
Abstraction-Guided Policy Recovery from Expert Demonstrations

Canmanie T. Ponnambalam, 1 Frans A. Oliehoek, 2 Matthijs T. J. Spaan 1

1 Department of Software Technology
2 Department of Intelligent Systems

Delft University of Technology
Delft, The Netherlands

{c.t.ponnambalam, m.t.j.spaan, f.a.oliehoek}@tudelft.nl

Abstract

Behavior cloning is a method of automated decision-
making that aims to extract meaningful information from
expert demonstrations and reproduce the same behavior au-
tonomously. It is unlikely that demonstrations will exhaus-
tively cover the potential problem space, compromising the
quality of automation when out-of-distribution states are en-
countered. Our approach RECO jointly learns both an imita-
tion policy and recovery policy from expert data. The recov-
ery policy steers the agent from unknown states back to the
demonstrated states in the data set. While there is, per defi-
nition, no data available to learn the recovery policy, we ex-
ploit abstractions to generalize beyond the available data and
simulate the recovery problem. When the most appropriate
abstraction for the given data is unknown, our method selects
the best recovery policy from a set generated by several can-
didate abstractions. In tabular domains, where we assume an
agent must call to a human supervisor for help if it is in an un-
known state, we show how RECO results in drastically fewer
calls without compromising solution quality and with rela-
tively few trajectories provided by an expert. We also intro-
duce a continuous adaptation of our method and demonstrate
the ability of RECO to recover an agent from states where its
supervised learning-based imitation policy would otherwise
fail.

Introduction
Reinforcement learning is an attractive approach to automat-
ing decision-making in increasingly complex systems. Un-
fortunately, learning methods often fall short of meeting the
requirements of real-world problems. In several domains,
particularly safety-critical applications, it is not practical to
take random actions. However, learning algorithms get much
of their power from this ability to explore. One way to as-
suage the limitations of such algorithms is to incorporate
demonstrations by an expert and train agents to copy and
deploy exemplar behavior with as little human supervision
required as possible. In behavioral cloning (Bain and Sam-
mut 1996), the agent is expected to directly replicate the
demonstrated behavior rather than make insights about the
underlying reasoning. We are interested in this case, where
an expert has provided examples of correct behavior that we

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

seek to automate without any exploration or further learning
done in the real environment.

In a typical behavior cloning scenario, a predictive model
can be used to supply expert actions trained on the exam-
ple data provided by the expert (Ross and Bagnell 2010). As
with any predictive model, the ability to generalize over data
never seen before is not guaranteed. If the model is used for
planning, the error will accumulate over every planning step.
It may be infeasible for a human to define the correct behav-
ior for every state even in relatively small problems. When
presented with a state far from its expert data set, an agent
can either follow its potentially very incorrect model or take
random actions, both of which may be undesirable. Another
option is to facilitate human intervention whenever the agent
is lost; this is effective but compromises the overall auton-
omy of the system. All of these issues limit the applicability
of behavior cloning.

Our method aims to remedy this by producing a robust be-
havior clone that can recover from parts of the state space not
covered by its imitation policy. We apply state abstraction to
expert trajectories, effectively multiplying the available data
and using this new data set to generate a simulator for the re-
covery problem. Optimizing for expected reward in the sim-
ulator results in a recovery policy which returns the agent to
states covered by its behavior policy. Instead of generalizing
over the entire decision-making task, our agent focuses on
the simpler problem of getting back to states covered by the
demonstrations, thus minimizing the effect of model error.
Even with a biased data set (containing only successful tra-
jectories) and without making potentially dangerous conclu-
sions about never-before-seen states, we can recover a lost
agent back to a known policy.

RECO boosts the ability of behavior cloning agents and
makes efficient use of offline data. Our method is aimed at
problems where expert demonstrations have limited cover-
age of the problem space and where un-modelled effects
may take an agent to a state outside of the given data. For
example, an autonomous vehicle (AV) may encounter con-
struction on the road and be forced to a state outside of its
planned route. A RECO AV will adjust its goal to first aim
to get back on track, using data from previous routes to do
so, and then continue to execute the original plan.

In this paper, we first discuss related methods in the liter-
ature. Then, we formally define the policy recovery problem

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

560

and show how we use data from expert trajectories to specify
and solve it. This includes a discussion on criteria for suit-
able abstraction selection and how to use several candidate
abstractions to generate the best recovery policy. We assess
the performance of RECO against several baselines in tab-
ular and continuous problems, demonstrating its ability to
make use of fewer trajectories while maintaining good per-
formance in the environment. We conclude with suggestions
for expanding this work.

Related Work

In behavior cloning or imitation learning, the offline data is
produced by an expert who is assumed to follow an optimal
policy. We focus on agents that, once deployed, cannot ex-
ecute random actions (exploration) in the environment nor
learn from their online interactions. All offline reinforce-
ment learning techniques must deal with the issue of what
to do when the agent encounters an out-of-distribution or
anomalous state during execution. This issue of distribu-
tional shift is a well-studied problem in the literature (Fu-
jimoto, Meger, and Precup 2019; Kumar et al. 2019, 2020).
Several solutions have been proposed, such as reverting to
a safe policy (Richter and Roy 2017), forcefully resetting
the agent (Ainsworth, Barnes, and Srinivasa 2019), or re-
questing human intervention (Laskey et al. 2016; Garcı́a and
Fernández 2019). In our problem definition, we assume that
a safe policy is not known outside of the expert trajectories
provided, that resetting the agent is not possible and that hu-
man supervision in the true environment is very costly and
therefore undesirable.

The notion of recovery has recently been applied to safe
reinforcement learning, where offline data is used to identify
unsafe zones and a learned recovery policy steers the agent
back to safe states (Thananjeyan et al. 2020), though here
the goal is to satisfy safety constraints during online learn-
ing rather than follow policies learned on expert demonstra-
tions. Another online method by Eysenbach et al. (2018) in-
volves an agent simultaneously learning to perform a task
and learning to undo the actions it has done. In this way
it learns policies that avoid irreversible states and aims to
minimize the need for human intervention. There have been
several imitation learning methods more related to our prob-
lem setting that aim to steer the agent towards the expert
behavior (Hester et al. 2019; Siegel et al. 2020). In soft
Q imitation learning, the learning agent is incentivized to
take actions that lead back to states in given expert demon-
strations (Reddy, Dragan, and Levine 2020). Similar to our
method, they define a sparse reward function that provides
reward for taking demonstrated actions from demonstrated
states, training the agent to favor behavior close to the ex-
pert. They do not, however, isolate the planning problem
of returning the agent to known states. Doing this in con-
junction with state abstraction to facilitate simulation of the
recovery problem from a fixed data set is our novel contri-
bution to existing work.

Background on Markov Decision Processes
This section briefly introduces preliminary material that
serves as a foundation for our method. A Markov deci-
sion process (MDP) is a tuple M = (S,A, T ,R, γ) that
describes a sequential decision making problem (Puterman
1994). The variables S and A denote the state and action
space, T andR are transition and reward functions, and γ
is a discounting factor (0 ≤ γ ≤ 1) that determines how
far into the future to take into account. At each time step t,
an agent observes the state of the environment st ∈ S and
chooses an action at ∈ A. Upon executing action at, the
environment transitions to a new state st+1 ∼ T (· |st, at),
according to a transition function T : S × A× S → [0, 1]
which maps state-action pairs to a distribution over next
states. The agent receives a reward rt according to the re-
ward functionR : S×A×S → R. The value of a state V (s)
is the sum of the expected discounted reward of the state,
given by V (s) = E

∑∞
t=0 γ

trt. The solution to an MDP is
a policy π that maps states to actions. The value of a pol-
icy V (π)s0=si is the sum of expected discounted rewards
when following policy π from initial state si. An optimal
policy π∗ is one that maximizes this value for every state.
An MDP can be solved using Value Iteration or Policy Itera-
tion; these are standard approaches that produce an optimal
policy π∗ (Puterman 1994).

Reinforcement learning concerns methods to find solu-
tions for MDPs with unknown transition and reward func-
tions. This typically involves executing actions in the en-
vironment and learning to both explore randomly and ex-
ploit the knowledge already learned regarding rewarding
actions. For the uninitiated reader, we refer to Sutton and
Barto (2018).

RECO: Abstraction-Guided Policy Recovery
Our aim is to automate the process of making decisions in
an environment given examples of good behavior provided
by an expert. These trajectories of expert decisions include
states and corresponding expert actions, but do not cover
the entire space of possible states and actions. Our behav-
ior cloning agent must use the given data to compute a pol-
icy that will be deployed online without any additional data
collection or computation.

We first focus on the discrete state-space (tabular) case,
where the lack of function approximation renders a behavior
cloning agent policy-less in states outside the data set. We
assume that a human supervisor is available to provide an
action when the agent has no policy to follow. The goal of
our method in these problems is to reduce the number of
calls to the human supervisor using only the data provided
by the expert without a substantial loss in performance.

We later extend our method to continuous state-space
problems and describe the modifications required to do so.
With the help of function approximation in continuous do-
mains, the agent can use its model to choose actions from a
state even if the expert has not visited the same state; how-
ever, as demonstrated in our experiments, this can lead to
sub-optimal behavior when the model is inaccurate. Here
our goal is to recover the agent from states where the imita-

561

tion policy is uncertain due to lack of coverage by the expert
data.

Problem Formalization
The problem considers optimizing a task represented as a
Markov decision process, where the state and action space
are known but the transition and reward function are un-
known. Our data set of trajectories provided by an expert
is in the form

D = {(s1, a1, s2), (s2, a2, s3), ..., (sT , aT , sT+1)}
containing T (state, action, next state) tuples. The set of
states found in D with actions provided by the expert is
called SD, where SD = {s ∈ S | (s, a, s′) ∈ D} and
SD ⊆ S . An imitation policy πD(s) that aims to directly
copy the expert behavior is defined for all s ∈ SD.

An abstraction mapping function

µ : S 7→ S̄
maps the state space S to a state space S̄ , where S̄ ⊆ S .
We assume the state space of our task is factored, thus the
state space S is the space spanned by the domains of k state
variables (Boutilier, Dearden, and Goldszmidt 2000):

S = {S0 × ...× Sk−1}.
The factored MDP description facilitates hand-design of
state abstractions where µ(s) is a masking function that re-
turns only the variables in s that are relevant to the recovery
task: µ(s) = s̄. The inverse function µ′(s̄) returns the set
of ground states that map to the abstract state s̄ under the
mapping function µ.

Our method RECO uses state abstraction to generate data
for learning a recovery policy πO that returns an agent to a
state in the expert trajectories from states outside SD.

Example In the classical taxi problem, a taxi agent in
a grid world is tasked with picking up a passenger from
a given location and dropping them off at their destina-
tion (Dietterich 2000). The variables in the factored state
description indicate the x- and y-coordinate of the taxi and
a reference to the locations of the passenger and destination,
i.e., s = (x, y, passenger, destination). The actions avail-
able areA = {south,north, east ,west , pickup, drop-off }.
Figures 1(a) and (b) indicate given expert behavior for dif-
ferent locations of the taxi in the grid, when the passenger
and destination locations are as shown. Suppose our agent
finds itself at location o, pictured in red, with the passenger
and destination shown in black. For this particular state of
the passenger and destination, the expert has not provided
an example, only the path given by the black arrows in
Figure 1(a). However, another trajectory, shown as the
blue arrows in Figure 1(b), for a different configuration of
passenger and destination does contain this taxi location.
By ignoring irrelevant information (the passenger and
destination), our agent can reason about actions that return
it to a known state. A RECO agent leverages the actions
in the blue path, taking them from its position at o and
getting back to the known policy (black path) which it then
executes, depicted in Figure 1(c). It does this by applying

P

D↑
↑
↑
↑
→→

o

P

D

←←←←↓
↓

P

D

↑
↑
→→

←←

(a) (b) (c)

Figure 1: Examples of expert trajectories are shown in (a)
and (b), given for two problem instances of the classical taxi
domain where the grid location is the location of the taxi, P
indicates the passenger location, and D the destination of the
passenger. In (c), we see the RECO policy for initial state o
learned from the data in (a) and (b).

what it knows in the abstract state space (x- and y-position)
to get back to a known state. In this case, µ = {x, y}.

We first describe the mechanics of RECO when a single
state abstraction is provided. In the section titled Abstraction
Selection, we lay out the conditions for suitable abstractions
and adapt RECO to the case where several candidate ab-
stractions have been provided and can be used in parallel.

RECO in Tabular Domains

In tabular domains, the imitation policy πD(s) samples an
action a according to a weighted distribution, weighted by
the number of times a was executed by the expert from
state s. This generalizes to the case where the expert policy
may be stochastic. We consider the environment to be deter-
ministic to simplify notation, and describe the extension to
stochastic domains later in this section. The given abstrac-
tion mapping function µ is applied to each state entry in the
data set to get an abstracted data set

D̄ = {(s̄1, a1, s̄2), (s̄2, a2, s̄3), ..., (s̄T , aT , s̄T+1)}.

The recovery problem of getting back to a state in the data
set from a state outside of SD is modelled as an MDP.

Recovery MDP The recovery MDP MO is defined over
the entire state space S augmented with an additional
sink state z. The action space is copied from the original
MDP. Any transition from a state in the expert trajecto-
ries transitions to the sink state, as the goal of recovery has
been reached. Abstract transitions are projected onto all the
ground states that map to the abstract state; this means we
copy the abstract transitions for all possible combinations
of the un-abstracted variables. Transitions that are not rep-
resented in the abstracted data set also transition to the sink
state, as we have no data available for these. The reward for
taking action at from state st is 1 if st is present in SD,
otherwise 0.

Definition 1 (Recovery MDP MO for tabular domains).
Given a deterministic MDP, a data set D generated by an
expert policy and an abstraction function µ, recovery MDP

562

MO = (SO,AO, TO,RO, γO) is specified as:

SO = S ∪ {z},
AO = A,

RO(st, at, st+1) =

{
1, if st ∈ SD,
0, otherwise.

TO(st, at, st+1) =

1, if st ∈ SD ∧ st+1 = z,

1, else if (s̄t, at, s̄t+1) ∈ D̄,
1, else if (s̄t, at) /∈ D̄ ∧ st+1 = z,

1, else if st = st+1 = z,

0, otherwise.

γO = (0, 1).

When the environment is stochastic, the transition func-
tion ofMO is defined by its maximum likelihood estimate.
This means that instead of assuming abstract transitions hap-
pen with probability 1, we replace the 1 on the second line
of the transition function in Definition 1 with:∑

s∗t∈µ′(s̄t)
N(s∗t , at, st+1)∑

s∗t∈µ′(s̄t)
N(s∗t , at)

,

where recall that µ′(s̄) returns all the ground states that map
to the same abstract state as s.

Policy Recovery using the Recovery MDP The fully-
defined recovery MDP can be solved using an off-the-shelf
method such as Value Iteration, producing the recovery pol-
icy πO which maximizes the expected discounted reward in
the recovery problem. The recovery policy takes actions that
correspond to finding the shortest path back to a state in the
expert trajectories. When acting online, if a RECO agent is
presented with a state outside of its expert trajectories, it has
the option of executing the recovery policy.

We note that the success of recovery depends on the data
we have, and we may not have the ability to control how we
collect data or how much data we collect. Fortunately, there
is a simple way to check for which states our recovery policy
is able to recover the agent. Our definition of a recoverable
policy is adapted from the proper policy definition applied
to stochastic shortest path problems (SSPs) (Mausam and
Kolobov 2012). Our recovery problem is similar to an SSP
except instead of no discounting and a negative reward for
every action taken, we have an infinite-horizon discounted-
reward problem with a discount factor 0 < γO < 1, a
reward of 1 for taking any action from a goal state, and a
reward of 0 everywhere else.
Definition 2 (Recoverable policy). A policy π applied to
MO is recoverable over some state space SP if, when fol-
lowing π from any state s ∈ SP , there is a positive probabil-
ity that some goal state sd ∈ SD will be reached in a finite
number of steps.

With this satisfied, every state in SP has some path un-
der policy πO that leads to a state in the expert trajectories.
Another difference between the recovery problem and SSPs
is that we are not guaranteed that our recovery policy can

P

D P

D

Figure 2: For the same two instances of the passenger and
destination locations (P and D respectively) and given the
expert trajectories shown in Figures 1(a) and 1(b), green in-
dicates the states in SD over which the imitation policy is
defined and red indicates the states in SP for which we have
a recoverable policy.

recover from any state, thus we must assess whether a pol-
icy πO is recoverable. Without access to the reward function,
we can make no conclusions about the value of our policy in
the real environment. However, we do know that the only
way for a policy to have a non-zero value in the recovery
MDP is if it reaches a state in the expert trajectories. We
then know that a policy is recoverable over SP if it has a
positive value for all states in SP , i.e.,

V (π)s0=s > 0, ∀s ∈ SP .
In the next section, we discuss the conditions for abstrac-

tion under which we are guaranteed that a recoverable pol-
icy obtained by solving the recovery problem will recover an
agent in the ground MDP. By checking the value of a policy
in a particular state in the recovery MDP, we can eliminate
non-recoverable policies which we know do not reach the
destination from that state. For states without a recoverable
policy, our agent executes an emergency action that requests
an action from an expert. Combined, the overall RECO pol-
icy is defined as follows.

Definition 3 (RECO policy in tabular environments). A tab-
ular RECO agent given an expert data set D and a single
recovery abstraction µ follows the aggregated policy from
state st:

πRECO(st,D, µ) =

πD(st), if st ∈ SD,
πO(st), if st ∈ SP ,
request, otherwise.

We highlight the state spaces SD and SP in our taxi ex-
ample in Figure 2.

Abstraction Selection
Our method requires an abstraction in the form of a subset of
state variables relevant to recovery, but not necessarily rel-
evant to finding the optimal policy in the true environment.
In this section, we detail the conditions on the abstraction
that ensure that a recoverable policy will recover an agent in
the ground MDP. We also discuss the emergent trade-offs in
choosing an appropriate abstraction as well as how to man-
age these trade-offs.

Two important concepts to introduce are recovery-
relevant actions and model-consistency in the recovery

563

MDP. In the recovery MDP, we project abstract transitions
back onto ground states, transitioning only the abstracted
variables according to the data set. We define a recovery-
relevant action as one that, in the recovery MDP, results in a
change of state with a non-zero probability (excluding tran-
sitions to or from the sink state). This leads to the following
definition:
Definition 4 (Recovery-relevant actions). The set of
recovery-relevant actions ∆ forMO is defined as:

∆MO = {a ∈ AO|
∃s∗∈SOTO(s, a, s∗) > 0 ∧ s 6= s∗ 6= z}.

In other words, any action that does not have any effect
on the abstract state is irrelevant to recovery. The set of
recovery-relevant actions is a function of both an abstraction
mapping and the expert trajectories to which it is applied. In
the taxi problem, if we select abstraction µ = {x, y}, then
the pickup and drop-off actions are recovery-irrelevant as
they have no effect on the x- or y-coordinate of the agent.

Model-consistency refers to whether the behavior in the
abstract space is obeyed for the ground states which map to
an abstract state.
Definition 5 (Model-consistent recovery MDP). A recovery
MDPMO is model-consistent with the ground MDPM if
the transition function agrees for all relevant actions in all
ground states that map to the same abstract state (excluding
transitions to the sink state z):

TO(st, at, st+1) = T (s∗t , at, µ(st+1)),

where st+1 6= z, ∀at ∈ ∆MO
∀s∗t ∈ µ′(µ(st)).

Our method assumes that the transition model in the re-
covery MDP is model-consistent with the transitions in the
ground MDP for relevant actions. With this criteria met, we
are guaranteed that a recoverable policy will return the agent
in the ground MDP to a state in our expert trajectories. In
the taxi example, the model-consistency criteria is not met
by any abstraction that includes {x} without {y} because of
the walls in the environment. We assume that expert knowl-
edge of the domain can produce abstractions that meet this
criteria, though they can also be determined empirically with
some confidence depending on the amount and coverage of
expert data given. It is also important to note that if the do-
main of any state variable is increased (exponentially in-
creasing the size of the state space), the abstraction defini-
tion will remain fixed and no further burden is put on the
designer.

It is possible that several abstractions fit the criteria for
model-consistency. A finer abstraction (i.e., smaller abstract
state space, more compression) might require less coverage
of the state space in the expert trajectories but then have a
lower recovery potential. We depict this graphically in Fig-
ure 3, where it is clear that a {y} abstraction can only re-
cover to states with the same x-position. A coarser abstrac-
tion takes into account more information when determining
the closest state, thus potentially recovering to more relevant
states, however finding recoverable policies requires more
coverage of the state space in the expert data. While several

Figure 3: Recovery-relevant actions from the expert trajec-
tories for the {x, y} (left) and {y} (right) abstractions pro-
jected back onto the taxi domain for all possible locations of
passenger and destination.

abstractions may fit our criteria for suitability, their success
is highly dependent on the actual data available. This brings
us to the question: given a fixed set of expert trajectories,
how can we determine the best abstraction for recovery?

Dynamic Policy Recovery with Parallel Abstractions
As the recovery MDP is defined and solved offline, there
is an opportunity to generate and solve the recovery prob-
lem for several candidate abstractions. We can use this set
of policies, which we call Π, to choose the most suitable for
a state we encounter online. Upon deployment, presented
with a state s outside of our trajectories, we choose a re-
covery policy from the set of policies which are recover-
able in s. This dynamic policy recovery is presented in Al-
gorithm 1. We assume that the recoverable policy produced
by the coarsest abstraction is the best choice as it incorpo-
rates the most state information in planning its path, and thus
lies nearer to the expert behavior. Therefore, the function
RecoveryPolicySelection() on line 15 returns the recover-
able policy produced by the abstraction with the largest ab-
stract state space. In our empirical evaluations, we show how
taking a dynamic abstraction approach can improve perfor-
mance of a RECO agent by effectively trading off abstrac-
tion size with the coverage of the data set.

RECO in Continuous Domains
We expand on the introduction of RECO for tabular prob-
lems with an adaptation for continuous-state discrete-action
problems. With the use of function approximation and the
now continuous state-space, we lose the assumptions and
formal definitions presented in tabular RECO. This section
is meant to touch on the changes necessary in adapting tab-
ular RECO to continuous problems as well as their current
limitations. We present continuous RECO assuming a sin-
gle abstraction has been given, though in principle dynamic
switching between abstractions could be applied.

Model Definition The imitation policy is learned with a
supervised approach, predicting expert actions for a given
state, trained on the data in D. We again call this policy πD.
As in the tabular version, a given abstraction function µ(s) is
applied to the data set resulting in abstracted trajectories D̄.

We gauge how close an encountered state is to our expert
trajectories with a distance measure d(s,D). For this mea-
sure, we use a simple weighted L1 norm calculation where
the weight vector is the size of the number of state vari-

564

Algorithm 1: Dynamic Tabular RECO
Result: Policy πRECO

1 Given a set of expert trajectories D;
2 Given a set of suitable candidate abstractions µC ;
3 Given number of test steps N ;
4 Initialize empty set of recovery policies Π = ∅;
5 foreach µ ∈ µC do
6 πO = GetRecoveryPolicy(µ,D) ;
7 Π = Π ∪ {πO} ;
8 end
9 t = 0;

10 while t < N do
11 Receive state st;
12 if st ∈ SD then
13 at = ImitationPolicy(D, st);
14 else if RecoverablePolicies(Π, st) 6= ∅ then
15 πR = RecoveryPolicySelection(Π, st);
16 at = πR(st);
17 else
18 at = RequestExpert(st);
19 end
20 Execute action at;
21 t = t+ 1;
22 end

ables. This returns the norm between state s and the clos-
est state in D (i.e., the smallest weighted norm). A second
distance measure da((s, a),D) returns the distance between
a (state, action) pair and the trajectory. For da, we calculate
the norm considering only states in the trajectory from which
action a was taken. Many other distance measures are pos-
sible and can replace the one we use (Taylor, Kulis, and Sha
2011; Garcia and Fernandez 2012; Bellemare et al. 2016).
In general, the issue of determining when a state is out-of-
distribution is an orthogonal problem to the one presented
here.

The transition and reward functions (see Definition 6) of
our continuous recovery problem can no longer be repre-
sented in tabular form. We want to capture the transitions in
the abstract space, thus we train a supervised learning model
on D̄ to predict abstract next states from abstract states and
actions. We call this predictor φT , where φT (s̄t, at) = s̄t+1.
In the tabular setting, we copied the abstract transition for all
possible combinations of the un-abstracted variables to ef-
fectively multiply our data set, something which is no longer
possible in the continuous case. For simplicity, we instead
make an assumption that our abstract state will transition
according to φT and the other variables remain unchanged.
Our transition function T ′O thus takes a full state st and ac-
tion at and transitions only the abstract variables, resulting
in st+1.

The reward function takes a (st, at, st+1) tuple and gives
a reward of 1 for entering a state only if the distance between
it and the closest state in the expert trajectories is lower than
a threshold ζD. The reward is 0 if (s̄t, at) is within a second
distance threshold ζµ of the closest abstract state in the ab-

stract data set and -1 if neither is true. An episode ends if the
agent reaches such a state or gets a reward of -1.

This leads to the following definition.

Definition 6 (Recovery MDP M′O for continuous do-
mains). Recovery MDPM′O = (S ′O,A′O, T ′O,R′O, γ′O)
is defined as:

S ′O = S,
A′O = A,

T ′O(st, at, φT (s̄t, at)) = st+1,

R′O(st, at, st+1) =

1, if d(st+1,D) < ζD,

0, else if da((s̄t, at), D̄) < ζµ,

−1, otherwise,

γ′O = (0, 1).

With the transition and reward function defined, we can
simulate the recovery environment. We initialize a random
starting state by sampling a state from the expert trajectories
and replacing the abstracted variables (those in mapping µ)
with a uniformly random value within their bounds. Given
an action, the environment transitions according to the tran-
sition function, producing a next state and reward from the
reward function. In practice, we find learning can be sped
up if an episode ends when a maximum number of steps is
reached with a large reward penalty. The simulator can be
used to solve the recovery problem with a standard contin-
uous state-space, discrete action-space reinforcement learn-
ing method, obtaining πO. For the continuous experiments
presented in the next section, we used a variant of Proximal
Policy Optimization (Schulman et al. 2017).

In the continuous case, we can generalize our models to
states outside our trajectory and avoid the need for a human
supervisor, activating the recovery policy when we are far
from our expert trajectories. As in the tabular case, we use
our recovery policy only if it has a positive value in our sim-
ulated MDP, meaning that it found a path from the particular
state we are in to a state appropriately close to the trajecto-
ries. This also stops us from trusting our recovery policy if
we did not run the simulator long enough to solve for a par-
ticular state. The space which spans the states over which
our recovery policy is recoverable is again called SP . The
combined RECO policy is defined below.

Definition 7 (RECO policy in continuous environments). A
continuous RECO agent given dataset D, abstraction map-
ping function µ, and distance thresholds ζD and ζµ takes an
action from st according to the following policy:

πRECO(st, µ,D, ζD, ζµ) =

πD(st), if d(st,D) < ζD,

πO(st), if st ∈ SP ,
πD(st), otherwise.

We use the recovery policy to safely guide our agent
closer to the given expert trajectories when the agent is in
a state far from the given data and we are confident that our
recovery policy can do so.

565

Empirical Evaluation
We conducted experiments in the classic taxi problem (Di-
etterich 2000) and a continuous problem where the agent is
tasked with navigating to a given location in an environment
with obstacles. In each trial, the learning for each agent was
done offline on the same set of given expert trajectories (a
trajectory is one episode). Agents were then deployed and
evaluated on their performance online in the test environ-
ment, initialized to a random starting state every episode en-
suring each agent is given the same starting state.

Tabular Experiments
The taxi problem consists of a 5x5 grid and has 4 possi-
ble passenger locations (plus 1 for when the passenger is
in the taxi) and 4 destination locations, leading to a total of
500 states. We generated expert trajectories by initializing
the agent in a random state and following a trained and con-
verged Q-learning greedy policy until episode termination.

We demonstrate the performance of four RECO agents:
three use a single abstraction and the last is the dynamic ap-
proach which chooses the best abstraction for every state ac-
cording to Algorithm 1. All RECO agents use a discount fac-
tor of 0.95 in solving the recovery MDP. The RECO agents
are then compared to three baselines on their performance in
100 trials of 100 test episodes. The Imitation agent follows
the imitation policy and calls for help in any state outside the
expert trajectories given. The Nearest Neighbor agent uses
a crude nearest neighbor approach to choose actions when
outside the expert trajectories, sampling an action from the
nearest Cartesian state in the given data set. In order to max-
imize the performance of this simple model, we instead con-
sider the nearest abstract Cartesian state according to the
abstraction function that gave the best performance in ex-
periments (in this case: {x, y}). The Factored Batch RL ap-
proach is a method that has been used as a baseline in other
offline RL work (Simão and Spaan 2019). It uses complete
knowledge of the transition dynamics in the form of a dy-
namic Bayesian network and calculates the parameters of
the model with the offline data. This baseline acts as the
upper bound of offline learning performance in a factored
MDP.

Results Figure 4 presents the results from the tabular ex-
periment. The top plot shows the percent of episodes in
which at least one request for an expert action was made
and the bottom plot displays the average episode reward
over 100 test episodes. Note that the Expert, Nearest Neigh-
bor and Factored Batch RL agents never call the expert.
All RECO agents show substantially fewer calls to the ex-
pert than the Imitation agent, with the Imitation agent call-
ing for an expert in 60% of test episodes even after 150
trajectories are provided. In comparing the RECO agents,
the choice of abstraction has a substantial effect on the per-
formance. As expected, there is a higher reward loss with
the smallest abstraction when given few expert trajectories;
this is due to the high loss of information, where recovery
is planned using actions less related to the expert behavior.
The largest abstraction slightly dominates the reward perfor-
mance when few trajectories are provided. The biggest dif-

0

20

40

60

80

%
of

ep
is

od
es

ca
lli

ng
ex

pe
rt

RECO {y}
RECO {x, y}
RECO {x, y, passenger}
RECO Dynamic

Imitation
Factored Batch RL
Nearest Neighbor
Expert

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

|D|

−5.0

−2.5

0.0

2.5

5.0

7.5

To
ta

le
pi

so
de

re
w

ar
ds

Figure 4: Performance on 100 test episodes of the 5x5 taxi
problem averaged over 200 trials of random initial states.
98% confidence interval indicated by shaded regions.

ference between RECO agents is seen in the number of calls
to a supervisor. Dynamic RECO effectively trades off the
number of calls to the expert with performance, demonstrat-
ing the fewest calls (of the RECO agents) while maintaining
high rewards. We also see that Dynamic RECO is on par
with our upper baseline Factored Batch RL, converging to
near-expert performance around 80 trajectories with almost
no calls to the expert. If we allow a threshold of around 10%
calls to an expert, RECO reaches near-optimal performance
with almost half the amount of data required as the upper
baseline. The Nearest Neighbor approach, despite attempts
to tune it to be as good as possible, performs very poorly.

Figure 5: Actions taken by the RECO agent in one test
episode of the continuous problem. Translucent lines depict
the 100 expert trajectories provided to the agent, where color
denotes the goal location. Solid points are actions taken on-
line; X marks the recovery policy and circles indicate the
imitation policy.

566

100 150 200 250 300 350 400

|D|

5

10

15

20

25

30

35

To
ta

le
pi

so
de

re
w

ar
ds

RECO
Imitation
Expert

Figure 6: Performance on 100 test episodes of the contin-
uous problem averaged over 200 trials of randomly initial-
ized episodes. 98% confidence interval indicated by shaded
regions.

Continuous Experiment

In the continuous problem, an agent is tasked with
navigating to one of 4 possible goal locations in an
environment that includes walls. There is a -1 reward
every time step to encourage the agent to solve the task
in as few time steps as possible and a large penalty
for hitting a wall or for reaching a maximum number
of time steps, all of which end the episode. The agent
receives a +100 reward when it reaches the goal (also
ending the episode). The state is described by variables
{x , y , x -displacement , y-displacement , goal x , goal y}
and the agent must choose an action from
{north, south,west , east}. Each action results in a
discrete magnitude of acceleration propelling the agent in
the corresponding direction, with acceleration decaying
each time step. We purposefully force the initial position to
be always on the same vertical half (in terms of x-position)
as the goal to ensure that parts of the state space are left
un-demonstrated by the expert.

The “expert” is a reinforcement learning agent trained
with Proximal Policy Optimization (PPO) on 3e6 time steps
of this task. In order to preserve reproducibility, all execu-
tions of PPO use the standard PPO2 implementation of the
Stable Baselines library (Hill et al. 2018). We use a weight-
ing for the distance measures of (1, 1, 0.1, 0.1, 10, 10),
meaning that the goal location is weighed heavily and the
displacement much less so when considering distance be-
tween states. The distance thresholds are set to ζD = 10
and ζµ = 6 and the discount factor is 0.99. The abstraction
we use is {x , y , x -displacement , y-displacement}. Both
the imitation agent and the transition functions are trained
neural networks with a single hidden layer of 100 neurons.
We ran PPO on the simulated recovery domain for 3e4 time
steps to obtain the recovery policy. The performance of
RECO is compared against the Imitation agent, which fol-
lows the imitation policy for any state encountered.

Results Figure 5 is a visualization of a single test episode
in the continuous environment, showing how RECO guides
an agent back to known states using actions that are similar
to those taken before in an abstract state. The imitation pol-
icy is then executed and the task solved. The results of our
experiments are plotted in Figure 6. RECO is superior to the
Imitation agent once it has enough data to leverage, indicat-
ing the success of the recovery policy in retrieving the agent
from states where its imitation model would be incorrect.
Both agents converge to sub-optimal performance due to the
purposeful limiting of the state space covered by the expert
demonstrations. When we allow the expert to initialize tra-
jectories from any random state, the imitation policy con-
verges to near-expert performance after around 1000 given
trajectories and the RECO policy does not have a noticeable
advantage. This emphasizes that RECO is especially suited
to improve behavior cloning in problems where the expert
demonstrations do not have good coverage of the state space.

Conclusion and Future Work
Safety-critical or otherwise costly real-world applications
are unlikely to allow automated decision-making algorithms
to freely take random actions online. Encoding existing
knowledge can make automated methods more applicable
in such scenarios. RECO does this by applying state ab-
straction to expert trajectories to learn a recovery policy that
steers an agent from states outside of the given data back to
states where it can confidently execute its imitation policy.
We show in experiments that RECO can drastically improve
the performance of a behavior cloning agent in tabular do-
mains, requiring far fewer calls to a human supervisor than
a naı̈ve behavior clone and achieving near-optimal perfor-
mance on par with the baseline. We also demonstrate how a
RECO agent can be implemented in continuous domains to
recover from states where a supervised-learned-based imita-
tion policy would otherwise fail. Our method is especially
equipped for scenarios where there are un-modelled effects
in the environment that force the agent into a state where its
imitation policy is poorly trained or defined. In future work,
we will investigate more efficient distance measures in con-
tinuous problems, including measures that take into account
the uncertainty in the imitation model. We also hope that
our novel approach will inspire tangential research into more
generalized problem descriptions.

Acknowledgments
We would like to thank Qisong Yang and Thiago Dias Simão
for their valuable feedback. This project is part of the re-
search program Physical Sciences TOP-2 with project num-
ber 612.001.602, financed by the Dutch Research Council
(NWO). This work has also received funding from the Euro-
pean Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No. 758824 —INFLUENCE).

567

References
Ainsworth, S.; Barnes, M.; and Srinivasa, S. 2019. Mo'States
Mo'Problems: Emergency Stop Mechanisms from Observa-
tion. In Advances in Neural Information Processing Sys-
tems, volume 32, 15182–15192. Curran Associates, Inc.

Bain, M.; and Sammut, C. 1996. A Framework for Be-
havioural Cloning. Machine Intelligence 15 103–129.

Bellemare, M.; Srinivasan, S.; Ostrovski, G.; Schaul, T.;
Saxton, D.; and Munos, R. 2016. Unifying Count-Based
Exploration and Intrinsic Motivation. In Advances in Neu-
ral Information Processing Systems, volume 29, 1471–1479.
Curran Associates, Inc.

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic Dynamic Programming with Factored Represen-
tations. Artificial Intelligence 121(1): 49 – 107.

Dietterich, T. G. 2000. Hierarchical Reinforcement Learning
with the MAXQ Value Function Decomposition. Journal of
Artificial Intelligence Research 13(1): 227–303.

Eysenbach, B.; Gu, S.; Ibarz, J.; and Levine, S. 2018. Leave
no Trace: Learning to Reset for Safe and Autonomous Rein-
forcement Learning. In International Conference on Learn-
ing Representations.

Fujimoto, S.; Meger, D.; and Precup, D. 2019. Off-Policy
Deep Reinforcement Learning without Exploration. In Pro-
ceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, 2052–2062. Long Beach, California, USA:
PMLR.

Garcia, J.; and Fernandez, F. 2012. Safe Exploration of State
and Action Spaces in Reinforcement Learning. Journal of
Artificial Intelligence Research 45: 515–564.

Garcı́a, J.; and Fernández, F. 2019. Probabilistic Policy
Reuse for Safe Reinforcement Learning. ACM Transactions
on Autonomous and Adaptive Systems 13(3).

Hester, T.; Vecerı́k, M.; Pietquin, O.; Lanctot, M.; Schaul,
T.; Piot, B.; Sendonaris, A.; Dulac-Arnold, G.; Osband, I.;
Agapiou, J. P.; Leibo, J. Z.; and Gruslys, A. 2019. Deep
Q-learning from Demonstrations. In Proceedings of the
32nd AAAI Conference on Artificial Intelligence, 4967–
4974. Honolulu, USA: AAAI Press.

Hill, A.; Raffin, A.; Ernestus, M.; Gleave, A.; Kanervisto,
A.; Traore, R.; Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol,
A.; Plappert, M.; Radford, A.; Schulman, J.; Sidor, S.; and
Wu, Y. 2018. Stable Baselines 2.10.0. https://github.com/
hill-a/stable-baselines.

Kumar, A.; Fu, J.; Soh, M.; Tucker, G.; and Levine, S. 2019.
Stabilizing Off-Policy Q-Learning via Bootstrapping Error
Reduction. In Advances in Neural Information Processing
Systems, volume 32, 11784–11794. Curran Associates, Inc.

Kumar, A.; Zhou, A.; Tucker, G.; and Levine, S. 2020. Con-
servative Q-Learning for Offline Reinforcement Learning.
In Advances in Neural Information Processing Systems, vol-
ume 33. Curran Associates, Inc.

Laskey, M.; Staszak, S.; Hsieh, W. Y.; Mahler, J.; Pokorny,
F. T.; Dragan, A. D.; and Goldberg, K. 2016. SHIV: Re-
ducing Supervisor Burden in DAgger using Support Vectors
for Efficient Learning from Demonstrations in High Dimen-
sional State Spaces. In 2016 IEEE International Conference
on Robotics and Automation.
Mausam; and Kolobov, A. 2012. Planning with Markov
Decision Processes: An AI Perspective. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley Series in
Probability and Statistics. Hoboken, NJ, USA: John Wiley
& Sons, Inc.
Reddy, S.; Dragan, A. D.; and Levine, S. 2020. {SQIL}:
Imitation Learning via Reinforcement Learning with Sparse
Rewards. In International Conference on Learning Repre-
sentations.
Richter, C.; and Roy, N. 2017. Safe Visual Navigation via
Deep Learning and Novelty Detection. Robotics: Science
and Systems XIII .
Ross, S.; and Bagnell, D. 2010. Efficient Reductions for
Imitation Learning. In Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics,
volume 9 of Proceedings of Machine Learning Research,
661–668. JMLR Workshop and Conference Proceedings.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms
arVix:1707.06347.
Siegel, N.; Springenberg, J. T.; Berkenkamp, F.; Abdol-
maleki, A.; Neunert, M.; Lampe, T.; Hafner, R.; Heess, N.;
and Riedmiller, M. 2020. Keep Doing What Worked: Behav-
ior Modelling Priors for Offline Reinforcement Learning. In
International Conference on Learning Representations.
Simão, T. D.; and Spaan, M. T. J. 2019. Safe Policy Im-
provement with Baseline Bootstrapping in Factored Envi-
ronments. In Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, 4967–4974. Honolulu, USA: AAAI
Press.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. Cambridge, MA, USA: The MIT
Press, 2nd edition.
Taylor, M. E.; Kulis, B.; and Sha, F. 2011. Metric Learning
for Reinforcement Learning Agents. In Proceedings of the
10th International Conference on Autonomous Agents and
Multiagent Systems.
Thananjeyan, B.; Balakrishna, A.; Nair, S.; Luo, M.; Srini-
vasan, K.; Hwang, M.; Gonzalez, J. E.; Ibarz, J.; Finn, C.;
and Goldberg, K. 2020. Recovery RL: Safe Reinforcement
Learning with Learned Recovery Zones. arXiv:2010.15920.

568

