in the previous paragraph) is injected. This process
is repeated 10 times. Then, another train is synthetically gen-
erated and added restarting the above mentioned procedure.
The results of this set of experiments are presented in Figure
7. Surprisingly, results presented in Figure 7 are very similar
to those shown in Figure 6: the fact that the station is serv-
ing up to 25% more trains does not result in a reduced ca-
pacity of our approach of mitigating the injected delay. Con-
sequently, the proposed approach seems to be very robust.
When more than 7 trains are added in the considered time
slot, the limited availability of entry/exit points and plat-
forms makes impossible to generate in-station dispatching
plans that allows to satisfy even very loose constraints on
the maximum time a train is allowed to stay in the station,
or to wait at an entry point. Even a visual inspection per-
formed by RFI experts, and some attempts to manually gen-
erate some reasonably timed dispatching plans, did not lead
to the generation of any sensible solution. This suggests that
our approach is able to exploit the available infrastructure
up to a very high level, possibly close to the physical limit
of the railway station.

Importance of the Domain-specific Extension. Finally,
a natural question that we want to answer is: what is the im-
pact of the designed domain-specific extensions on ENHSP?
For this purpose, we need to quantify the performance im-
provement that can be obtained by using the introduced
domain-specific optimisations considering planning tasks
involving an increasing number of trains to be controlled.
Focusing on the evening peak hour, we start by considering
a time window where a single train is arriving at the station.
We then incrementally increase the size of the considered
time window, in order to include a larger number of trains at

0 5 10 15 20 25 30

Trains

0

20

40

60

80

100

120

P
la

n
n

in
g

 T
im

e
 (

s
)

Extended ENHSP

ENHSP

Figure 8: The CPU-time needed by the domain-independent
version of ENHSP and the version extended with the
domain-specific optimisations (Extended ENHSP) for solv-
ing instances involving an increasing number of trains.

every step, up to the point where all the evening peak hour
is modelled.

Figure 8 shows the results of the performed analysis in
terms of runtime needed by the systems to generate a sin-
gle solution. The domain-independent version of ENHSP is
not able to solve instances that involve more than 3 trains,
within the given cutoff time of 300 seconds. On the con-
trary, the domain-specific extensions we introduced allow
the planning engine to quickly solve challenging instances
that involve all the trains managed by the modelled railway
station during the evening peak hour. All the instances, also
those considered for the other scenarios of this experimen-
tal analysis, are solved in less than 20 CPU-time seconds
when the proposed domain-specific extension is in opera-
tion. Looking at the importance of the extensions, a prelimi-
nary analysis suggests that both the specialised heuristic and
the adaptive delta have a comparably strong impact on per-
formance, but what gives a significant boost is using them
together. Constraints are helpful, but not as much.

Conclusion

In this paper we presented an automatic solution to the in-
station train dispatching problem. We modelled the prob-
lem in PDDL+, and designed a set of domain-specific
enhancements that allow the ENHSP planning engine to
quickly solve large and complex instances. Results on real-
world historical data of a medium-sized railway station from
North-West of Italy, provided by RFI, show the potential of
our approach on a wide range of scenarios. In particular, the
proposed approach demonstrated the ability to reduce de-
lays and to better exploit the available infrastructure – with
the potential of allowing a station to serve a larger number
of trains without the need for structural modifications.

As future work, we plan to assess more in depth the im-
portance of the domain-specific extensions, and to evaluate
our approach on different and more complex railway sta-
tions. Moreover, we are interested in extending our approach
to support timetable generation, and to address also the line
dispatching problem.

457

Acknowledgements
This work has been partially funded by Hitachi Rail STS
through the RAIDLab (Railway Artificial Intelligence and
Data Analysis Laboratory), a joint laboratory between Hi-
tachi Rail STS and University of Genoa. This work has been
supported by RFI (Rete Ferroviaria Italiana) who provided
the data for the analysis (we sincerely thank Renzo Canepa
for his support). Mauro Vallati was supported by a UKRI
Future Leaders Fellowship [grant number MR/T041196/1].

References
Atzmon, D.; Diei, A.; and Rave, D. 2019. Multi-train path
finding. In Proceedings of SoCS, 125–129.

Barrena, E.; Canca, D.; Coelho, L. C.; and Laporte, G. 2014.
Exact formulations and algorithm for the train timetabling
problem with dynamic demand. Computers & Operations
Research 44: 66–74.

Billionnet, A. 2003. Using integer programming to solve
the train-platforming problem. Transportation Science 37:
213–222.

Böcker, J.; Lind, J.; and Zirkler, B. 2001. Using a multi-
agent approach to optimise the train coupling and sharing
system. European Journal of Operational Research 131:
242–252.

Bryan, J.; Weisbrod, G. E.; and Martland, C. D. 2007. Rail
freight solutions to roadway congestion: final report and
guidebook, volume 586. Transportation Research Board.

Cacchiani, V.; Furini, F.; and Kidd, M. P. 2016. Approaches
to a real-world train timetabling problem in a railway node.
Omega 58: 97–110.

Cacchiani, V.; and Toth, P. 2012. Nominal and robust train
timetabling problems. European Journal of Operational Re-
search 219(3): 727 – 737.

Caprara, A.; Fischetti, M.; and Toth, P. 2002. Modeling and
solving the train timetabling problem. Operations research
50: 851–861.

Caprara, A.; Galli, L.; Kroon, L.; Maróti, G.; and Toth, P.
2010. Robust train routing and online re-scheduling. In
Proceedings of ATMOS workshop, 24–33.

Cardillo, D. D. L.; and Mione, N. 1998. k L-list λ colouring
of graphs. European Journal of Operational Research 106:
160–164.

Chakroborty, P.; and Vikram, D. 2008. Optimum assign-
ment of trains to platforms under partial schedule compli-
ance. Transportation Research Part B: Methodological 42:
169–184.

Corman, F.; D’Ariano, A.; Pacciarelli, D.; and Pranzo, M.
2012. Bi-objective conflict detection and resolution in rail-
way traffic management. Transportation Research Part C:
Emerging Technologies 20: 79–94.

Cushing, W.; Kambhampati, S.; and Weld, D. S. 2007. When
is temporal planning really temporal? In Proceedings of IJ-
CAI, 1852–1859.

D’Ariano, A.; Pranzo, M.; and Hansen, I. A. 2007. Conflict
resolution and train speed coordination for solving real-time
timetable perturbations. IEEE Transactions on intelligent
transportation systems 8: 208–222.
D’ariano, A.; Pacciarelli, D.; and Pranzo, M. 2007. A branch
and bound algorithm for scheduling trains in a railway net-
work. European journal of operational research 183: 643–
657.
Fox, M.; and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. J. Artif. Intell. Res. 27:
235–297.
Fox, M.; Long, D.; and Magazzeni, D. 2012. Plan-based
Policies for Efficient Multiple Battery Load Management.
J. Artif. Intell. Res. 44: 335–382.
Kumar, R.; Sen, G.; Kar, S.; and Tiwari, M. K. 2018. Station
Dispatching Problem for a Large Terminal: A Constraint
Programming Approach. Interfaces 48: 510–528.
Lamorgese, L.; and Mannino, C. 2013. The track formula-
tion for the train dispatching problem. Electronic Notes in
Discrete Mathematics 41: 559–566.
Lamorgese, L.; and Mannino, C. 2015. An exact decompo-
sition approach for the real-time train dispatching problem.
Operations Research 63: 48–64.
Lamorgese, L.; Mannino, C.; and Piacentini, M. 2016. Opti-
mal train dispatching by Benders’-like reformulation. Trans-
portation Science 50: 910–925.
Lee, Y.; and Chen, C.-Y. 2009. A heuristic for the train
pathing and timetabling problem. Transportation Research
Part B: Methodological 43: 837–851.
Mannino, C.; and Mascis, A. 2009. Optimal real-time traffic
control in metro stations. Operations Research 57: 1026–
1039.
McCluskey, T. L.; and Vallati, M. 2017. Embedding Auto-
mated Planning within Urban Traffic Management Opera-
tions. In Proceedings of ICAPS, 391–399.
Ramı́rez, M.; Papasimeon, M.; Lipovetzky, N.; Benke, L.;
Miller, T.; Pearce, A. R.; Scala, E.; and Zamani, M. 2018. In-
tegrated Hybrid Planning and Programmed Control for Real
Time UAV Maneuvering. In Proceedings of AAMAS, 1318–
1326.
Rodriguez, J. 2007. A constraint programming model for
real-time train scheduling at junctions. Transportation Re-
search Part B: Methodological 41: 231–245.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2016.
Interval-Based Relaxation for General Numeric Planning. In
Proceedings of ECAI, 655–663.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2020.
Subgoaling Techniques for Satisficing and Optimal Numeric
Planning. J. Artif. Intell. Res. 68: 691–752.
Scala, E.; and Vallati, M. 2020. Exploiting Classical Plan-
ning Grounding in Hybrid PDDL+ Planning Engines. In
Proceedings of ICTAI, 85–92.

458

