
Hierarchical Width-Based Planning and Learning

Miquel Junyent, Vicenç Gómez, Anders Jonsson
Universitat Pompeu Fabra

Barcelona, Spain
{miquel.junyent, vicen.gomez, anders.jonsson}@upf.edu

Abstract

Width-based search methods have demonstrated state-of-the-
art performance in a wide range of testbeds, from classical
planning problems to image-based simulators such as Atari
games. These methods scale independently of the size of the
state-space, but exponentially in the problem width. In prac-
tice, running the algorithm with a width larger than 1 is com-
putationally intractable, prohibiting IW from solving higher
width problems. In this paper, we present a hierarchical al-
gorithm that plans at two levels of abstraction. A high-level
planner uses abstract features that are incrementally discov-
ered from low-level pruning decisions. We illustrate this algo-
rithm in classical planning PDDL domains as well as in pixel-
based simulator domains. In classical planning, we show how
IW(1) at two levels of abstraction can solve problems of
width 2. For pixel-based domains, we show how in combi-
nation with a learned policy and a learned value function,
the proposed hierarchical IW can outperform current flat IW-
based planners in Atari games with sparse rewards.

Introduction
The use of hierarchies in planning has proven to be a
very successful way for significantly reducing the compu-
tational cost of finding good plans. Traditional methods in-
clude Hierarchical Task Networks (Currie and Tate 1991;
Erol, Hendler, and Nau 1996), macro-actions (Fikes, Hart,
and Nilsson 1972; Korf 1985), and state abstraction meth-
ods (Sacerdoti 1974; Knoblock 1990). Hierarchical planning
can lead to exponential gains in complexity by exploiting the
structure of a problem involving a reduced subset of the state
components.

Iterated Width (IW) (Lipovetzky and Geffner 2012) is a
search algorithm that makes use of the feature representation
of the states to perform structured exploration. The original
IW algorithm consists of successive breadth-first searches in
which states are pruned if they fail to meet a novelty cri-
terion. In particular, IW(w) only considers w features at
a time, and prunes those states for which all combinations
of w features are made true in previously generated states.
IW(w) runs in time and space that are exponential in w, but
independent of the size of the state space.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Initially proposed as a blind search method for classical
planning, IW search has been extended in many different
ways, resulting in several competitive width-based planners,
including LW1 for partially observable domains (Bonet and
Geffner 2014), or BFWS as an informed (best-first) width
search planner (Lipovetzky and Geffner 2017).

One particular advantage of width-based planners is that,
unlike other classical planners, they do not need a declara-
tive representation of actions, costs or goals (Francès et al.
2017). Width-based planners are thus directly applicable
in simulator environments, achieving state-of-the-art perfor-
mance in the General Video Game competition (Geffner
and Geffner 2015) and the Atari suite (Lipovetzky, Ramirez,
and Geffner 2015; Shleyfman, Tuisov, and Domshlak 2016;
Bandres, Bonet, and Geffner 2018).

The performance of IW strongly depends on how infor-
mative the state features are. Using poorly informed features
requires a large value of w to reach a goal state, whereas us-
ing highly informative features reduces the problem width
and, hence, makes it solvable using a lower value of w. This
effect is known, e.g., in Atari, where using informative RAM
states leads to better results than planning directly with pix-
els (Bandres, Bonet, and Geffner 2018). How to discover or
learn such features to reduce the problem width is an open
problem, and several ideas have been proposed, including
the use of conjunctive features (Francès et al. 2017) or deep
learning methods (Junyent, Jonsson, and Gómez 2019; Dit-
tadi, Drachmann, and Bolander 2020).

In practice, IW is mostly used with w = 1 with complex-
ity linear in the number of features (Geffner and Geffner
2015; Bandres, Bonet, and Geffner 2018; Ramirez et al.
2018; Dittadi, Drachmann, and Bolander 2020). In many
challenging problems, even w = 2 with quadratic complex-
ity is unfeasible (Geffner and Geffner 2015). Finding ways
to run IW with a larger value of w can further extend the
applicability of this class of planners.

In this work, we propose a hierarchical formulation of
width-based planning that takes advantage of both the struc-
tured search performed by width-based algorithms as well as
the concept of hierarchy, which captures explicitly the idea
of using state abstraction to reduce effectively the width of a
problem. The framework can be combined with other forms
of learning to further extend the applicability of width-based
planners.

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

519

Background
In this section we define Markov decision processes and the
Iterated Width (IW) algorithm, and introduce notation that
will be used throughout the paper.

Markov Decision Processes
A Markov decision process (MDP) is modeled as a tuple
M = 〈S,A, P, r〉, where S is a finite set of states, A is
a finite set of actions, P is a transition function and r is a
reward function. We assume that the transition function P is
deterministic, i.e., P : S×A→ S maps state-action pairs to
next states, while the reward function r : S × A→ R maps
state-action pairs to real-valued rewards.

At each time step t, a learning agent observes state st ∈ S,
selects an action at ∈ A, transitions to a new state st+1 =
P (st, at) and receives reward rt = r(st, at). The aim of the
learner is to compute a policy π : S → ∆(A), i.e., a map-
ping from states to probability distributions over actions,
that maximizes some measure of expected future reward.
Here, ∆(A) = {µ ∈ R|A| :

∑
a µ(a) = 1, µ(a) ≥ 0 (∀a)}

is the probability simplex over A.
The expected future reward associated with policy π is

governed by a value function V π , defined in each state s as

V π(s) = Eπ

[∞∑
t=0

γtr(St, At)

∣∣∣∣∣S0 = s

]
.

Here, St and At are random variables representing the state
and action at time t, respectively, satisfying At ∼ π(St)
and St+1 = P (St, At) for each t ≥ 0, and γ ∈ (0, 1] is a
discount factor. The optimal value function V ∗ is given by
V ∗ = maxπ V

π , and the optimal policy π∗ is the argument
achieving this maximum, i.e., π∗ = arg maxπ V

π .
We assume that there exists a set of features F , each with

finite domainD, and a mapping φ : S → D|F | from states to
feature vectors. For each feature f ∈ F and state s ∈ S, let
φ(s)[f] ∈ D be the value that s assigns to f . It is common
to approximate the value function in state s using the feature
vector φ(s) and a parameter vector θ, i.e., the estimation of
the value in state s is given by V̂θ(s) = g(φ(s), θ) for some
function g, e.g. a neural network.

We can use deterministic MDPs to model goal-directed
planning tasks. Such a planning task is also defined by a
set of states S, a set of actions A and a deterministic tran-
sition function P . In addition, there is a set of designated
goal states SG ⊂ S. To model the task as an MDP, we make
each goal state sG ∈ SG absorbing by defining the transition
function as P (sG, a) = sG for each action a ∈ A. The re-
ward function is defined as r(s, a) = 1 if P (s, a) ∈ SG and
r(s, a) = 0 otherwise. Hence an optimal policy attempts to
reach a goal state as quickly as possible and then stay there.

Iterated Width
Iterated Width (IW) (Lipovetzky and Geffner 2012) is a for-
ward search algorithm that explores the state space of a de-
terministic MDP starting from a given initial state s0. IW
was initially developed for goal-directed planning tasks, at-
tempting to find a goal state among the set of explored states.

However, the algorithm has later been adapted to determinis-
tic MDPs by instead attempting to maximize expected future
reward (Lipovetzky, Ramirez, and Geffner 2015).

In its basic form, IW is a blind search algorithm that
performs breadth-first search in the space of states, starting
from s0. However, unlike standard breadth-first search, IW
uses a novelty measure to prune states. The novelty measure
critically relies on the feature vector φ(s) associated with
each state s. Concretely, IW defines a width parameter w,
and remembers all visited tuples of feature values of size w
in a so-called novelty table. During search, a state s is con-
sidered novel if its associated feature vector φ(s) contains at
least one tuple of feature values of size w that has not been
visited before. IW then prunes all states that are not novel.

For a given width w, because of pruning, the number of
states visited by IW(w) is exponential in w. Since the state
space is usually large, IW(w) is typically provided with a
search budget, and terminates when the number of visited
states exceeds the budget. Without a search budget, in most
domains it is computationally infeasible to execute IW(w)
for w > 2. However, many planning benchmarks turn out
to have small width, at least when considering atomic goals,
and in practice they can be solved by IW(1) or IW(2).

Several researchers have proposed extensions to IW. Roll-
out IW (Bandres, Bonet, and Geffner 2018) simulates a
breadth-first search by repeatedly generating trajectories, or
rollouts, from the initial state s0. This is useful in domains
for which it is expensive to store states in memory, making
it impractical to perform an actual breadth-first search. The
π-IW algorithm (Junyent, Jonsson, and Gómez 2019) main-
tains and updates a policy π, and uses the policy to decide in
which order to expand states, rather than exploring blindly.

Complexity of IW(w)
In this section we provide a tighter upper bound on the num-
ber of states visited by IW(w). We use n = |F | to denote
the number of features, and d = |D| to denote the domain
size. We also assume that at most b actions are applicable in
each state s. In Lipovetzky, Ramirez, and Geffner (2015) it
was shown that IW(w) generates at most b(nd)w nodes.
Proposition 1. LetN(n, d, w) denote the maximum number
of novel states visited by IW(w) for a given pair (n, d). Then,
N(n, d, w) is given by the recursive formula

N(n, d, 0) = 1,

N(n, d, n) = dn,

N(n, d, w) = (d− 1)N(n− 1, d, w − 1) +N(n− 1, d, w).

Given N(n, d, w), the number of visited states (including
those pruned) is bounded by N(n, d, w) · b. There are two
base cases: w = 0, in which case no state is novel apart
from s0, i.e., N(n, d, 0) = 1, and w = n, in which case all
states are novel, i.e., N(n, d, n) = dn.

The intuition for the recursion is as follows. Consider the
case where IW(w) visits the maximum number of states.
Given a feature f ∈ F , we can partition the subset of novel
states into two subsets: states that are novel solely due to tu-
ples that include f , denoted by Sf , and states that are novel
(in part) due to tuples that exclude f , denoted by S¬f .

520

Since f is irrelevant in S¬f , IW(w) would generate the
same novel states even if we removed f . Thus, the maximum
amount of novel states in S¬f is bounded byN(n−1, d, w).
Regarding Sf , we can divide it into d−1 subsets, each corre-
sponding to a value of f different from its initial value v0 =
φ(s0)[f]. In each subset, since the value of f is the same,
the novelty test can be simplified to checking tuples of size
w − 1 of features different than f . Therefore, the maximum
number of novel states in Sf is (d− 1) ·N(n− 1, d, w− 1).

Note that we are not decomposing the problem into mul-
tiple subproblems; rather, the recursion defines an upper
bound on the number of novel states in each subset.

Theorem 1. For n features of size d, the maximum number
of novel states visited by IW(w), 0 ≤ w < n, is

N(n, d, w) =
w∑
k=0

[(
n− 1− k
w − k

)
dk(d− 1)w−k

]
.

The proof of Theorem 1 also establishes that N(n, d, w)
is indeed upper bounded by (nd)w, which is consistent with
previous results, but we omit the proof here for lack of space.

Hierarchical IW
In this section, we present our hierarchical approach to
width-based planning. We start by defining a simple algo-
rithm for hierarchical blind search. Then, we consider using
width-based planners at all levels of the hierarchy, and show
its effect on the width compared to planning at a single level.

For simplicity, WLOG we assume a two-level hierarchy:
a high level (h) and a low level (`). Each level is defined by
its own feature set (Fh and F`, with domains Dh and D`,
respectively) and feature mapping (φh : S → D

|Fh|
h and

φ` : S → D
|F`|
` , respectively). Each state s maps to a high-

level state sh = φh(s) and a low-level state s` = φ`(s).

A Hierarchical Approach to Blind Search
Blind search methods require two components: a successor
function, that given a state and an action returns a successor
state (e.g. a simulator), and a stopping condition, that will
stop the search, for instance, when the goal is reached or
after a budget is exhausted. In order to have different search
levels, we modify these two components as follows:

• High-level successor function: Each call to this function
triggers a low level search, that runs until a new high-level
state is found (i.e., a state s that maps to a different φh(s)).

• Low-level stopping condition: When a different high-
level state is encountered, the search is stopped, returning
control to the high-level planner. This stopping condition
is added to the existing stopping conditions.

The control goes back and forth between the high and
low-level planners. Each time that the high-level successor
function is called, the according low-level search is resumed,
generating new states until a new high-level state is found.
We achieve this by storing a low-level search tree for each
high-level state. If the low-level search terminates without

finding a new high-level state, the high-level successor func-
tion returns null, and the high-level state is marked as ex-
panded. The high-level planner will only generate succes-
sors from non-expanded high-level states, and can resume
search from any state by retrieving it from memory.

The proposed framework allows many levels of abstrac-
tion, as well as the possibility to have different search meth-
ods at each level. For instance, we could have a breadth-
first search at the high level and depth-first search at the low
level, or combine different width-based search methods.

Hierarchical Width
The framework in the previous section partitions the states
into subsets based on high-level features. To plan over the
subsets, we can use any width-based search method as a
high-level planner. For instance, we can apply IW(2) at the
high level and IW(1) at the low level. We denote this by
HIW(2, 1). We next define a type of high-level feature that
we call splitting, and compare HIW with flat IW, showing
the effect of the hierarchy on the width of the problem.
Definition 1. A high-level feature f ∈ Fh is splitting if, for
each value v ∈ Dh, the induced subset of states {s ∈ S :
φh(s)[f] = v} is a connected graph.
Example: consider a simple problem where an agent needs
to move along a corridor of length L, pick up a key, and
go back along the same path to open a door. We can de-
scribe this problem using two features: p (the position) and k
(whether or not the key is held). Initially p = 0 and k = 0.
The goal is p = 0 and k = 1. If k ∈ Fh, then k is splitting:
when k is false, the agent can still visit all the positions of
the corridor, and likewise when k is true.
Theorem 2. If all features in Fh are splitting, HIW(wh, w`)
is equivalent to a restricted version of IW(wh + w`) with
tuples of wh features from Fh and w` features from F`.

Proof. Since each feature in Fh is splitting, when we ap-
ply IW(w`) in a high-level state sh, the subset of states in-
duced by sh is connected. Since the restricted version of
IW(wh +w`) considers exactly w` features in F`, it will ex-
plore the same low-level states as IW(w`). At the high-level,
the restricted version of IW(wh + w`) considers exactly wh
features in Fh, so it will explore the same high-level states as
IW(wh). Since the tuples in IW(wh+w`) involve features in
both Fh and F`, each state in the low-level search of a new
high-level state is novel. Hence HIW(wh, w`) explores the
same states as the restricted version of IW(wh + w`).

Example (cont.): The corridor example has width 2, since
IW needs to keep track of the key and visited position jointly.
This example can be solved by HIW(1, 1) using Fh = {k}
and F` = {p}, after two low-level searches (one for k = 0
and one for k = 1), and visits the same states as IW(2).

Theorem 2 compares HIW(wh, w`) to flat IW(wh + w`)
when all the features in Fh are splitting. However, this is
not a necessary condition for HIW(wh, w`) to solve prob-
lems of width w`+wh. Without splitting features, HIW will
not generate the same nodes as the restricted version of IW,
but may still find the goal. We empirically show this in the
experiments section.

521

Theorem 3. Let nh = |Fh| and dh = |Dh| be the number
of high-level features and domain sizes, and define (n`, d`)
analogously. The maximum number of novel states expanded
by HIW(wh, w`) is N(nh, dh, wh) ·N(n`, d`, w`).

Proof. At the high level, HIW(wh, w`) applies IW(wh),
which expands a maximum of N(nh, dh, wh) novel high-
level states due to Theorem 1. For each novel high-level
state, HIW(wh, w`) applies IW(w`), which expands a max-
imum of N(n`, d`, w`) novel low-level states.

Note that the maximum number of novel states expanded by
the unrestricted version of IW(wh + w`) on the feature set
F = Fh∪F` isN(nh+n`,max(dh, d`), wh+w`), which is
much larger than N(nh, dh, wh) ·N(n`, d`, w`) in general.
Example: The RAM memory in Atari, used in Lipovetzky,
Ramirez, and Geffner (2015), consists of n = 128 features
with d = 256 values. For IW(2), an upper bound on the
number of novel states is N(n, d, w) ∼ 5 · 108. If we iden-
tify a splitting feature and define nh = 1, n` = 127, and
wh = w` = 1, the upper bound due to Theorems 2 and 3 is
N(nh, d, wh) · N(n`, d, w`) ∼ 8 · 106, an improvement of
almost two orders of magnitude.

Incremental Hierarchical IW (IHIW)
In classical planning, the states are defined by a set of atoms,
and, although one atom may be more informative than oth-
ers, there is no hierarchical structure. In this section, we
present a simple method for identifying relevant features that
may split the state space. Then, we introduce an algorithm
that performs a sequence of hierarchical searches, using the
aforementioned method to discover new high-level feature
candidates at each step. In the experiments section, we test
the algorithm in a range of classical planning domains1.

Discovering High-Level Features
Consider a search tree generated by IW(1) for a problem
of width 2. Is it possible to identify features that split the
state space, so that the problem can be solved by HIW(1, 1)?
In this section, we present a simple method for detecting
candidate abstract features from a set of features F .

We consider all trajectories in the tree and hypothesize
that a feature that changes only once before a trajectory is
pruned is a good candidate for a high-level feature. Consider
again the corridor example in which an agent has to use a
key to open a door. IW(1) prunes any trajectory that repeats
a position p, and will not solve the problem. However, fea-
ture k splits the state space into two sub-problems: reaching
the key (k=true), and going back to the door (k=false).

We can detect high-level features using the method de-
tailed in Algorithm 1. For each pruned leaf node, we retrieve
the features that are shared with its parent that have not ap-
peared in that branch before. The intuition is that when a
splitting feature f changes value, from v0 to v1, the next
state is likely to be pruned by IW(1), since v1 has just been
observed for f , and all other features may have been visited
when f took value v0.

1The code for all algorithms and experiments described in this
paper can be found in https://github.com/aig-upf/hierarchical-IW

Algorithm 1 Method for finding high-level features

Input: node n
N = ∅
if IsLeaf(n) & Depth(n) > 2 then

P = Atoms(n) ∩ Atoms(Parent(n)) // common atoms
if |P | < |Atoms(n)| then // ensure different state

b = Branch(tree, n) // get branch root→n

B =
Depth(n)−2⋃

i=1

Atoms(b[i]) // all branch atoms

N = P −B // keep (branch) novel atoms
return N

Algorithm 2 Incremental Hierarchical IW Search

Initialize: H = ∅, P = List(), solved = false
while not solved do

pruned, solved = HIW(wh, wl)
if not solved then

Append(P , pruned)
while H == ∅ do

if P is empty then
return

n = Pop(P) // Sample pruned node
H = FindAbstractFeatures(n) // Algorithm 1

h = Pop(H) // Sample candidate atom
RestructureTree(h) // Create high-level nodes

An Incremental Approach
A simple algorithm that takes advantage of the previous
method would be:

1. Perform an IW(1) search, if the goal is found, return.

2. Run Alg. 1 on the IW(1) tree to find high-level features.

3. Run HIW(1, 1) with the discovered high-level features.

This algorithm actually finds promising candidate fea-
tures for small problems. For instance, it can solve the sim-
ple corridor example. However, it fails on more complex
problems, possibly because a single IW(1) search may not
be sufficient to visit states that contain relevant features.

To address this, we propose a slightly more sophisticated
approach, Incremental HIW (Algorithm 2), that runs a se-
ries of HIW searches. It maintains a set of high-level feature
candidates H , exploits one feature candidate at a time, and
discovers new relevant features when necessary. First, we
run HIW(1, 1), which is equivalent to IW(1) since we start
withH = ∅. While the task is not solved, we randomly sam-
ple a pruned node and updateH using Algorithm 1. We may
repeat this operation until new feature candidates are found
or there are no more pruned nodes to sample from, in which
case we stop the search. Then, a feature candidate is sampled
from H , and the current search tree is restructured accord-
ingly, in order to reuse the tree in the subsequent search.

Restructuring the tree mainly involves two operations: de-
taching subtrees at the low level and inserting new nodes at
the high level. Although this may seem costly, both oper-
ations consist of modifying the data structure, while leav-

522

ing the data untouched. Modifying a search tree, however,
implies that the associated novelty table cannot be reused.
Thus, we generate a new novelty table, if necessary, when
the according tree search is resumed.

Learning with Hierarchy
In this section we show how to combine HIW with a
learning-based approach that uses a policy to direct search.

Count-Based Rollout IW
Bandres, Bonet, and Geffner (2018) presented Rollout IW
(RIW), a width-based algorithm that performs breadth-
first search implicitly, from independent rollout trajectories.
RIW(w) maintains the notion of width by modifying the
definition of novelty: a state s is considered novel if any w-
tuple of features of s has not appeared at a lower depth. With
this, the authors achieve an algorithm that is equivalent to
IW(w), but with better anytime behavior. This novelty mea-
sure actually allows for many width-based algorithms, since
it unties the order of expanding nodes from the novelty test.

In our scenario, a subset of states is encapsulated under
the same high-level state (i.e., a set of high-level features).
Selecting one high-level state or another directly determines
which low-level states are generated. In order to balance ex-
ploration within high-level states, we extend RIW with a se-
lection method that depends on state visitation counts.

Our method, named Count-based Rollout IW, is detailed
in Algorithm 3. Similar to RIW, it consists of two phases:
node selection and rollout. A non-pruned node of the search
tree is selected according to a softmax probability distribu-
tion inversely proportional to the visitation counts of its fea-
ture vector. Then, a rollout is performed, generating nodes
until one that does not pass the novelty test is found.

When a node n with features f passes the novelty test,
there may be another node deeper in the tree with the same
set of features f that needs to be pruned. In the implementa-
tion, we identify such nodes by keeping a mapping N from
features to unpruned nodes. When pruning a node, we leave
the visitation count for features f , C[f], untouched. Thus,
the new node nwill be selected according to the existing vis-
itation count. This way, we ensure a balance between differ-
ent high-level states. Importantly, all nodes below a pruned
node are not considered anymore for selection. Therefore,
pruning a node implies removing it from the mapping N to-
gether with its descendants (function Prune).

Modifications to π-IW
Junyent, Jonsson, and Gómez (2019) introduced Policy-
Guided IW (π-IW), an on-line replanning algorithm that al-
ternates planning and learning. π-IW learns a policy π from
the rewards observed in the IW tree, and uses π to guide fu-
ture searches. However, in sparse-reward tasks, IW(1) may
not reach any reward, especially when the planning horizon
is too short. Here we extend the original π-IW in two ways:
adding a better tie breaking mechanism, and a value function
estimate. In experiments, we call this (flat) version π-IW+.

When no reward is found during planning, the target pol-
icy for the learning step becomes the uniform distribution,

Algorithm 3 Count-Based Rollout IW

function LOOKAHEAD(N , C)
while not StopCondition() and not Empty(N) do

n = Select(N , C)
if Novel(n) then

Rollout(n, N , C)
else

Prune(N , n)

function SELECT(N , C)
c = GetCounts(N , C) // Feature counts of nodes in N
p ∝ exp (1/τ(c+ 1))
n = Sample(N , p)
return n

function ROLLOUT(n, N , C)
while not StopCondition() do

C[n.features]++
n = Successor(n)
if n == null or not Novel(n) or Terminal(n) then

return
Prune(N , N [n.features])
N [n.features] = n

and π-IW behaves as Rollout IW. In this case, π-IW may
take a step towards a region of the search tree with low node
count, and presumably with less novel states, losing valuable
structure information provided by the IW search. To avoid
that, we modify the target policy of π-IW to use the node
counts in the search tree for tie-breaking (i.e., the amount of
descendants per action at the root node). The new target pol-
icy takes the form πtarget ∝ πrewards·πcounts, where the product
is element-wise, and πcounts is a softmax distribution:

πcounts(a|s) =
exp (1/(τc(s, a) + 1))∑

a′∈A exp (c(s, a′))

where τ is a temperature parameter and c(s, a) is the amount
of nodes in the subtree of action a. The temperature param-
eter for πrewards, which is also defined as a softmax distribu-
tion but proportional to the returnsR(s, a), is typically close
to zero to ensure a greedy target policy (Junyent, Jonsson,
and Gómez 2019). Therefore, by performing the product, we
achieve the effect of tie-breaking, especially if the tempera-
ture parameter for the counts is some orders of magnitude
higher than the one for the rewards.

This tie-breaking may help finding deeper rewards. How-
ever, π-IW will not exploit this information in subsequent
episodes, since πtarget is still based on the rewards of the cur-
rent planning horizon. To amend this, we learn a value func-
tion, which we combine with the observed rewards to gener-
ate a better estimate of πrewards. When backpropagating the
rewards from the leaves to the root, we take the maximum
between the observed rewards and our value estimate.

To learn a parameterized policy estimate π̂θ, we follow
the same approach of Junyent, Jonsson, and Gómez (2019).
Specifically, we represent π̂θ using a neural network, and at
each time step t, we use the cross-entropy loss to update θ:

L = −πtarget
t (·|st)> log π̂θ(·|st).

523

The difference in our work is that the target policy now uses
visitation counts for tie-breaking. We also add an `-2 regu-
larization term. To learn the value function, we take the same
approach as in MuZero (Schrittwieser et al. 2020).

Policy-Guided Hierarchical IW (π-HIW)
Hierarchical IW can be straightforwardly used for online re-
planning. At each step, we sample an action a ∼ πtarget ∝
πrewards · πcounts. To generate πrewards, we need to backpropa-
gate the rewards through the hierarchical tree. Starting from
the high-level leaf nodes, we first backpropagate the rewards
of the associated low-level trees. Then, to propagate this re-
turn between two high-level nodes, we feed it to the corre-
sponding low-level leaf nodes of the high-level parent, and
repeat until we reach the high-level root. To generate πcounts,
we backpropagate the counts in a similar manner.

After executing an action a, we cache the resulting subtree
for subsequent searches, similar to previous work. In this
case, we need to take into account that some high-level states
will not be reachable anymore, and we should thus remove
them from the high-level tree before resuming the search.

Experiments in Classical Planning
In this section, we evaluate experimentally the proposed hi-
erarchical approach. We address the following questions:
• In practice, can HIW(1, 1) solve problems of width 2?
• Can Algorithm 1 find good high-level feature candidates?
• Is IHIW(1, 1) a good alternative to IW(2)?

Lipovetzky and Geffner (2012) empirically showed that
most classical planning problems with atomic goals present
a low width. In Table 1, we reproduce such results, and com-
pare them to our algorithm. The table consists of 36 domains
from the International Planning Competitions, prior to 2012.
For each domain, we show the amount of single goal in-
stances (I), generated by splitting each instance with G goal
atoms into G single goal instances. Columns 3-11 show the
amount of instances solved, together with the average num-
ber of nodes and time per solved instance, for IW(1), IW(2)
and IHIW(1, 1). Here, IHIW(1, 1) consists of two standard
IW(1) searches, one at each level of abstraction.

In some domains, IW(1) has greater coverage than IW(2),
e.g. in Woodworking. This is because we set a budget of
10K nodes, and IW(2) may exhaust the budget before find-
ing the goal. We observe that IHIW(1, 1) outperforms IW(1)
in all but five domains: Barman, OpenStacks, Parking, Scan-
nalyzer and Woodworking. Compared to IW(2), IHIW(1, 1)
covers more or the same number of instances in 24 out of
36 domains. In 12 cases the average number of nodes per
solved instance is lower in IHIW(1,1) than in IW(2), and in
18 cases IHIW solved it faster. Note that Table 1 only reports
the average time for solved instances. Thus, we may find
that IHIW is quicker than IW(2) even when solving more
instances.

With these results we can conclude that HIW(1, 1) can
solve problems of width 2 in practice, and that Algorithm 1
is a good approach to identify promising high-level features.
Finally, we can state that IHIW(1, 1) is an efficient alterna-
tive to IW(2).

Figure 1: Snapshot of the two gridworld environments. Col-
ors blue, red, green and gray represent the agent, key, door,
and walls, respectively. The optimal policy takes 36 and 62
steps for the small (left) and large (right) tasks, respectively.

Pixel-Based Testbeds
In this section, we test our approach, π-HIW, in pixel-based
gridworld environments and Atari games. We use two levels
of abstraction: the high-level planner is Count-based Rollout
IW (Algorithm 3) and the low-level planner is π-IW+ (i.e.,
Rollout IW guided by the current policy estimate). The set
of abstract features φh(s) consists of a discretization of the
image, similar to the one used in Go-Explore (Ecoffet et al.
2019, 2021), where the image is divided into tiles and the
mean pixel value of each tile is taken as the feature value.
Usually, this is further quantized into a smaller subset (e.g. 8
pixel values). For the low-level set of features, we follow the
methodology of Junyent, Jonsson, and Gómez (2019) and
define φ`(s) as the boolean discretization of z(s), where z
is the last layer of the neural network representing π̂θ.

Gridworld Environments
We test our algorithm in two gridworld environments with
sparse rewards (Figure 1). The agent (blue) has to pick up
the key (red) and open the door (green), avoiding walls
(gray). The agent is rewarded with +1 only when the door is
reached while holding the key. Any other state has a reward
of 0, except if the agent hits a wall, in which case the episode
terminates with a reward of −1. We also end the episode af-
ter 200 and 500 steps for the small and large environment,
respectively. The observation is a 84×84×3 image and pos-
sible actions are {no-op, up, down, left, right}. The setting
is similar to the one of Junyent, Jonsson, and Gómez (2019),
but with larger environments and therefore sparser rewards.

We compare our hierarchical approach, π-HIW(1, 1), to
two baselines: π-IW, and our modified version π-IW+ that
uses a value estimate and the subtree size for tie-breaking.
For the latter, we use a temperature of 1 to generate πcounts.
In order to bound the memory used by the planner, we set
a maximum of 500 nodes that we keep in memory per step.
The visitation count temperature used by the high-level plan-
ner (Algorithm 3) is set to 0.005. All other hyperparameters
are the same as in Junyent, Jonsson, and Gómez (2019).

Figure 2 shows results for both environments. We observe
that π-IW does not perform well, obtaining a reward close
to zero in both environments. π-IW+ takes advantage of
the value function and the tie-breaking counts and learns to
solve the first task, while achieving a mean score of 0.5 for
the second one in 106 interactions with the environment. For
the hierarchical version, which also includes the aforemen-
tioned modifications, we report results of π-HIW(1, 1) using

524

Domain I IW(1) IW(2) IHIW(1, 1)
Solved Nodes Time Solved Nodes Time Solved Nodes Time

8puzzle 32 40.6 34 0.00 100 475 0.04 100 137 0.01
Barman 232 9.1 215 0.02 9.1 215 0.13 9.1 215 0.02
Blocks World 302 37.4 91 0.01 79.5 1696 0.23 96.4 869 0.06
Cybersecurity 86 65.1 64 0.01 65.1 64 0.22 67.4 158 0.02
Depots 189 10.6 494 0.28 23.8 2393 1.58 28.0 2268 0.97
Driverlog 259 44.0 996 0.12 53.3 1249 0.18 62.9 1085 0.11
Elevator 510 0.0 - - 11.4 5875 1.38 16.9 4752 1.79
Ferry 8 0.0 - - 100 10 0.00 100 11 0.00
Floortile 538 96.3 515 0.04 93.5 1115 0.63 99.3 567 0.04
Freecell* 68 8.8 192 0.14 22.1 3558 4.00 19.1 504 0.48
Grid 19 5.3 2 0.00 36.8 2071 6.45 15.8 1244 2.51
Gripper 460 0.0 - - 100 3355 1.70 100 2140 0.36
Logistics 249 18.1 2 0.00 100 763 0.16 28.5 87 0.01
Miconic 2325 0.0 - - 0.0 - - 100 2751 0.24
Mprime 50 8.0 2 0.01 18.0 3316 0.75 20.0 2600 0.48
Mystery 45 8.9 2 0.01 37.8 1200 0.57 31.1 1903 0.37
NoMystery 210 0.0 - - 80.0 1917 1.61 24.8 1487 1.22
OpenStacks* 455 0.0 - - 0.0 - - 0.0 - -
OpenStacksIPC6 1230 5.1 176 0.20 14.2 2637 11.46 13.8 2332 0.37
PSRsmall 316 89.9 2 0.00 92.1 2 0.00 94.0 3 0.00
ParcPrinter 990 85.6 195 0.01 84.6 695 0.63 92.0 464 0.03
Parking 540 66.3 2770 2.28 65.2 2963 5.79 66.3 2770 2.27
Pegsol 990 92.6 4 0.00 100 9 0.01 97.8 7 0.00
Pipes-NonTan 259 45.6 299 0.08 55.6 1937 0.85 57.5 683 0.17
Rovers* 488 31.6 2520 0.37 23.2 2504 1.59 35.2 2576 0.37
Satellite* 1324 5.7 367 0.19 7.2 675 0.23 7.9 1433 0.22
Scanalyzer 648 99.1 370 0.29 96.6 322 0.66 99.1 370 0.28
Sokoban 154 35.1 37 0.01 74.0 1049 5.36 40.3 84 0.01
Storage 240 100 327 1.87 100 1035 15.76 100 327 1.88
Tpp* 118 0.0 - - 44.9 3313 26.01 35.6 1476 0.19
Transport 330 0.0 - - 11.8 3765 1.20 18.5 4230 1.96
Trucks 345 0.0 - - 11.6 5158 0.77 1.7 3342 0.47
Visitall 21880 100 2918 1.83 16.9 2912 1.34 100 2918 1.83
Woodworking 1801 91.6 1110 0.29 88.3 1063 3.43 91.6 1110 0.29
Zeno 219 21.0 10 0.00 36.5 1740 0.18 29.2 1035 0.10

7 17 24 12 18

Table 1: Comparison between IW(1), IW(2) and IHIW(1, 1) in different classical planning domains. Column I shows the
number of single goal instances. In domains with an asterisk not all available instances were evaluated due to time or memory
constraints. In columns 3-11 we show, for each algorithm, the coverage in percentage, the average amount of expanded nodes,
and the average time in seconds. Nodes and time values only take into account solved instances. All algorithms have a planning
budget of 10,000 nodes. Best coverage and IHIW times or nodes that are lower than the ones of IW(2) are shown in bold.

0.0 0.2 0.4 0.6 0.8 1.0
Environment interactions 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Small task

0.0 0.2 0.4 0.6 0.8 1.0
Environment interactions 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Large task
π-IW
π-IW+

π-HIW 2x2
π-HIW 3x3

π-HIW 4x4
π-HIW 5x5

π-HIW 6x6

Figure 2: Comparison between π-IW, π-IW+, and π-HIW(1, 1) in the small and large gridworld environments.

525

50

100 ∞∞

Sk
iing

Atla
nti

s
Box

ing
En

du
ro

Se
aq

ue
st

Wiza
rd

of
wor

Aste
rix

Ms. P
ac-

man

Vide
o p

inb
allKru

ll

Fis
hin

g d
erb

y

Aste
roi

ds

Ku
ng

-fu
 m

ast
er

Grav
ita

r

Dem
on

 at
tac

k

Craz
y c

lim
be

r

Rob
ota

nk

Cen
tip

ed
e

Nam
e t

his
 ga

me

Up'n
 do

wn

Gop
he

r

Ban
k H

eis
t

Tu
tan

kh
am
Zax

xo
n

Dou
ble

 du
nk
HER

O

Sp
ace

 in
va

de
rs

Amida
r
Alien

Q*be
rt
So

lar
is

Ph
oe

nix

Assa
ult

Ya
rs'

 re
ve

ng
e

Sta
rgu

nn
er

Roa
d R

un
ne

r

Tim
e p

ilot

Brea
kou

t

Ka
ng

aro
o

Bea
m rid

er

Batt
le

zon
e

Berz
erk

Ice
 ho

cke
y

Cho
pp

er
com

man
d
Pit

fal
l!

Bow
ling

Te
nn

is

Fro
stb

ite
Po

ng

Pri
va

te
ey

e

Jam
es

bo
nd

 00
7

Ven
tur

e

Mon
tez

um
a's

 re
ve

ng
e

−2

0

2

4

6

8

10

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e
im

pr
ov

em
en

t

Figure 3: Comparison between π-IW and π-HIW in Atari in terms of relative improvement (sπ-HIW−srandom)/(sπ-IW−srandom),
where sπ-IW and sπ-HIW are the scores of the flat and hierarchical versions, respectively, and srandom is the score of a random
agent taken from Wang et al. (2016). For Montezuma and Venture, the relative improvement is∞, since π-IW has 0 score.

different number of tiles in φh(s), and 256 values per tile.
We observe how, for the smaller task, 2x2 tiles is enough to
get a good performance, similar to the baseline π-IW+, and
the performance degrades when increasing the number of
tiles. In the larger task, π-HIW(1, 1) outperforms the base-
line, but it needs at least 3x3 tiles to perform well.

Atari Games
We finish this section with a set of experiments using the
Atari simulator. In this case, we do not optimize the hyper-
parameters and define Fh using 32 pixels values and 8× 11
tiles. Moreover, we use width wh = n = |Fh| at the high
level, i.e., π-HIW(n, 1). Even though IW(n) explores the
entire high-level state space, there is a single combination of
n features, which makes the novelty check efficient. In the
original IW algorithm, IW(n) is equivalent to a breadth-first
search without state duplicates. Nevertheless, we use Count-
Based Rollout IW, described in Algorithm 3. With this, we
aim to achieve effective widths larger than 2.

Figure 3 shows a comparison between π-HIW(n, 1) and
π-IW using the same setup as in Junyent, Jonsson, and
Gómez (2019), but half the budget of simulator interactions.
We observe that π-HIW improves over its predecessor π-IW
in 28 games. Interestingly, games consisting of an agent
moving in a fixed background present the best results e.g.,
James Bond, Private Eye, Pong, Frostbite, Chopper Com-
mand, etc. Within this type of games, π-HIW remarkably
achieves a positive score in hard exploration games such as
Montezuma’s Revenge and Venture, a score not yet reported
for any width-based planner. Figure 4 shows the learning
curve in the game of Montezuma’s Revenge. We also see an
improvement in games with a moving background where the
agent stays at a fixed position of the screen, for instance in
Battle zone, Beam Rider, Road Runner, or Time Pilot. These
results confirm that π-HIW benefits from the state abstrac-
tions provided by a simple down-sample of the image.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment interactions 1e7

0
1000
2000
3000
4000
5000
6000
7000

Re
wa

rd
π-IW
π-IW+
π-HIW

Figure 4: Performance of π-IW, π-IW+ and π-HIW in Mon-
tezuma’s Revenge. Average over 5 runs with different ran-
dom seeds. Shades show the maximum and minimum value.

Conclusions

We presented a novel hierarchical approach to width-based
planning. Our method uses different feature mappings to
create several levels of abstraction, allowing different search
algorithms at different levels of the planning hierarchy.
Specifically, we propose to use Iterated Width at two levels,
resulting in the hierarchical search algorithm HIW(wh, w`).
We show that HIW(wh, w`) can solve problems of width
wh + w` with the right choice of high-level features. Ex-
periments in planning benchmarks show that an incremen-
tal version of HIW(1, 1) is competitive with IW(2), solving
single-goal instances using less time or nodes. When com-
bined with a policy learning scheme, HIW achieves a pos-
itive score in hard exploration Atari games such as Mon-
tezuma’s Revenge. For future work, a promising approach
is to explore different combinations of search algorithms at
different levels of the hierarchy.

526

Acknowledgements
V. Gómez has received funding from “La Caixa”
Foundation (100010434), under the agreement LCF
/PR/PR16/51110009 and is supported by the Ramon y Cajal
program RYC-2015-18878 (AEI/MINEICO/FSE,UE). A.
Jonsson is partially supported by Spanish grants PID2019-
108141GB-I00 and PCIN-2017-082.

References
Bandres, W.; Bonet, B.; and Geffner, H. 2018. Planning
With Pixels in (Almost) Real Time. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence.
Bonet, B.; and Geffner, H. 2014. Belief Tracking for Plan-
ning with Sensing: Width, Complexity and Approximations.
Journal of Artificial Intelligence Research 50(1): 923970.
Currie, K.; and Tate, A. 1991. O-Plan: the open planning
architecture. Artificial intelligence 52(1): 49–86.
Dittadi, A.; Drachmann, F. K.; and Bolander, T. 2020. Plan-
ning From Pixels in Atari With Learned Symbolic Repre-
sentations. In ICAPS 2020 Workshop on Bridging the Gap
Between AI Planning and Reinforcement Learning.
Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2019. Go-explore: a new approach for hard-
exploration problems. arXiv preprint arXiv:1901.10995 .
Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2021. First return, then explore. Nature 590(7847):
580586.
Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity re-
sults for HTN planning. Annals of Mathematics and Artifi-
cial Intelligence 18(1): 69–93.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. Artificial intelligence
3: 251–288.
Francès, G.; Ramrez, M.; Lipovetzky, N.; and Geffner, H.
2017. Purely Declarative Action Descriptions are Overrated:
Classical Planning with Simulators. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial In-
telligence, 4294–4301.
Geffner, T.; and Geffner, H. 2015. Width-based planning for
general video-game playing. In 11th Artificial Intelligence
and Interactive Digital Entertainment Conference.
Junyent, M.; Jonsson, A.; and Gómez, V. 2019. Deep
Policies for Width-Based Planning in Pixel Domains. In
29th International Conference on Automated Planning and
Scheduling, ICAPS, 646–654. AAAI Press.
Knoblock, C. A. 1990. Learning Abstraction Hierarchies
for Problem Solving. In Proceedings of the Eighth National
Conference on Artificial Intelligence - Volume 2, 923928.
AAAI Press.
Korf, R. E. 1985. Macro-operators: A weak method for
learning. Artificial intelligence 26(1): 35–77.
Lipovetzky, N.; and Geffner, H. 2012. Width and Seri-
alization of Classical Planning Problems. In Proceedings
of the 20th European Conference on Artificial Intelligence,
540545.

Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search : Exploration and Exploitation in Classical Planning.
Proceedings of the 31th Conference on Artificial Intelligence
3590–3596.
Lipovetzky, N.; Ramirez, M.; and Geffner, H. 2015. Clas-
sical Planning with Simulators: Results on the Atari Video
Games. In Proceedings of the 24th International Conference
on Artificial Intelligence, 16101616.
Ramirez, M.; Papasimeon, M.; Lipovetzky, N.; Benke, L.;
Miller, T.; Pearce, A. R.; Scala, E.; and Zamani, M. 2018. In-
tegrated Hybrid Planning and Programmed Control for Real
Time UAV Maneuvering. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent
Systems, 13181326.
Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction
spaces. Artificial intelligence 5(2): 115–135.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; Lillicrap, T.; and Silver, D. 2020. Mastering
atari, go, chess and shogi by planning with a learned model.
Nature 588(7839): 604609.
Shleyfman, A.; Tuisov, A.; and Domshlak, C. 2016. Blind
Search for Atari-Like Online Planning Revisited. In Inter-
national Joint Conference on Artificial Intelligence, 3251–
3257.
Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot,
M.; and Freitas, N. 2016. Dueling Network Architectures
for Deep Reinforcement Learning. In Proceedings of The
33rd International Conference on Machine Learning, 1995–
2003.

527

