
vPlanSim: An Open Source Graphical Interface for the Visualisation and
Simulation of AI Systems

Jamie O. Roberts 1,2, Georgios Mastorakis 3, Brad Lazaruk 3, Santiago Franco 3, Adam A. Stokes1,
Sara Bernardini 3

1School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh
2EPSRC CDT in Robotics and Autonomous Systems, Edinburgh Centre for Robotics

3 Department of Computer Science, Royal Holloway, University of London
{jamie.roberts, adam.stokes}@ed.ac.uk, g.mastorakis@ieee.org, brad@lazaruk.com, {santiago.francoaixela,

sara.bernardini}@rhul.ac.uk

Abstract

We introduce vPlanSim, an open source tool to aid in AI
PDDL development. This tool is primarily aimed at re-
searchers and developers who need a visual representation of
their planning problem so that they can make useful insights
into the performance of their system, and also to naturally
convey their system to others. It is an open-source tool which
allows a user to quickly and easily visualise a target envi-
ronment to generate the problem files and also to visualise
a plan. It is particularly well suited to spatial planning prob-
lems. This paper will demonstrate vPlanSim on 2D and 3D
planning problems. vPlanSim is based on a small and care-
fully considered set of dependencies such as VTK and PyQt.
It can be set up on different platforms and compiled from
source with minimal effort. The code is and maintained via
a clear code review mechanism. We welcome contributions
from the open-source community.

Introduction
As the fields of Task Planning progress, the problems that
they try to solve become increasingly more complex. This,
in turn, introduces a difficulty in interpreting and compre-
hending the information of the initial state and plan output.
This is particularly apparent in problems where the system
attempts to tackle physical problems in 3-Dimensions. It is
difficult for humans to accurately visualise a 3-D sequence,
from a text or even integer output of a sequence of coor-
dinates. Even more difficult is the communication and con-
veyance of these systems to stakeholders, new members of
the development team or the general public without a com-
mon platform that is understandable.

To this end, we present vPlanSim: An Open Source
Graphical Interface for the Visualisation of PDDL problems.
This software is written in Python3, so as to be widely ac-
cessible to most programming literate users, with minimal
dependencies. This software is open and is designed to allow
a user to predefine how their system output should interact
with vPlanSim across a range of modalities. The demonstra-
tion of this software will be framed in the context of Task
Planning systems but it should be applicable across a wide

Copyright c© 2021, Proceedings of the 31st International Confer-
ence on Automated Planning and Scheduling. All rights reserved.

variety of systems, providing the users observe the strict
pipeline of the software.

Related Work
Explainable AI is a growing field in AI research with an in-
creasing awareness around it as one of the major limiting
factors in the practical deployment of AI systems (Adadi
and Berrada 2018). Task Planning is a good candidate to
satisfy the requirements to qualify for Explainable AI (Fox,
Long, and Magazzeni 2017), but often lacks tools to aid in
human intelligibility. Planimation (Chen et al. 2020) is an
open source framework to visualise sequential planning so-
lutions and uses a 2D representation to abstractly visualise
plans. VisPlan (Glinskỳ and Barták 2011) is a graphical tool
to allow for the user to analyse plans and find potential flaws.
It requires a domain, problem and plan file as an input and
so is a tool used in post-process. TransportEditor (Škopek
and Barták 2017) allows a user to creating domains and vi-
sualising and editing problem instances, it is intended for
problems in the transportation domain. Chakraborti et al.
(2017) presents visualization capabilities of an Explainable
AI Planning Agent such that a human operator can inter-
act with a visual representation of the plan output but also
the internal decision making processes. The Logic Planning
Simulator (LPS) (Tapia, San Segundo, and Artieda 2015) is
a graphical tool that allows a user to test and validate PDDL
STRIPS domains and simulate plan outputs. PDDLGym
(Silver and Chitnis 2020) is capable of simulating PDDL
problems visually. There is also considerable work in the use
of Minecraft to visualise specific planning problems. A good
example of this is Kohn et al. (2020), where they present
MC-Saar which is a platform for giving instructions between
a human operator and the computer in complex tasks, par-
ticularly suited to construction tasks well approximated by
a ‘blockworld’ model. In terms of the work towards aid-
ing the user in editing planning files, PDDL Studio (Plch
et al. 2012) offer considerable PDDL syntax tools such as
error highlighting and autocompletion. (Vaquero et al. 2009)
presents itSIMPLE3.0, software that allows the user to con-
struct a domain in UML which is automatically translated to
PDDL syntax via XML. (Dolejsi et al. 2018) presents and
end-to-end PDDL 2.2 developer environment with a variety

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

486



of tools that integrates with Visual Studio, with (Long, Dole-
jsi, and Fox 2018) presenting another Visual Studio plug-in
to support PDDL as a real-world problem modelling tool.
myPDDL (Strobel and Kirsch 2014) presents a suite of tools
for PDDL domain construction and analysis.

This work proposes the first step towards an all encom-
passing tool could incorporate many of the features ex-
hibited in the literature presented, however with a crucial
goal of allowing 3D manipulation of an environment to
aid in the development of 3D planning problems, particu-
larly in the field of robotics. vPlanSim operates indepen-
dently of any domain files at this point, it functions as a
framework to construct a domain specific set of predicates
which can be related to 3D graphics. With that in mind, in
should be noted that the most common visualisation and
simulation tool used by the Robotics and AI community
is of course ROS/Gazebo, and with respect to Task Plan-
ning, ROS/Gazebo with a particular emphasis on ROSPlan.
Whilst this is a very powerful library and set of software
tools, vPlanSim would be a suitable alternative for the fol-
lowing reasons; vPlanSim is lightweight with minimal de-
pendencies and has an intuitive open framework so that users
can adapt and add to its functionality to suit their needs. The
tool is intended to be an aid to Task Planning for 3D prob-
lems, and is not intended to include physics and dynamic
simulation, at which point a software tool such as ROSPlan/
Gazebo would be preferable.

Design & Implementation
The tool is built using several libraries offering user inter-
action (PyQt5 (Riverbank Computing Limited 2020), VTK
(Schroeder, Martin, and Lorensen 2006)), real-time visuali-
sation in 2D/3D (VTK), PDDL synthesis (Python libraries)
and visual simulation (VTK). We chose to use PyQt because
it runs without any pre-compilation and has easier and faster
mechanisms to address dependency issues. VTK offers sim-
ple mechanisms to produce 2D and 3D visualisations. We
implemented the tool using Python3 for several reasons such
as minimising the time spend to compile and fix dependen-
cies (i.e. if using C++), and also that QT and VTK have a
very active Python community that has offered valuable sup-
port for the development of this tool.

In Figure 1 we show a high level pipeline of the vPlan-
Sim design and the dependencies of the main functionali-
ties. The user interacts with the User Interface (UI) using
both a menu developed with PyQt and a VTK window that is
also used for visualisation and simulation. The task of PDDL
synthesis is implemented using native Python3 and NumPy
(Oliphant 2006) libraries. Finally, annotated in a yellow box
is the call to a planner to solve the PDDL problem, that cur-
rently runs externally. Nevertheless, it is planned to be em-
bedded in the tool in a future release. Further discussion re-
garding the pipeline can be found at the GitHub repo (see
Release Section).

Functionality
The new tool comprises several functionalities to assist users
create visual scenes in 3D; set agent, goal and other visual

UI via menu
Visualisation

UI via mouse

PDDL synthesis

Simulate plan

PyQt VTK

VTK

Python

Solve PDDL with Planner

Figure 1: vPlanSim pipeline: blue boxes annotate automa-
tion offered by vPlanSim

features to reflect the predicates of the user domain on the
3D scene via mouse interaction; generate a PDDL prob-
lem in a semi-automatic mechanism; and finally simulate
the output plan over the visualised 3D scene. Table 1 sum-
marises the detailed functionalities of vPlanSim. The current
functionality does not allow for automated PDDL domain
file translation and synthesis.

Customised Visualisation
As discussed, vPlanSim uses VTK to visualise the generated
scene. The walls, obstacles and the floor panels make use of
the vtkActor class. The colour properties of the vtkActor ob-
jects are manipulated to differentiate entry and goal points,
and the positions of the objects can be calculated on demand.
The undo/redo stack allows for objects to be removed or re-
done as necessary. Lists (i.e. Python List) of wall positions,
entry points, and goal points can be generated by scanning
the VTK colour and position properties of the various ob-
jects in the scene. The GUI can be used to add exterior and
interior walls by setting the required dimensions. Obstacles,
goal and entry points can be defined by entering a point (i.e.
PyQt UI) and click mode or by specifying the exact position
in the scene (i.e. VTK window). Wall and floor objects can
be removed by selecting the delete mode or by clicking on
a specific block to be deleted. The floor panels of the scene,
annotations noting the positions of the wall blocks, the X, Y,
and Z axes can be set to be visible or not.

When first executed, the tool initialises two vtkRenderer
objects, one for the scene blocks and another for annotations
such as the grid and axes. Scaling and rotation of the scene
is enabled through VTK window interactions. All the walls
and obstacles are composed of a vtkActor object of size
1x1x1 and a vtkCaptionActor2D. The vtkCaptionActor2D
holds the text representation of the position of the cube. The
floor panels are also vtkActor objects.

Standard VTK colour properties are used to differentiate
the entry and goal points. Creation of the outside walls takes
three inputs from the GUI, representing the width, height,

487



Module GUI spec Functionality

V
is

ua
lis

at
io

n

Outside walls Set the initial geometry of the 3D scene
Internal walls Set cells
Delete blocks Delete parts of geometry
Set obstacles Introduce obstacles
Select entry Initialisation point
Select goal Termination point
Redo/Undo Undo/Redo visualisation steps

PD
D

L
Sy

nt
he

si
s

Generate PDDL
Formulate PDDL description

Producing 2D and 3D problems
Preview PDDL description

Si
m

ul
at

io
n

Visualise path Simulate plan via Avatars class

Table 1: vPlanSim modules and functionalities

and depth of the outside walls. These are rendered along
the X, Y, and Z axes respectively. Looping over the val-
ues, a vtkPropAssembly object for each section of the out-
side walls is added and then the scene is rendered. It is ini-
tially assumed that the scene will have a floor. Adding in-
terior walls is divided into two functions allowing the ad-
dition of walls along the X axis or along the Z axis. The
starting position along the X or Z axis along with the height
and length of the walls are taken from inputs in the GUI.
The delete blocks module uses a vtkPicker class to interpret
mouse clicks on the scene. Undo and redo functionality in
provided through the inclusion of two basic action stacks,
implemented as Python Lists. On demand, the scene can be
scanned to calculate the positions and type of each object.
The entry points and goals are differentiated by their colour
properties. Separate lists of the wall objects, entry points and
goals can be generated. Obstacles can be added to the scene
by specifying the geometry directly in the GUI, or by enter-
ing a selection mode, clicking on the scene at the point the
obstacle should be created and clicking save. The vtkPicker
class is used to determine where the user has clicked in the
scene. The entry point and goals can similarly be created
by the user through point and click or by directly setting a
position in the GUI.

PDDL Problem Generation
The second functionality of the tool generates a PDDL prob-
lem file based on the visualisation environment discussed
in the previous subsection. Given a particular domain (e.g.
Sokoban), the user codes the necessary commands in Python
to align the domain with a skeleton PDDL problem. Effec-
tively, the user must map the object names and predicates to
a process that would generate the PDDL problem.

We give two examples of PDDL problems where videos
can be found in the GitHub repo with corresponding prob-
lem files. The PDDL generation then maps the 2D/3D ge-
ometry designed by the user to parametrize the PDDL pred-
icates. The name of predicates and objects are defined earlier
by the user and the tool will automatically generate the nu-
merical values representing the scene, obstacles, agents and
goals, etc. More specifically, the tool takes into account the

outside wall geometry to define the search space. In some
problems, outside walls play a role in the plan (e.g. a wall
has an entrance for an agent to enter) while in some other,
the outside wall’s role is to delimit the permitted coordinates
for agents, goals etc. Coordinates of internal walls and ob-
stacles alongside with the outside wall blocks are passed to
the generatePDDLproblem function that assigns the correct
object/predicate to these values. Furthermore, coordinates of
the agents, elements and goals are also passed to the same
function. The tool generates a full PDDL problem that can
then be solved by a planner.

Visualisation Foundation
VTK The visual representations are built entirely on VTK,
which is a powerful open source graphics library and allows
for flexible implementation of a users own needs.

Integration with GUI The point of integration for a user’s
own graphics visualisation with vPlanSim is the class vtkAc-
tor. A user can bring their own graphics in many forms, from
predefined .STL files to 3D models using VTK’s own prim-
itives. The GUI will accept the vtkActor container for the
models and so can be easily visualised in the program.

On top of this, the user will just need to define a response
of the 3D models, given an action in the plan produced.

Plan Simulation
As previously mentioned, vPlanSim utilises the flexible na-
ture of the VTK pipeline and particularly the vtkActor class
as the point of integration for all modules in vPlanSim. As
vPlanSim is intended for user modification/ addition to en-
able their application specific domain representations.

For plan visualisation, there are processes to account for:
plan interpretation (action parsing), agent-to-graphic assig-
nation and finally plan execution.

Plan Interpretation (Action Parsing) Each domain will
have a unique set of actions and naming conventions. A text
parser is required to generate a usable plan for the visualisa-
tion. The relative complexity or simplicity of this parser is
entirely dependent on the resolution of the action details that

488



the user would like to visualise in vPlanSim. In our exam-
ples, the plan is parsed such that the names of the actions can
be compared against the user defined functions in vPlanSim
that perform the intended action.

The examples of Sokoban (2D deployment) and a bespoke
drone operation (3D deployment) domains have an impor-
tant difference which must also be accounted for in the Plan
Interpretation process, and is particularly important for do-
mains which are focused on many agents. Sokoban has a
specific agent construction in its domain, whilst the drone
domain relies on an unspecified agent construction.

The agent-to-graphic stage of the pipeline must be in
agreement with the parsing format that reflects this differ-
ence by storing the graphical representations of the agents
as a list, where the addresses would be the index of the list,
or as a dictionary.

Agent-To-Graphics This part of the process generates a
unit graphic to represent the agent. The basic unit in vPlan-
Sim is a cube, which is taken from vtkCubeSource and as
such the user can customise each cube to the degree that the
existing architecture of vtkCubeSource and vtkActor allows.
VPlanSim has a standard set of graphical units in Avatars.py
which the user can call. From Avatars.py, there are standard
classes for a cube, sphere, arrow, cylinder and a cone. These
are all based from the vtkSource classes and have accessible
functions to modify colour, orientation, position and physi-
cal dimensions. There is also a standard function to import
.stl files into the software so that users can expand on the
complexity of the graphics to files generated on standard
CAD packages. This function has the standard colour and
position functions as well as scale and rotation.

To accompany the graphical objects, it is required to have
a list of functions that are callable in place of the raw plan
output. These are user defined to match the desired action ef-
fects but in the example domains given, each action results in
a physical displacement of the agent. Note that calibration of
an object in each dimension may be required for placement,
achieved through predefined offsets.

Plan Execution This is the final stage of visualising a plan
and occurs by stepping through the interpreted plan and ex-
ecuting the associated function. This implementation of this
user defined, but in these domains it uses a counter of the
plan step which updates every time the ‘step through’ button
is pressed by the user.

Release
vPlanSim is released open-source under the GNU
GPLv3 licence and is available at a GitHub repo
(https://github.com/mastrogiorgis/vPlanSim). Ongoing
development is coordinated via GitHub. Code changes are
integrated via the following steps.

1. An issue is opened for a feature request or a bug fix
2. A developer starts a new branch on a personal fork of

vPlanSim, writes code, and submits a pull request when
ready

3. The code change is reviewed and discussed in the pull
request Modifications are made to address issues raised in

Scene setup
Select agents, 

stones and goals

Auto-generate PDDL

Solve PDDL problem externally

Load planSimulate plan

Figure 2: GUI interface showing a typical Sokoban example

the discussion
4. One of the admins merges the pull request to the master

branch and closes the issue

The code review process maintains a consistent coding
style and adherence to modern Python3 programming guide-
lines. Pull requests are automatically checked by a continu-
ous integration service. We hope that vPlanSim will be a
useful tool to a broad community of researchers and devel-
opers who aim to export and simulate PDDL problems with
the ease of a visualisation tool.

Examples
The tool comes with two example problems (see drop down
menu), Sokoban (Muise 2015) and a bespoke drone domain.
More plans and video demos such as a 3D planning problem
for drones can be found in the GitHub repo.

Conclusion
We have introduced and demonstrated vPlanSim, a
lightweight and open source software package for Task Plan-
ning researchers to quickly and easily visualise their systems
for the purposes of communication and development. vPlan-
Sim does not contain any physics as standard but is instead
meant as a quick and effective visualiser. vPlanSim allows
the user to construct a 3D representation to aid them in de-
veloping their systems by visually generating problem files
and simulating their plans in the same environment.

Acknowledgments
EPSRC and the CDT in Robotics and Autonomous Sys-
tems at Heriot-Watt and The University of Edinburgh
(EP/L016834/1). Partially supported by the InnovateUK
Connect-R (TS/S017623/1).

489



References
Adadi, A.; and Berrada, M. 2018. Peeking inside the black-
box: A survey on Explainable Artificial Intelligence (XAI).
IEEE Access 6: 52138–52160.

Chakraborti, T.; Fadnis, K. P.; Talamadupula, K.; Dholakia,
M.; Srivastava, B.; Kephart, J. O.; and Bellamy, R. K. 2017.
Visualizations for an explainable planning agent. arXiv
preprint arXiv:1709.04517 .

Chen, G.; Ding, Y.; Edwards, H.; Chau, C. H.; Hou, S.; John-
son, G.; Syed, M. S.; Tang, H.; Wu, Y.; Yan, Y.; et al. 2020.
Planimation. arXiv preprint arXiv:2008.04600 .

Dolejsi, J.; Long, D.; Fox, M.; and Besançon, G. 2018.
PDDL Authoring and Validation Environment for Building
end-to-end Planning Solutions. In Proc. of the 28th Int. Con-
ference on Automated Planning and Scheduling (ICAPS).

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. arXiv preprint arXiv:1709.10256 .

Glinskỳ, R.; and Barták, R. 2011. Visplan–interactive visu-
alisation and verification of plans. KEPS 2011 134.

Köhn, A.; Wichlacz, J.; Schäfer, C.; Torralba, A.; Hoffmann,
J.; and Koller, A. 2020. MC-Saar-Instruct: a Platform for
Minecraft Instruction Giving Agents. In Proceedings of the
21th Annual Meeting of the Special Interest Group on Dis-
course and Dialogue, 53–56.

Long, D.; Dolejsi, J.; and Fox, M. 2018. Building support
for PDDL as a modelling tool. KEPS 2018 78.

Muise, C. 2015. AI Planning classical domains. URL https:
//github.com/AI-Planning/classical-domains.

Oliphant, T. E. 2006. A guide to NumPy, volume 1. Trelgol
Publishing USA.

Plch, T.; Chomut, M.; Brom, C.; and Barták, R. 2012. In-
spect, edit and debug PDDL documents: Simply and effi-
ciently with PDDL studio. System Demonstrations and Ex-
hibits at ICAPS 15–18.

Riverbank Computing Limited, T. Q. C. 2020. PyQt5. URL
https://www.riverbankcomputing.com/static/Docs/PyQt5/
index.html. [Online; accessed 8-September-2020].

Schroeder, W.; Martin, K.; and Lorensen, B. 2006. The
Visualization Toolkit–An Object-Oriented Approach To 3D
Graphics. Kitware, Inc., fourth edition.

Silver, T.; and Chitnis, R. 2020. PDDLGym: Gym Environ-
ments from PDDL Problems. In International Conference
on Automated Planning and Scheduling (ICAPS) PRL Work-
shop. URL https://github.com/tomsilver/pddlgym.

Škopek, O.; and Barták, R. 2017. Transporteditor–creating
and visualising transportation problems and plans. In Inter-
national Conference on Automated Planning and Schedul-
ing.

Strobel, V.; and Kirsch, A. 2014. Planning in the wild: mod-
eling tools for PDDL. In Joint German/Austrian Conference
on Artificial Intelligence (Künstliche Intelligenz), 273–284.
Springer.

Tapia, C.; San Segundo, P.; and Artieda, J. 2015. A
PDDL-BASED SIMULATION SYSTEM. In Proceedings
of the IADIS International Conference Intelligent Systems
and Agents.
Vaquero, T. S.; Silva, J. R.; Ferreira, M.; Tonidandel, F.; and
Beck, J. C. 2009. From Requirements and Analysis to PDDL
in itSIMPLE3. 0. Proceedings of the Third International
Competition on Knowledge Engineering for Planning and
Scheduling, ICAPS 2009 54–61.

490


