
Autonomous Building of Structures in
Unstructured Environments via AI Planning

Jamie O. Roberts 1, 2∗, Santiago Franco 3∗, Adam A. Stokes1, Sara Bernardini 3

1School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh
2EPSRC CDT in Robotics and Autonomous Systems, Edinburgh Centre for Robotics

3Department of Computer Science, Royal Holloway University of London
{jamie.roberts, adam.stokes}@ed.ac.uk, {santiago.francoaixela, sara.bernardini}@rhul.ac.uk

Abstract

In this paper, we offer a novel AI planning representation,
based on a Cartesian coordinate system, for enabling the au-
tonomous operations of Multi-Robot Systems in 3D environ-
ments. Each robot in the system has to conform to unique
actuation and connection constraints that create a complex
set of valid configurations. Our approach allows Multi-Robot
Systems to self-assemble themselves into larger structures via
AI planning, with the overarching goal of providing structural
capabilities in harsh and uncertain environments.
In comparing four different PDDL (Planning Domain Defi-
nition Language) domain representations, we show that our
novel formulation satisfies the practical requirements emerg-
ing from robot deployment in the real world, resulting in an
AI planning system that is accurate and efficient. We scale
up performance by implementing direct FDR (Finite Do-
main Representation) generation based on the best perform-
ing PDDL model, bypassing the PDDL-to-FDR translation
used by the majority of modern planners. The proposed ap-
proach is general and can be applied to a broad range of AI
problems involving reasoning in 3D spaces.

Introduction
We introduce a Multi-Robot System (MRS) that self-
assembles into a usable structure and is specifically targeted
for extreme environments. Our system is intended for use in
one of the harshest environments that humans have to oper-
ate in currently, the high radiation zones found in nuclear re-
actors and particularly nuclear waste storage infrastructure.

The high levels of radiation in these zones establish a
unique temporal constraint on electronic operations as they
impose a hard time limit for them, severely reducing the ef-
fectiveness of robotics in these environments. In effect, the
critical goal for any successful robotic deployment in such
environments is the maximisation of the amount of time that
the robots have to be actually doing their intended task. All
other time is not only wasted from an operational task per-
spective, but also for the lifespan of the robot. Currently,
robotic systems are unable to operate effectively in these

∗These two authors contributed equally to this work
Copyright c© 2021, Proceedings of the 31st International Confer-
ence on Automated Planning and Scheduling. All rights reserved.

environments because of the high uncertainty that charac-
terises them. By deploying an MRS that assembles itself into
a fixed structure, other service robots can use the structure
as a known, obstacle-free map to maximise their time doing
useful tasks.

The environments that these systems are intended to oper-
ate in impose strict requirements, namely accountability and
verification in deploying autonomous systems. As AI Plan-
ning uses a symbolic, logic-based approach, it is particularly
well-suited to tasks where constraints are clearly defined, the
applicability of actions can be easily formulated and the so-
lutions can be explained and are guaranteed to comply with
the constraints. In nuclear decommissioning, human opera-
tors always supervise missions and plans and Task Planning,
when appropriately displayed, represents a clear and intelli-
gible means of communication between machines and hu-
mans.

Utilising the planning language PDDL 2.1 further adds
to the suitability of the problem above as it allows for a rich
goal language. It will not always be possible to know exactly
the kind of structure that is needed at the start of the mission,
but the human operator might just want to specify certain
locations that must have part of the structure or even a part
of the structure that is oriented in a specific way.

The flexibility that PDDL allows, using any literal as a
potential goal, provides a major benefit.

In this paper, we offer a novel AI planning representation
that enables an MRS to self-assemble in a 3D environment.
In particular, we present a new formulation of planning do-
mains that involve reasoning in 3D spaces based on a canon-
ical representation of the space and a countable representa-
tion of the objects in it.

After discussing related work in the Related Work, we ex-
plain the structure and function of the MRS in the Multi-
Robot System section. In the Planning Domain Representa-
tion section, we detail the formulation of a planning domain
that represents the MRS and lends itself to efficient planning
thanks to the introduction of new features in the modelling
of 3D space and objects. We then exhibit the power of our
representation by presenting a large set of experiments. They
show that our technique outperforms other suitable represen-
tations of the problem.

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

491



Related Work
MRSs that self-assemble into useful structures have long
been an attractive goal for academic research and industry
alike. Currently, the academic field is largely focused on the
physical hardware deployed to achieve self-building robot
systems with most contributions in the field related to actu-
ation and connection mechanisms that are robust and may
simplify control strategies.

Whilst there are many MRSs, this section will be limited
to MRS systems that were designed to self assemble into a
structure. Romanishin et al. (2015) present the M-Blocks:
magnetic agents that are able to locomote over each other to
create cubic structures. The work focuses on the actuating
methods for this robot.

Stewart et al. (2006) present a distributed feedback mech-
anism to construct a ‘wall’ via individual robot agents.
Kotay et al. (1998) propose the self-reconfiguring robotic
molecule and explore control mechanisms as opposed to the
hardware of the individual agents. Jenett et al. (2019) pro-
pose a robotic system that constructs a 3D structure by carry-
ing building blocks and arranging them. The authors report
a control strategy based on simple rules concerning the loca-
tion of the constructor robots and the structure it is currently
located on.

In the field of AI Planning, there has been limited work in
planning for problems with spatial dependencies. Efficient
planning for structures in 3D has not yet been achieved, and
planning domains for robotic applications are not typically
focused on spatial reasoning about the robot environment,
but rather on topological relationships between sub-task de-
pendencies in order to achieve a larger goal.

In integrating PDDL (Fox and Long 2011) with robotic
control strategies, Cashmore et al. (2015) present Rosplan,
a package which allows for inline use of AI Planning in
ROS. There has been work towards integrating AI Planning
with robotic control problems. Munoz et al. (2010) present
a PDDL-based planner for the Ptinto robot which demon-
strates some reasoning performed on a 2D environment by
the PDDL domain. Balakirsky et al. (2012), Dornhege et al.
(2013), Estivill et al. (2013), Quintero et al. (2011), Leid-
ner et al. (2013) and Toussaint et al. (2015) introduce spa-
tial planning in work which combines both task and motion
planning to be solved by optimizing over a final geomet-
ric state, as opposed to symbolic representations. This also
means that the problems cannot be solved by all symbolic
planners. Toussaint et al. (2015) and Leidner et al. (2013)
all demonstrate PDDL being used to perform spatial reason-
ing in performing robotic tasks, but the spatial reasoning is
abstract and of features such as objects ‘on top’ of other ob-
jects. Takahashi et al. (2017) also demonstrates spatial rea-
soning in order to produce structures from cubic blocks. In
their work, the spatial reasoning is performed abstractly.

Wolter et al. (2015) present on planning with qualitative
spatial relationships for a single robot, with the focus on
learning unknown forward models using LTL and QSL.

Asl et al. (2014) present interesting work in qualitative
calculus for spatial reasoning in heuristic search. Belouaer
et al. (2011) present a study on spatial knowledge represen-
tations in planning languages but the work is focused around

Figure 1: Representation of structural robot. Left: Robot
with manipulators fully deployed. Right: Robot with manip-
ulators retracted and main body extended for locomotion.

spatial qualities such as objects overlapping and in front of
other objects. Churchill et al. (2011) present a PDDL do-
main which shows scheduling of building tasks in the video
game Starcraft.

Reasoning in 3D spaces is hard to scale due to the large
increase in computational effort as the environment grows.
Planning techniques help becasue they rely on search al-
gorithms that use efficient duplicate detection in the state
space. However, they have problems in dealing with func-
tionally equivalent search states (with regard to reaching the
goal optimally, functionally equivalent states can be treated
as duplicates). For example, for most problems in the well-
known planning domain Gripper (Koehler 1998), the iden-
tity of the balls does not matter. States can be treated as du-
plicates if they have the same number of balls in each room
because the goal only specifies how many balls are needed
in each room. Functionally equivalent states are not auto-
matically detected as duplicates by A* and its sub-optimal
variants. Symmetry detecting strategies like Baggy (Riddle
et al. 2015), which are based on transforming functionally
equivalent predicates into a single ‘countable’ predicate, can
increase planning performance exponentially. Alternatively,
symmetries can also be pruned when detected in the search
graph (Alkhazraji et al. 2014), albeit this method incurs in-
line computational costs.

Ultimately, the work towards spatial reasoning in AI Plan-
ning has not, so far, been performed on the robot level and
spatial relationships have not been inferred from the 3D po-
sitioning of robots in their environments.

The Multi-Robot System
Structural Robots
The individual Structural Robots (SR) that constitute the
MRS are designed to occupy a ‘Manhattan Grid’ represen-
tation of the environment in 3D. The robots are designed to
self-assemble into cubic-like structures and so the robot has
a discrete number of motions and configurations.

Figure 1 is a representation of the key features of the
robot. For the purposes of the AI Planning, it can be con-
sidered as a uniform cuboid. Figure 1 shows four equally
spaced connection points on each face of the robot. Connec-
tions can be made by gripping in between the blue connec-
tion points in Figure 1.

The locomotive ability of the robot is achieved by extend-

492



ing the end portions of the main body. It can move by in-
dependently actuating these sections and so it employs an
‘inchworm’ like motion.

The linkages at the ends of the robot are its manipulator
mechanisms. Each robot has identical actuating manipula-
tors which are able to connect to the blue connectors and so
the SR is completely symmetrical. Figure 2 is a closer exam-
ination of the robot’s manipulators. Each manipulator has 3
degrees of freedom, which are denoted by A, B and C in Fig-
ure 2. A and C rotate about the Y-axis, and B rotates about
the X-axis. The manipulator serves to manipulate either the
robot itself, or another robot connected to it.

As the manipulators can only be deployed from the ends
of the robot, structural connections are achieved by manoeu-
vring each robot so that the manipulator agrees with spatial
constraints. This creates the majority of the complexity in
looking for valid actions. Added to these constraints, there
are also structural considerations that must be considered in
planning for viable structures.

Actions
An SR can move in 3D space only by attaching itself to other
robots of the same type. Each robot gets power and struc-
tural support by being connected to another robot. One of the
robots is assumed to be connected to a power source. Hence,
a robot must be connected to another robot at all times. The
MRS as a whole provides a ‘path’ upon which other robots
can move along to reach previously unreachable areas.

The motions of the robots are described in terms of the
orientations, initial and final positions of the designated ori-
gin point, which corresponds to a connection point. All ac-
tion orientations are described using the positive angles and
in terms of a displacement in each dimension (we use the
x-axis in the examples). Any displacement between posi-
tions described is equivalent to the distance between the non-
actuating connection points on the robot.

We selected the actions based on the actual locomotive ca-
pabilities of the robot, with the aim to be able to produce an
orthogonal structure, in keeping with the goal of producing a
lattice-like structure. One of the key features of this domain
representation is that the actions are intuitive for human op-
erators. The action formation is a modular process with the
possibility of additions and removals depending on the case
specific needs of the system before deployment. The actions
described below are representative of a common set to form
lattice structures.

The naming convention of the actions is structured around
the MRS ‘placing’ a robot or ‘traversing’ a robot across it-
self, the principal distinction being that some actions place
a robot in a location, which can then be used by other robots
to move around the existing structure.

Figure 3 can be used as a reference to follow the explana-
tions of all actions. The figure is split into A and B, initial
and final states of the action, respectively. The annotation
from one to four indicates the connection points, in ascend-
ing order from the reference connection point which is de-
noted by the axes going through the first connection point.
In the following explanations, robot translations are shown

Figure 2: Detailed view of the robot manipulator with three
degrees of freedom A, B and C in red, and the x and y axes
about which they rotate in green. A and C both actuate about
the y-axis but are denoted separately as they represent dif-
ferent points of actuation.

by displacements in a given axis, (e.g. +4 in the x). The dis-
placement is in terms of connection points so, +4 in the x is
the spacing of four connection points in the x dimension.
Each action is described in terms of one set of displace-
ments, but actions can have different displacements depend-
ing on the dimensions the actions happen in. The format in
the explanations remains the same, each displacement acts
on the reference coordinate as mentioned before.

Traverse The traverse action is the basic movement of the
SR, allowing the robot to move on other robots. The result
of this action is +1 in the x direction. There is no change in
the y or z direction and no change in robot orientation. This
action is employable in the x, y and z axis.

Place Line The place line action allows the system to ex-
tend in one dimension and form a line. The result of this
action is that the origin position extends by +4 in the x, and
-1 in the z direction. There is no change in the y-axis and the
orientation. This action allows a ‘line’ to be constructed and
is employable in the x,y and z axis.

Place Right Angle The place right angle action (Figure
3) is employed to form a right-angle in the structure. The
result of this motion is +4 points in the x, -1 in the z direc-
tion and -3 in the y direction. The difference between this
action and the place line action is that in place right angle
the final orientation of the robot has changed by 90 degrees.
This action is only employable in the xy plane.

Traverse Right Angle The action traverse right angle is
used by an SR to manoeuvre around a right angle on an ex-
isting structure. This action results in a right-angle change
in the robot positions. The result of this action is +4 in the
x, +1 in the y and no change in the z direction. The robot
orientation also changes by 90 degrees. This action can only
be employed in the xy plane.

Traverse Vertical The action traverse vertical is primar-
ily used to build the structure into the z direction. The result
of this motion is +4 in the x and no change in the y or z
direction. The change in orientation is always in the z direc-
tion for this action and can only be employed from the xy
plane and into the z axis.

Traverse Horizontal The action traverse horizontal al-
lows a vertical robot to be returned to a horizontal position.
The result of this action is +1 in the x, and no change in the
y or z directions, with an orientation change of 90 degrees

493



Figure 3: Visual Example of ‘Place right angle’ action: A)
Initial state of robot before action is implemented. The top
robot is the active robot and is the one performing the action.
B) The final state of the robot after ‘Place right angle’ action
has been implemented. The numbered annotations represent
the discrete connection points on an robot and the axes sig-
nify the reference connection points on the robot

into an x-direction. This action can only be employed from
the z-direction and into the xy plane.

Place Ceiling The action place ceiling is employed to
move a robot that is already vertical into a horizontal posi-
tion on a higher z dimension, in effect constructing the next
‘layer’ of the lattice structure. The result of this action is -1
in the x, +4 in the z and no change in the y direction. The
robot orientation also changes by 90 degrees into an x direc-
tion. The action can only be employed from the z direction
and into the xy plane.

Planning Domain Representation
We aim to create a representation of the domain and plan
output that is understandable and easy to adapt, whilst not
oversimplifying the domain so as to reduce the usability of
the system. As mentioned before, the domain representation
is also intended to allow the creation of new actions in a
modular fashion. For example, we want to make it easy to
formulate the additional set of actions that might be required
to bypass a wall via building bridge-like structures based on
the primitives outlined in the previous section.

Unless specified otherwise, we use PDDL2.1 (Fox and
Long 2011) (PDDL for brevity), the de facto standard plan-
ning domain specification language, to formulate planning
domains. We also use the FD planner (Helmert and Domsh-
lak 2009) because it is a competitive planner that allows
multiple configurations. In the last International Planning
Competition IPC (Torralba and Pommerening 2020), 28 out
of 35 entries across the four classical tracks were based on
FD’s code. FD grounds the lifted PDDL representation into
FDR (Finite Domain Representation) as a pre-processing
step. FDR, an extension of SAS (Jonsson and Bäckström
1998), is a grounded representation based on multi-valued
state variables. When feasible, grounding improves planning
performance but can become intractable for large problems.

The following description is a general explanation of the
domain and the basic structure of how further actions can
be created depending on the needs of the system in actual
deployment.

Representation of the Multi-Robot System
As Figure 3 shows, each SR has four equally spaced connec-
tors on each face that are integral to the structures that can
be built. The robot must use these as connection points to
create structures but also to create boundary conditions that
the robot can work against when actuating. For example, for
a ‘Traverse’ action to be deployed, a robot must be able to
offer adequate connection points to the traversing robot. In
this way, the connections can be considered the defining fea-
ture of the representation and become the coordinate space
of the problem, which in turn sets the granularity of the do-
mains. Using these connections as a coordinate space gives
us the possibility to represent any robot as an object at a
single location (x,y,z) with an orientation; the location cor-
responds to the first connector in the four, given a canonical
convention, which is described below and represents our first
contribution to 3D planning domains for MRSs.

The canonical representation is an important feature of
the environment model as the robots are physically symmet-
rical in terms of their connection points. With a reference
point as the first connection point (in Figure 3A denoted
as connector 1), a robot that occupies Point(x,y,z) with an
orientation of 0 degrees can be thought as the same as a
robot, referenced to the same connection point, occupying
a point at Point(x+L,y,z) (in Figure 3A denoted as connec-
tor four) with an orientation of 180 degrees (where L is the
length of the robot projected in the X-axis). The symme-
try encountered from a knowledge representation perspec-
tive is costly and unnecessary. The canonical representation
ensures that these two functionally equivalent possibilities
are always represented as one; a Point(x,y,z) with orienta-
tion of 0 degrees.

A crucial advantage of having a coordinate space based on
the physical spacing of the connection points is that the rep-
resentation is independent of changes to the physical dimen-
sions of the robot. As long as the core attributes of equally
spaced connections remain the same, the reasoning on this
representation will also remain the same. The coordinate
space also allows for a standardised framework that environ-
mental data can be transformed to. In system deployment,
the usable regions of the environment are discretised to the
known ratio of the connection spaces.

The second contribution proposed for 3D planning in
MRSs is the introduction of a countable robot represen-
tation. The core of this idea is to overcome the memory
costs of requiring every action to be supported by a specific
robot. Instead of defining each robot location individually
(at robot?r?x?y?z . . .), where ‘?r’ is the actual robot we
instead mark whether there is a robot on a specific set of
coordinates (at robot?x?y?z . . .). However, removing the
robot ‘ids’ introduces a new problem, keeping track of how
many robots are available at any given time to be inserted
into the environments. We create a ‘countable’ predicate
is outside?c to keep track of how many robots are avail-
able at any point. As a new robot is introduced into the envi-
ronment, this number is reduced by one. This representation
reduces the memory usage in that obstruction logical checks
are only required once per position instead of once per pos-
sible (position, robot) pair. This method is implemented by

494



referring to the available robots as ‘countable’ objects in the
domain representation.

These two contributions leave the critical definition of the
domain to the following three object types:‘coord’, ‘count-
able’ and ‘angle’. The type ‘coord’ is defined by the connec-
tor spacing mentioned above and effectively acts as the unit
of a Cartesian coordinate system. The type ‘countable’ rep-
resents the SR available to the system and ‘angle’ is a set of
constants that represent a robot’s orientation. The problem is
defined as a discrete uniform 3D grid whose size is defined
by the maximum coordinate, e.g. a maximum coordinate of
10 corresponds to a 10x10x10 orthogonal grid.

We also model the environment as to have predefined
points of entry: SRs can only enter the environment at a dis-
crete number of locations. This assumption is coherent with
the intended deployment conditions of the robotic system,
where unstructured environments may only have a certain
number of access points suitable to the robots.

Domain Syntax
A point (x, y, z) in space is represented by three objects of
type ‘coord’. Each dimension (x, y and z) is represented by
a single ‘coord’, but ‘coord’ is axis agnostic so only a single
range of objects is needed. Therefore, a problem definition in
this domain has N objects of type ‘coord’, in an environment
of (x, y, z) where x = y = z = N . An object of type ‘angle’
has 3 constants: 0ang, 90ang and 450ang, which correspond
to the canonical representation detailed before.

The only predicates required to perform spatial reason-
ing within the environment are plus one, plus three, and
plus four e.g. (plus one ?x1 ?x2) (plus one ?z2 ?z1), where
point (x2, y2, z2) has x2 = x1 + 2 and z2 = z1− 1.

The following predicates are used in our domain to reason
over the position and status of a robot:

• at robot(?x ?y ?z ?ang)

• dyn at(?x ?y ?z)

• obstacle at(?x ?y ?z)

• supported(?x ?y ?z)

• is outside(?c)

• at aperture (?x ?y ?x ?ang)

The predicated at robot has three ‘coord’ arguments and
an angle. This allows a robot to be represented as a single
point origin with a direction. This is a dynamic predicate
which is updated after each action.

The predicate obstacle at is used to identify an obstacle in
the environment that is not a robot and takes three arguments
of type ‘coord’ again.

The predicate dyn at is used to denote the four locations
that a robot will occupy when placed. It only represents a
connector occupying a certain point (x, y, z). This predicate
is used extensively for simplifying support and obstruction
checks. In principle, the dyn at predicate can be omitted;
however, this results in significantly increasing the complex-
ity of the support and obstruction checks as a function of
the number of robots. The necessary checks only require to
verify whether a point (x, y, z) is occupied by a robot or

not. This can be obtained by the use of dyn at in a single
check, instead of many checks that would be needed if using
at robot. Our goal is to avoid unnecessary redundancies.

Utilising both predicates at robot and dyn at also allows
for a richer goal language. It is possible to define the goal
states by stating that: 1) an SR occupies a location with a
defined orientation; 2) the MRS occupies several locations
without specifying an orientation; and 3) both the previous
cases. This way of specifying goals can lead to some inter-
esting structures and increased flexibility for the human op-
erator, who can answer different questions such as, for ex-
ample, does the structure need to access a single point? Does
the structure need to cover an area? Does the structure need
to access a single point but exclude SRs at a set of locations?

The predicate obstacle at is used to denote any environ-
mental features that would constitute obstacles i.e. walls.
It only represents an obstacle occupying a single point
(x, y, z). This predicate is used extensively for simplifying
support and obstruction checks.

The predicate supported(?x ?y ?z) serves a similar func-
tion to dyn at(?x ?y ?z) but provides a different context to
the state of a robot at a particular connector. The predicate
considers structural soundness as a supporting point. Its use
enables some actions to take place whilst excluding others
that would create structural instabilities.

The predicate is outside(?c1) denotes how many robots
are available to be introduced to the environment and takes
a single argument of object ‘countable’. This value is up-
dated when a robot is introduced to the environment and is
supported by the predicate robot less(?c2 ?c1), which im-
plements the logic of counting one down (like the previous
(plus one ?x1 ?x2) but with arguments of object ‘countable’,
not ‘coord’).

The final predicate used is at aperture (?x ?y ?x ?ang)
that is used to show the single location in the environment
where robots can be introduced into the environment. Al-
though it represents a single coordinate, it must contain and
‘angle’ so that the robots introduced via the aperture can be
correctly initialised in terms of their orientation.

Example Action To demonstrate the features of the do-
main mentioned before, the ‘insert’ action is represented be-
low with an explanation.
(:action insert

:parameters (?x1 ?y1 ?z1 ?p1 ?p2 ?p3 ?end_pos1 - coord
?c1 ?c2 - countable)

:precondition (and
1 (is_outside ?c1)
2 (robot_less ?c1 ?c2)
3 (at_aperture ?x1 ?y1 ?z1 ang0)
4 (plus_one ?end_pos1 ?z1)
5 (plus_one ?x1 ?p1)
6 (plus_one ?p1 ?p2)
7 (plus_one ?p2 ?p3)
8 (not (dyn_at ?x1 ?y1 ?z1))
9 (not (dyn_at ?p1 ?y1 ?z1))
10 (not (dyn_at ?p2 ?y1 ?z1))
11 (not (dyn_at ?p3 ?y1 ?z1)) )

:effect (and
12 (not (is_outside ?c1))
13 (is_outside ?c2)
14 (at_robot ?x1 ?y1 ?z1 ang0)
15 (dyn_at ?x1 ?y1 ?z1)
16 (dyn_at ?p1 ?y1 ?z1)
17 (dyn_at ?p2 ?y1 ?z1)
18 (dyn_at ?p3 ?y1 ?z1)
19 (supported ?x1 ?y1 ?z1)
20 (supported ?p1 ?y1 ?z1)

495



21 (supported ?p2 ?y1 ?z1)
22 (supported ?p3 ?y1 ?z1) ))

Lines 1 and 2 detail the logic surrounding the ‘countable’
method, with line 1 checking that there is a certain number
of robots available to be inserted. Line 2 then enforces the
finite number of robots available. The action will only apply
if there is another robot available, i.e. robot less 7 6), and
will consequently reduce the number of robots available in
the is outside predicate. Once no robots are available out-
side (is outside 0), then the action stops applying, i.e. it is
not possible to keep inserting them. Line 3 checks that there
is an aperture available to insert a robot, at a given loca-
tion x, y, z. Lines 4,5,6 and 7 spatially reason to define the
relevant positions to the insert action. As the aperture is de-
fined to be in orientation ‘0ang’, the predicates are defined
in terms of the x coordinate. Line 4 defines the z coordinate
that is relevant, namely the space below the target for the
robot to be inserted.

Lines 8,9,10 and 11 specifies that there should be no
dyn at predicates satisfied over the relevant x positions, with
the y and z of the aperture. This means that there are no
robot connectors occupying any of those spaces that might
be blocking the execution of the proposed action. Note that
this predicate removes the complexity of checking the single
orientations of robot.

Lines 12 and 13 update the new number of robots avail-
able outside the environment. Line 14 places a robot at
the aperture point in the corresponding orientation via the
at robot predicate. Lines 15,16,17 and 18 also update the
corresponding dyn at positions based on the at robot predi-
cate and lines 19,20,21 and 22 mirror these positions but de-
fine them as supported as the structural status of an inserted
robot allows its four occupied positions to be supported.

The basic structure of the domain actions is reflected in
the one presented above. The preconditions define the rel-
evant positions for the proposed action and check that no
obstruction will occur when the action is performed as well
as that the required supports are available. The effects re-
move the old occupancy information and update it with the
new positions by using the at robot, dyn at and supported
predicates.

Experiments
We compare four domain representations in the following
experiments. The purpose is to evaluate the efficacy of our
representation with respect to the contributions detailed in
Section ??. The domains differ in the adoption of these con-
tributions. The notation described next is relevant for Fig-
ures 4 & 5. The Canonical domain is the domain represen-
tation that contains both of the contributions - the countable
robot representation and the canonical orientations, referred
to as CaCo. The Non-Canonical domain is the domain rep-
resentation that contains only the countable robot represen-
tation, referred to as NCaCo. The Agent-Canonical domain
is the domain representation that contains only the canon-
ical orientation, referred to as CaNCo. The Agent-Non-
Canonical domain is the domain representation that does not
contain any of the contributions of the canonical representa-
tion, referred to as NCaNCo.

Figure 4: a) Operator and b) Bytes size by environment size
and domain variant. The absence of plots show that the plan-
ner failed at all instances.

Setup
We design the experiments to evaluate the effectiveness of
the overall approach with respect to scalable and accurate
planning in 3D environments. All experiments were carried
out on a cluster of Intel Xeon E5-2640 running at 2.60GHz.
The memory limit by process was 12 GBs and the time limit
was 1,800 seconds. The primary metric by which the repre-
sentations are evaluated is coverage. All experiments follow
the same format: a randomised goal set in a fixed-size envi-
ronment with a given number of SRs available to the planner.
Conceptually, the goal is to reach a specific target coordinate
where the service robot needs to perform some tasks. This is
specified as reaching any one of the perpendicularly adjacent
coordinates that would allow the robot to work on the target
coordinate. Since this leaves a maximum of six possible al-
ternative goals, depending on goal location and obstacles,
the set is treated as an ‘or’ statement. This method is used
to facilitate the description of goals that involve reaching a
specific coordinate in the environment so as to perform tasks
on it.

We present both optimal and sub-optimal search experi-
ments. For optimal search, we used the FD’s implementa-
tion of A* (Helmert 2006) and the heuristic hmax (Bonet
and Geffner 2001), which is admissible for domains with
axioms and conditional effects. For sub-optimal search, we
use LAMA. We have tried to employ the winner of the last
IPC(Torralba and Pommerening 2020) satisfying competi-
tion, StoneSoup2018 (Seipp and Röger 2018), but LAMA
has a better coverage for this domain.

The Complexity of the Domains
Figure 4 shows both the memory usage (bytes) and number
of grounded operators for each domain for grid sizes (GS)
varying from GS = 8 (8× 8× 8) to GS = 15. Note that for
bigger GS values, agent-based representations are missing
because grounding runs out of memory. The canonical do-
main uses the smallest amount of memory in all cases. We
set the number of SRs to be equal to GS for three reasons.
Firstly, it simplifies the complexity analysis because then
there is only one variable (GS). Secondly, the bigger the
grid the more SRs needed on average to reach a randomized

496



goal. Finally, agent-based representations grounding perfor-
mance decreases as the number of SRs increases, hence in
order to make an unbiased comparison we only increase the
number of SRs when the grid-size requires it.

The equations below show the state’s bit usage as a func-
tion of GS for each representation.

MCaCo = 2∗GS3+3∗ (GS2 ∗ (GS−3))+GS+1 (1a)

MNCaCo = 2∗GS3+6∗(GS2∗(GS−3))+GS+1 (1b)

MCaNCo = 2∗GS3+3∗(GS3∗(GS−3))+GS+1 (1c)

MNCaNCo = 2∗GS3+6∗(GS3∗(GS−3))+GS+1 (1d)

In Eq. (1a), relating to the Canonical representation, the
term 2 ∗ GS3 represents the memory usage of both dyn at
and supported predicates; in particular, there is a fact per
point (x, y, z) specifying the predicate’s truth value. The
term 3∗ (GS2 ∗ (GS−3)) corresponds to the three at robot
predicates (each predicate applies to all points that are at
least three units away from the grid’s border on its corre-
sponding orientation; otherwise, some of the robots would
be outwith the grid). The term +GS corresponds to the
is outside binary variables. There are as many variables as
the number of robots in the problem. The final term +1 cor-
responds to the axiom variable used to represent whether
goal conditions are met.

Eq. (1b) relates to the Non-Canonical representation. In
this case, the number of variables used to represent the
at robot variable is doubled due to the dual representa-
tion of robots’ orientations. For the Agent-Canonical rep-
resentation (Eq. (1c)), the number of grounded at robot
is increased by a factor of GS because the at robot now
specifies the robot’s identity. Finally, for the Agent-Non-
Canonical representation (Eq. 1d), the number of at robot
variables increases by a factor of 2 ∗GS due to the doubling
of at robot variables in the Non-Canonical representation
and the factor increases of GS due to the agent-based repre-
sentation.

There are too many lifted operators (41 in the Canoni-
cal domain) to make a similar, detailed symbolic-formula-
analysis practical. However, Figure 4a) shows that the
Canonical domain uses the least amount of grounded op-
erators. At GS = 10, the biggest grid size at which
all domains are successfully grounded, the Non-Canonical,
Agent-Canonical and Agent-Non-Canonical domains have
more operators than the Canonical domain by a factor of
1.62, 28.73 and 40.03, respectively.

Results
Figure 5a) shows that the consistently best performing do-
main is the Canonical representation. As the environment
size grows, it can be seen that all domains perform worse,
but the Canonical variant still maintains the highest cover-
age. This is true for both the optimal search with hmax and
the sub-optimal search with LAMA.

As the primary goal of this paper is to show both an ac-
curate and a scalable domain representation for planning in

Figure 5: a) Coverage, b) translation error and c) search error
by domain variant, environment size, number of agents, and
search method (A* with hmax or LAMA). The environment
size and number of agents are denoted by GS and A respec-
tively. The absence of plots show that the planner failed at
all instances.

3D, it is important to look at how the four variants perform
in terms of scalability. Figure 5b) shows how many prob-
lems are unsolved because the planner fails while grounding
the representation, and Figure 5c) shows when the planner
fails while searching for a solution.

As previously said, FD has a pre-processing phase where
PDDL is translated from lifted PDDL to grounded FDR;
grounded planners need to ground the domain before they
can search for a solution. Figure 5b) shows that when the
canonical problems fails to solve, it is because the search
phase fails to find a solution. However, as GS is increased,
the other variants fail due to grounding. This shows that the
Canonical version is the more scalable of the options in prac-
tice, since a solution is searched for in all cases.

The other three variants demonstrate the unsuitability
of those domain representations for planning. The Non-
canonical variant (NCaCo) is the second best performing,
with reasonable coverage achieved for an environment up
to size 10. In fact, the coverage between the Canonical and
Non-canonical for GS10 A10 and GS10 A15 have very lit-
tle difference. It is however apparent that the canonical ori-
entation feature is critical for scalability of the system as the
coverage worsens considerably when moving to the larger
environment size. These results show that the complexity
savings in introducing a canonical orientation in the domain
are almost as significant in grounding scalability as in mem-
ory usage per search state. These observations are further
confirmed by their performance using LAMA where the pat-
tern is further observed.

The agent domains, in both forms CaNCo and NCaNCo,
perform poorly, as expected (see Eq. 1c and 1d). Achieving
poor coverage as the number of agents increases, as seen in
Figure 5a), and showing errors in the search phase (Figure
5c)) demonstrates that utilising the ‘non-countable’ object
representation for 3D robotic problems is not a viable op-
tion. This is a significant point to make as, although it may be
an intuitive representation, it will significantly hamper plan-
ning efforts to operate in the MRS Task/Path planning field.

497



Figure 6: Coverage of Canonical domain variant as environ-
ment size increases with fixed number of agents at 100. Ex-
periments performed using direct FDR file generator

We take full advantage of the homogeneity of this system,
i.e. if every robot had a different functionality our countable
approach would not be applicable. In some cases, there will
be different robot ‘categories’, for such cases our countable
approach would be separately applicable to each of these
categories.

As the Canonical variant can be seen to be the best per-
forming variant, we generate the FDR representations di-
rectly, via a python script instead of PDDL, to bypass the
translation phase requirements. To further assess our claim
that this domain representation provides a solution for ac-
curate and scalable planning in 3D, more experiments have
been conducted to push the domain to scales reasonable for
the MRS in real-world deployment. To avoid a similar cov-
erage issue as seen in GS10 A5, domains were given 100
robots regardless of the environment size. The goal sets were
constructed and randomised as in the previous set of experi-
ments. The full results can be seen in Figure 6.

The coverage shown in Figure 6 declines in a linear fash-
ion as the environment size increases. A step change in the
coverage can be seen for an environment of size 30, sug-
gesting that our method is approaching its limits at that size.
This is, however, a relatively large grid size for the practi-
cal application of a single robot that occupies four positions.
The largest environment (GS=30) has 27,000 points while
the largest PDDL environment (GS=15) has 3,375 points.
At GS = 30, a maximum of 225 robots could occupy the
environment.

Complex Environments
The experiments above have been performed in an empty
environment without natural features that could act as obsta-
cles to the MRS. Figure 7 shows a demonstration of how the
proposed AI system can make use of the predicate obsta-
cle at(?x ?y ?z) to represent obstacles in the environment.
In this example, there is a continuous wall that runs across
the entire environment (cross-sectioned for the purposes of
demonstrating the resulting structure). It cannot be moved
around and so must be climbed over. The resulting structure
resembles a bridge and successfully overcomes the obstacle.

This plan is produced by adding the necessary actions to

Figure 7: Example structure to overcome a sample obstacle,
like a continuous wall, leading to a ‘bridge’ like structure.
Video https://youtu.be/419tBz6bVxw

Figure 8: Cube, a complex to build structure which can en-
able service robots access to previously unreachable areas.
Video https://youtu.be/rnW0LnPUgMo

allow for bridge-like structures to be formed and illustrates
the aforementioned modularity of the domain representa-
tion. It also allows complex actions to be utilised; as it can be
seen in Figure 7, the planner has produced a standalone ex-
tension of a robot to allow for connection points to be where
they must be to satisfy connection requirements for neces-
sary actions. Figure 8 demonstrates a useful cubic structure.
This requires a complex plan which is found by combining
LAMA and the CaCo representation.

Conclusion
In this paper, we demonstrate two contributions (canonical,
countable) to the problem of 3D planning for an MRS. In the
key issue of producing an accurate and scalable domain rep-
resentation, we have shown comprehensively that a count-
able agent representation and canonical orientations signif-
icantly reduce the state size of a given problem and outper-
forms the other domain representations that do not incorpo-
rate these features. We also show that this domain represen-
tation is scalable to practical environment sizes, when the
translation phase of PDDL is removed by directly writing
FDR representations. Scalability could be furthermore in-
creased by using domain-specific heuristics. This is left for
future work. We show empirically that the introduction of
the two domain contributions described is critical for the ef-
fective application of 3D planning of MRS.

Acknowledgments
InnovateUK Connect-R (TS/S017623/1). EPSRC and the
CDT in Robotics and Autonomous Systems at Heriot-Watt
and The University of Edinburgh (EP/L016834/1).

498



References
Alkhazraji, Y.; Katz, M.; Matmüller, R.; Pommerening, F.;
Shleyfman, A.; and Wehrle, M. 2014. Metis: Arming fast
downward with pruning and incremental computation. In-
ternational Planning Competition (IPC) 88–92.
Asl, A.; and Davis, E. 2014. A qualitative calculus for three-
dimensional rotations. Spatial Cognition & Computation
14(1): 18–57.
Balakirsky, S.; Kootbally, Z.; Schlenoff, C.; Kramer, T.; and
Gupta, S. 2012. An industrial robotic knowledge represen-
tation for kit building applications. In 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
1365–1370. IEEE.
Belouaer, L.; Bouzid, M.; and Mouaddib, A.-I. 2011. Spa-
tial knowledge in planning language. In International Con-
ference on Knowledge Engineering and Ontology Develop-
ment.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence. 2001 Jun; 129 (1-2): 5-33 .
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. In
Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling.
Churchill, D.; and Buro, M. 2011. Build order optimization
in starcraft. In Seventh Artificial Intelligence and Interactive
Digital Entertainment Conference.
Dornhege, C.; and Hertle, A. 2013. Integrated symbolic
planning in the tidyup-robot project. In 2013 AAAI Spring
Symposium Series.
Estivill-Castro, V.; and Ferrer-Mestres, J. 2013. Path-
finding in dynamic environments with PDDL-planners. In
2013 16th International Conference on Advanced Robotics
(ICAR), 1–7. IEEE.
Fox, M.; and Long, D. 2011. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. CoRR
abs/1106.4561. URL http://arxiv.org/abs/1106.4561.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: what’s the difference anyway?
In Nineteenth International Conference on Automated Plan-
ning and Scheduling.
Jenett, B.; Abdel-Rahman, A.; Cheung, K.; and Gershenfeld,
N. 2019. Material–Robot System for Assembly of Discrete
Cellular Structures. IEEE Robotics and Automation Letters
4(4): 4019–4026.
Jonsson, P.; and Bäckström, C. 1998. State-Variable Plan-
ning Under Structural Restrictions: Algorithms and Com-
plexity. Artif. Intell. 100(1-2): 125–176. doi:10.1016/
S0004-3702(98)00003-4. URL https://doi.org/10.1016/
S0004-3702(98)00003-4.
Koehler, J. 1998. The 1st International Planning Compe-
tition:Gripper Domain. https://ipc98.icaps-conference.org/.
Online, accessed Dec-2020.

Kotay, K.; Rus, D.; Vona, M.; and McGray, C. 1998. The
self-reconfiguring robotic molecule. In Proceedings. 1998
IEEE International Conference on Robotics and Automation
(Cat. No. 98CH36146), volume 1, 424–431. IEEE.
Leidner, D.; and Borst, C. 2013. Hybrid reasoning for mo-
bile manipulation based on object knowledge. In Workshop
on AI-based robotics at IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).
Munoz, P.; R-Moreno, M. D.; and Castano, B. 2010. Inte-
grating a PDDL-based planner and a PLEXIL-executor into
the ptinto robot. In International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent
Systems, 72–81. Springer.
Quintero, E.; Alcázar, V.; Borrajo, D.; Fdez-Olivares, J.;
Fernández, F.; Garcı́a-Olaya, Á.; Guzmán, C.; Onaindı́a, E.;
and Prior, D. 2011. Autonomous mobile robot control and
learning with the pelea architecture. In Workshops at the
Twenty-Fifth AAAI Conference on Artificial Intelligence.
Riddle, P. J.; Barley, M. W.; Franco, S.; and Douglas, J.
2015. Automated Transformation of PDDL Representa-
tions. In Lelis, L.; and Stern, R., eds., Proceedings of
the Eighth Annual Symposium on Combinatorial Search,
SOCS 2015, 11-13 June 2015, Ein Gedi, the Dead Sea,
Israel, 214–215. AAAI Press. ISBN 978-1-57735-732-
2. URL http://www.aaai.org/ocs/index.php/SOCS/SOCS15/
paper/view/11166.
Romanishin, J. W.; Gilpin, K.; Claici, S.; and Rus, D. 2015.
3D M-Blocks: Self-reconfiguring robots capable of locomo-
tion via pivoting in three dimensions. In 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
1925–1932. IEEE.
Seipp, J.; and Röger, G. 2018. Fast downward stone soup
2018. IPC2018–Classical Tracks 72–74.
Stewart, R. L.; and Russell, R. A. 2006. A distributed feed-
back mechanism to regulate wall construction by a robotic
swarm. Adaptive Behavior 14(1): 21–51.
Takahashi, T.; Lanighan, M. W.; and Grupen, R. A. 2017.
Hybrid task planning grounded in belief: Constructing phys-
ical copies of simple structures. In Twenty-Seventh Interna-
tional Conference on Automated Planning and Scheduling.
Torralba, A.; and Pommerening, F. 2020. Repository of
ICAPS IPC-2018. https://ipc2018-classical.bitbucket.io/#.
Online, accessed Dec-2020.
Toussaint, M. 2015. Logic-geometric programming: An
optimization-based approach to combined task and motion
planning. In Twenty-Fourth International Joint Conference
on Artificial Intelligence.
Wolter, D.; and Kirsch, A. 2015. Leveraging qualitative rea-
soning to learning manipulation tasks. Robotics 4(3): 253–
283.

499


