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Abstract
Suboptimal search algorithms are a popular way to find solu-
tions to planning problems faster by trading off solution op-
timality for search time. This is often achieved with the help
of inadmissible heuristics. Prior work has explored ways to
learn such inadmissible heuristics. However, it has focused
on learning the heuristic value as an estimate of the cost to
reach a goal. In this paper, we present a different approach
that computes inadmissible heuristics by learning Expansion
Delay for transitions in the state space. Expansion Delay is
defined as the number of states expanded during the search
between expansions of two successive states. It can be used
as a measure of the depth of local minima regions i.e., re-
gions where the heuristic(s) are weakly correlated with the
true cost-to-goal (Vats, Narayanan, and Likhachev 2017). Our
key idea is to learn this measure in order to guide the search
such that it reduces the total Expansion Delay for reaching
the goal and hence, avoid local minima regions in the state
space. We analyze our method on 3D (x, y, theta) planning
and humanoid footstep planning. We find that the heuristics
computed using our technique result in finding feasible plans
faster.

Introduction
A* is a widely used search algorithm (Hart, Nilsson, and
Raphael 1968) which starts with a node, generating a graph
until the goal node is reached. To find an optimal solu-
tion faster, the search is guided by a heuristic function. The
heuristic function for a search, h(n) estimates the cost from
node n to a goal node. An admissible heuristic never overes-
timates the path cost of any node to the goal. In other words,
h(n) ≤ h∗(n) for any node n, where h∗(n) is the cost of a
least-cost path from node n to a goal node (Hart, Nilsson,
and Raphael 1968). For many cases, the condition of admis-
sibility can be relaxed and inadmissible heuristics are used
to find a feasible path faster (Karpas and Domshlak 2012),
(Scala, Haslum, and Thiébaux 2016), (Aine et al. 2016).
In this paper, we present a novel learning-based method
to compute inadmissible heuristics. Prior work ((Thayer,
Dionne, and Ruml 2011), (Samadi, Felner, and Schaeffer
2008)) that explores learning-based approaches, learns a
heuristic as an estimate of the cost to reach a goal. Differ-
ently, we learn an estimate of search effort spent in reaching
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a goal and guide the search in a way that reduces this effort.
We achieve this by learning Expansion Delay for transitions
in the state space (Valenzano and Xie 2016). Expansion De-
lay is defined as the number of states expanded during the
search between expansions of two successive states. (Vats,
Narayanan, and Likhachev 2017) shows that it can be used
as a measure for depth of local minima regions i.e., regions
where the heuristic(s) are weakly correlated with the true
cost-to-goal. The aim of this paper is to identify these re-
gions in the graph where the search ends up doing unneces-
sary exploration and use this information to avoid them.

Our contribution is a two-phase algorithm that computes
heuristics by using Expansion Delay. In the first phase, i.e.,
the learning phase, we train a Feed-Forward Network to pre-
dict Expansion Delay with data obtained from prior planning
experience. In the second phase, i.e., the planning phase,
for a given planning query, we compute the heuristic with
the help of Expansion Delay values predicted by the learned
model and use it for planning. Experimentally, we show that
this method of heuristic computation significantly improves
planning time by avoiding regions of local minima for 3D
(x, y, theta) planning and humanoid footstep planning.

Related Work
Prior work has studied ways to learn heuristics for achiev-
ing faster planning times. (Thayer, Dionne, and Ruml 2011)
proposes a method of transforming admissible heuristics
to inadmissible heuristics using learning. (Samadi, Felner,
and Schaeffer 2008) presents a technique for combining an
arbitrary number of features into a single cost-to-go esti-
mate. They use an artificial neural network (ANN) to map
these values to an estimate of the cost-to-go using h∗(n) as
the target value. (Bhardwaj, Choudhury, and Scherer 2017)
presents an imitation learning-based approach to come up
with heuristics that explicitly reduces search efforts. Our
work is significantly different as we do not learn the heuristic
as an estimate of the cost-to-go but as an estimate of search-
effort-to-go.

We aim to use this estimate to avoid unnecessary ex-
ploration of local minima regions. Previous work has ex-
plored the idea of devising methods to avoid local minima
regions. (Vats, Narayanan, and Likhachev 2017) uses knowl-
edge from previously known planning episodes to come up
with new adaptive motion primitives to circumvent local
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minima regions for similar planning queries. (Phillips et al.
2012) and (Xu, Fern, and Yoon 2007) present techniques to
compute heuristics to do so. Additionally, (Valenzano and
Xie 2016) detects local minima or plateau regions and use
random exploration. However, there is no previous work that
learns Expansion Delay and uses it to compute heuristics.
(Chatterjee et al. 2019) uses the property of conservative-
ness for transitions to minimize search efforts. The work pre-
sented in this paper utilizes a different property altogether.
To the best of our knowledge, none of the prior work learns
Expansion Delay to compute heuristics for reducing search
efforts.

Definitions, Notations and Problem
Description

Consider a graph G = (S,E, c), where S is the set of states,
E ⊆ S × S denotes the set of feasible transitions or edges
in the graph and c is a cost-function such that c(si, sj) is
the cost of the edge (si, sj). A planning problem consists
of finding a path π(sstart, sgoal) in G from sstart to sgoal.
π∗(s, sgoal) denotes the least-cost path between s to sgoal.
The cost of a path is sum of cost of all the edges in a path
π(s, sgoal), denoted by c(π(s, sgoal)). Let h1 : S −→ N
be a consistent heuristic function estimating cost-to-goal. A
heuristic function is said to be consistent if h1(sgoal) = 0
and for each si 6= sgoal and each successor ssucc of si,
h1(si) ≤ h1(ssucc) + c(si, ssucc), where c(si, ssucc) is the
cost of the edge between si and ssucc.

Expansion Delay Heuristics
Many planning problems use heuristics that are computed
by solving simpler planning problems in an abstract space
which is obtained by relaxing some constraints in the origi-
nal space (Bulitko et al. 2007), (Holte et al. 1996). We take a
similar approach and define an abstract space in the follow-
ing manner.

Abstract Space
Let λ : S −→ S̃ be many-to-one mapping representing the
projection of each state in S to an abstract space S̃, such that
|S̃| < |S|. Moreover, λ−1(s̃) = s ∈ S|λ(s) = s̃. For heuris-
tic computation, a state s in S is projected onto S̃ using λ(s)
and the heuristic is computed by finding a path in this space.

The abstract space has its own set of transitions Ẽ ⊆ S̃ ×
S̃. Let the graph G̃ be defined by S̃ and Ẽ. π(s̃i, s̃j) denotes
a path in G̃ from s̃i to s̃j and c(π(s̃i, s̃j)) denotes its cost in
G̃. We assume states in the goal-set Sg map to one goal-state
s̃g in the heuristic space, i.e., s̃g = λ(sg)∀sg ∈ Sg .

Expansion Delay
We also define a property called Expansion Delay (Vats,
Narayanan, and Likhachev 2017) for the edges in graph G
in the following manner:

• Let e(s) be the total number of nodes that have been ex-
panded before s is expanded during a search in graph G.

Expansion delay ∆e for (s, s′) where s is the parent node
and s’ is its successor, is:

∆e(s, s′) = e(s′)− e(s) (1)

• Let A be the set of state-pairs (s, s’) in G that project to
(s̃, s̃′) in G̃. For the edge (s̃, s̃′), ∆ẽ(s̃, s̃′) is the expected
value of ∆e(s, s′) over the set A:

∆ẽ(s̃, s̃′) = E(∆e(s, s′)) (2)

A high expansion delay means that the search has spent a
significant amount of time expanding states in a local mini-
mum. Hence, Expansion Delay can be used as a measure of
depth of local minima for a region in the state space (Vats,
Narayanan, and Likhachev 2017).

Learning Expansion Delay Offline
The focus of this paper is to learn the expected Expansion
Delay values for edges in graph G̃ for a given environment.
For this, we train a Feed-Forward Network which takes these
edges in G̃ as input features and Expansion Delay as target
values. Since we are trying to learn the expected value of
∆e, we can use mean square error (MSE) as the loss func-
tion (Goodfellow, Bengio, and Courville 2016). To obtain
Expansion Delay values, we run a search (A* or Weighted
A*) using a consistent heuristic in G and projecting these
values from G to G̃.

Algorithm 1 shows how we obtain data for training. LetD
be the set of input features and target value pairs for training.
The training data is obtained by following steps :

• Randomly sample start and goal from G : (Sst, Sg)

• Let Ssol = (s1, s2, ....sN ) be the ordered set of states ex-
panded by the search for the given start-goal pair, on the
solution path. For each pair of successive states, store the
values of Expansion Delay ∆ẽ.

• For every abstract edge obtained by projecting states in
Ssol to G̃, obtain features related to this edge, (s̃, s̃′) and
chosen start and goal, and use Expansion Delay ∆ẽ as the
label.

• Add the information obtained for each abstract edge to the
training dataset, D.

We now train a model using D. For a given start and goal,
we can use Expansion Delay values predicted by the model
to compute heuristic in the following manner.

Heuristic Computation
We want to compute a heuristic function such that it guides
the search in graph G along paths that reduce the total Ex-
pansion Delay before reaching a goal state. This in turn
means that we are less likely to encounter local minima re-
gions and will therefore reduce our search effort spent in
reaching the goal state.

Consider the graph G̃ = (S̃, Ẽ, c̃), defined for the abstract
space. For any s∈ S and s̃ = λ(s), we define he−d(s) = c(π∗(s̃,
s̃g)), where π∗ is the optimal path in G̃ from s̃ to s̃g .
Let N(s̃i, s̃j) be the value of expansion delay predicted by
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Algorithm 1: Get Training Data (G)
1 Let n be the number of randomly selected (Start:Sst

and Goal:Sg) pairs
i← 1
while i ≤ n do

2 Search(Sst, Sg)
for each pair of successive states (s,s’) on the
found path do

3 ∆ẽ← ExpansionDelay(s̃, s̃′)

D ← D ∪ [(S̃st, S̃g, s̃, s̃
′),∆ẽ]

4 end
5 increment i
6 end
7 return D

Algorithm 2: Heuristic Computation
1 OPEN = {s̃g} CLOSED = 0;
2 while OPEN 6= φ do
3 remove s̃ from OPEN with minimum g(s̃)

insert s̃ into CLOSED
for every predecessor s̃′ of s̃ s.t. s̃′ not in
CLOSED do

4 N(s̃, s̃′)← prediction(S̃, G̃, s̃, s̃′)
c̃(s̃, s̃′)← N(s̃, s̃′)
if g(s̃′) > g(s̃) + c̃(s̃, s̃′) then

5 g(s̃′) = g(s̃) + c̃(s̃, s̃′)
Insert s̃′ into OPEN with g(s̃′) as key

6 end
7 end
8 end

the model for the abstract edge (s̃i, s̃j). If c̃(s̃i,s̃j) is the cost
of an edge between s̃i and s̃j ,

c̃(s̃i, s̃j) = N(s̃i, s̃j) (3)

Algorithm 2 shows the offline heuristic computation in de-
tail. We compute the shortest path in G̃ from s̃g to every
state in G̃. This is done by running a backward Dijkstra’s
search on G̃ from s̃g to every state in G̃. G̃ is implicitly con-
structed: for each expanded s̃ and predecessor s̃′, we assign
costs according to Eq.(3).

For each state s generated by search in the original graph
G, we first find its projection s̃ = λ(s). g(s̃) which was
updated when s̃′ was expanded in the heuristic computa-
tion search, is the cost of the shortest path in G̃. Therefore,
hed(s) = g(s̃) where hed denotes Expansion Delay Heuris-
tic.

Experimental Analysis
We now evaluate the effectiveness of Expansion Delay
heuristic hed.
The Feed-Forward network used has three hidden layers and
uses an adam optimizer with a learning rate of 0.001. We
trained feature-target pairs taken from at least 25 random

Figure 1: Results with hb, hc and hed.

Heuristic No. of Expan-
ions

Planning
Time(s)

Solution
Cost

hb 1659±806 1.69±0.842 111±10
hc 145±13 0.23±0.008 136±4
hed 113±20 0.19±0.04 105±16

Table 1: Comparison of hed with baselines hb and hc for
planning in (x, y, theta)

planning instances for each of different enviroments, the ex-
act number varying by domain. We train the model untill it
converged.

Planning in 3D (x, y, theta) : Abstract Space : G̃ is
defined by dropping the orientation, or in other words,
λ([x, y, theta]) = [x, y]. To be exact, G̃ is a 2D 8-connected
grid.

Results : We compare hed with two baseline heuristics :
hb is the regular euclidean heuristic and hc is the conserva-
tive heuristic computed as in (Chatterjee et al. 2019). We use
Weighted A* with w = 100 and hb as the heuristic function
to obtain training data D (Algorithm 1, Line 2).

Results (Table 1) show that hed has lesser number of state
expansions, as compared to both hb and hc. It performs bet-
ter than both in terms of planning times as well. Figure
1(left) shows a path found using euclidean heuristic, hb. Fig-
ure 1(right) shows how hed finds a different path by avoid-
ing the region explored by hb. Additionally, it finds a path
through the narrow passage using non-conservative edges as
compared to hc which uses only conservative edges (Figure
1(center)).

Humanoid Footstep Planning : For this domain, states =
[x, y, θ, id] ∈ S consists of position and orientation of the
active foot (foot that is supposed to move next) and id of the
active foot. The environment is divided into 400x400 cells
and θ has a resolution of 45◦. The active foot moves relative
to the pivot foot. For each foot as pivot, there are 12 feasible
motions of the active foot in the form of a = [δx, δy, δθ]
relative to pivot foot. The cost of transitions are proportional
to euclidean distance between the centers of the feet.
Abstract Space : G̃ is a 2D 8-connected grid that corre-
sponds to the position of the center of the robot in the map.
λ projects the 2 feet-positions into the 2D grid by computing
their mean.

Results : Experiments for this domain compare hed with a
baseline heuristic hb which is the cost of the optimal path in
(x,y) space but with regular euclidean 2D edge-costs. We use
A* with hb as the heuristic function to obtain training data,
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Figure 2: A humanoid footstep path in an enviroment (Gari-
mort, Hornung, and Bennewitz 2011).

Heuristic No. of Expan-
sions

Planning
Time(s)

Solution
Cost

hb 477777±75685 17.74±4.11 9226±754
hed 183174±120187 5.09±3.47 18951±4393

Table 2: Comparison of hed with baseline hb for humanoid
footstep planning using A*

D (Algorithm 1, Line 2). Table 2 compares performance of
hed with hb. hed reduces planning time by a factor of ≈ 3
and number of expansions by a factor of ≈ 2.5. However, to
ensure that this behaviour does not result from using just a
greedy heuristic and that hed is actually informative, we ran
another set of experiments. In this case, we used Weighted
A* with a weight of 100 and hb as the heuristic function to
obtain the training data, D. We not only compare hed with hb
but also compare its performance with Weighted A* with a
really high weight (specifically, 10000). Table 3 shows these
results. hed reduces planning time by a factor of ≈ 2 and
number of expansions by a factor of ≈ 2. Figure 3(left) and
3(center) show a planning instance with Weighted A* using
w = 100 and w = 10000 respectively. Figure 3(right) shows
path found using hed. It can be seen that hed actually pro-
vides useful information to cirvumvent the local minima re-
gion and hence results in performing the best. It’s important
to note that the performance of hed would depend on the
search being used for obtaining the training data.

Conclusions
We presented a novel approach for computing inadmissible
heuristics based on Expansion Delay learned offline. The
method shows significant improvements in planning time
and number of state expansions for two different planning
domains. Currently, we learn from planning instances over
fixed environments. Future work includes finding a gener-
alization that transfers learning across different enviroments
effectively. It would also be interesting to see how simpler

Figure 3: Results with hb using w=100 (left), hb using
w=10000 (center) and hed (right). Left footsteps are marked
as red, right footsteps are marked as green and states ex-
panded during search are marked as blue.

Heuristic No. of Expan-
sions

Planning
Time(s)

Solution
Cost

hb(w =
100)

183373±42156 5.08±1.439 13503±2641

hb(w =
10000)

170072±43352 4.768±1.24 16362±3546

hed 89985±89400 2.28±2.28 14129±3937

Table 3: Comparison of hed with baseline hb for humanoid
footstep planning using Weighted A*

learning models perform in comparison to the neural net.
Changing the weights in wA* could change the performance
of hed and an analysis of the perfomance using different
weights would be interesting future work as well. Addition-
ally, we would like to use online learning for learning Ex-
pansion Delay.

Acknowledgements
This work was in part supported by ONR grant N00014-18-
1-2775.

References
Aine, S.; Swaminathan, S.; Narayanan, V.; Hwang, V.; and
Likhachev, M. 2016. Multi-heuristic a. The International
Journal of Robotics Research 35(1-3): 224–243.
Bhardwaj, M.; Choudhury, S.; and Scherer, S. 2017.
Learning heuristic search via imitation. arXiv preprint
arXiv:1707.03034 .
Bulitko, V.; Sturtevant, N.; Lu, J.; and Yau, T. 2007. Graph
abstraction in real-time heuristic search. Journal of Artificial
Intelligence Research 30: 51–100.
Chatterjee, I.; Likhachev, M.; Khadke, A.; and Veloso, M.
2019. Speeding up search-based motion planning via con-
servative heuristics. In Proceedings of the International
Conference on Automated Planning and Scheduling, vol-
ume 29, 674–679.
Garimort, J.; Hornung, A.; and Bennewitz, M. 2011. Hu-
manoid navigation with dynamic footstep plans. In 2011
IEEE International Conference on Robotics and Automa-
tion, 3982–3987. IEEE.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.

531



Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE transactions on Systems Science and Cybernetics 4(2):
100–107.
Holte, R. C.; Mkadmi, T.; Zimmer, R. M.; and MacDonald,
A. J. 1996. Speeding up problem solving by abstraction:
A graph oriented approach. Artificial Intelligence 85(1-2):
321–361.
Karpas, E.; and Domshlak, C. 2012. Optimal Search with
Inadmissible Heuristics. In ICAPS. Citeseer.
Phillips, M.; Cohen, B. J.; Chitta, S.; and Likhachev, M.
2012. E-Graphs: Bootstrapping Planning with Experience
Graphs. In Robotics: Science and Systems, volume 5, 110.
Samadi, M.; Felner, A.; and Schaeffer, J. 2008. Learning
from Multiple Heuristics. In AAAI, 357–362.
Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics
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