
Robust Opponent Modeling via Adversarial Ensemble Reinforcement Learning

Macheng Shen and Jonathan P. How
Massachusetts Institute of Technology

77 Massachusetts Ave, Cambridge
Massachusetts, 02139

{macshen, jhow}@mit.edu

Abstract

This paper studies decision-making in two-player scenarios
where the type (e.g. adversary, neutral, or teammate) of the
other agent (opponent) is uncertain to the decision-making
agent (protagonist), which is an abstraction of security-domain
applications. In these settings, the reward for the protagonist
agent depends on the type of the opponent, but this is private
information known only to the opponent itself, and thus hid-
den from the protagonist. In contrast, as is often the case, the
type of the protagonist agent is assumed to be known to the op-
ponent, and this information-asymmetry significantly compli-
cates the protagonist’s decision-making. In particular, to deter-
mine the best actions to take, the protagonist agent must infer
the opponent type from the observations and agent modeling.
To address this problem, this paper presents an opponent-type
deduction module based on Bayes’ rule. This inference module
takes as input the imagined opponent’s decision-making rule
(opponent model) as well as the observed opponent’s history
of actions and states, and outputs a belief over the opponent’s
hidden type. A multiagent reinforcement learning approach is
used to develop this game-theoretic opponent model through
self-play, which avoids the expensive data collection step that
requires interaction with a real opponent. Besides, this mul-
tiagent approach also captures the strategy interaction and
reasoning between agents. In addition, we apply ensemble
training to avoid over-fitting to a single opponent model dur-
ing the training. As a result, the learned protagonist policy is
also effective against unseen opponents. Experimental results
show that the proposed game-theoretic modeling, explicit op-
ponent type inference and the ensemble training significantly
improves the decision-making performance over baseline ap-
proaches, and generalizes well against adversaries that have
not been seen during the training.

Introduction
Recent advances in deep reinforcement learning (DRL) have
achieved breakthroughs in solving challenging decision-
making problems in both single-agent environments (Mnih
et al. 2013; Hausknecht and Stone 2015; Andrychowicz et al.
2018) and multiagent games (Silver et al. 2017; Moravčı́k
et al. 2017; Jaderberg et al. 2018; OpenAI 2018; Schrittwieser
et al. 2019). Among these multiagent games, some have fully
observable states, and others includes hidden states that are

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

partially-observable (or unobservable) to some agents. Nev-
ertheless, the agent types in these games are known to all
the agents. For example, Go is a zero-sum game where the
two players compete with each other, where player 1 knows
that its opponent player 2 is playing an adversarial role that
tries to minimize player 1’s winning probability. However,
there also exist many important multiagent scenarios in which
some of the agent types are uncertain or not well known to
all. For example, in a cyber-security scenario, the network
administrator (protagonist) observes signals that could have
been sent by normal users (neutral) or by malicious attacker
agents (adversary), without knowing the type of each indi-
vidual (Hereafter, we refer to the second agent of uncertain
types as opponent). Given this type uncertainty, the network
administrator needs to infer the identity of the signal sender
before making the decision of blocking the signal or not,
which significantly increases the complexity of the network
administrator’s decision-making process.

An opponent model is typically required, either explic-
itly (Lockett, Chen, and Miikkulainen 2007; He et al. 2016;
Carmel and Markovitch 1998; Chakraborty and Stone 2014),
or implicitly (Bard et al. 2013; Bjarnason and Peterson 2002;
Fagan and Cunningham 2003; Sohrabi, Riabov, and Udrea
2016), to make such inference feasible. An explicit modeling
approach tries to model the opponent’s policy directly, while
an implicit model instead estimates intermediate statistics
such as the anticipated value of the protagonist agent’s policy
against the opponent (Rubin and Watson 2011). In the sce-
narios with uncertain opponent types, the implicit opponent
modeling approach could be predicting opponent’s hidden
type from the observation of opponent’s states and actions,
while an explicit modeling approach also permit this hid-
den type inference by using the Bayes’ rule. We will show
evidence that explicit opponent modeling leads to superior
performance compared with implicit opponent modeling.

One simple explicit opponent modelling approach is to
treat the opponent as a goal-directed Markov Decision Pro-
cess MDP) agent by specifying a reward function and then
learn/use the optimal goal-achieving policy as the opponent
model. This approach has two limitations. First, an adver-
sarial opponent has the incentive of concealing its identity
through disguise behavior. For example, an attacker might
mimic a normal user’s behavior to avoid being detected imme-
diately, while a simple goal-directed reward cannot capture

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

578

this strategic behavior. We argue that a game-theoretic oppo-
nent model which captures the full interaction and strategic
reasoning between the protagonist agent and the opponent
agent is superior than a goal-directed opponent model of
single-agent perspective. The second limitation of using the
opponent’s optimal policy as the opponent model is the high
sensitivity with respect to modeling error, which could result
in significant performance degradation against a previously
unseen opponent. To mitigate sensitivity and improve the
robustness of the opponent model, we propose to learn an
ensemble of diverse opponent policies through multiagent
reinforcement learning (MARL) and distill these policies to
form an ‘average’ opponent model for inferring the hidden
type of an opponent from its observed state-action history.

This paper presents an algorithmic framework for learning
robust policies in multiagent scenarios with uncertain oppo-
nent types 1. We focus on the scenarios where the opponent
type is unknown to the protagonist agent, but the protagonist
agent’s identity is certain to the opponent. We are interested
in learning an opponent model for the protagonist to update
its belief on the opponent type and defend robustly against
previously unseen opponent. This setting is an abstraction of
security-domain scenarios, but has seldom been well-studied
in the context of MARL.

In summary, the paper has two main contributions: We
derived a recursive rule for explicitly updating the belief on
opponent’s hidden types, which significantly improves the
decision-making quality in the security-domain scenario com-
pared against the standard Recurrent Neural Network (RNN)
based approach (implicitly infer the hidden types) in partially-
observable domain. We developed a game-theoretic opponent
modeling approach which captures more sophisticated adver-
sarial behaviors than what a goal-directed MDP opponent
model can capture. As a result, the protagonist agent can
learn a stronger policy against sophisticated adversaries. We
also showed that learning an ensemble of diverse adversarial
policies is an effective way to improve the robustness of the
protagonist policy against previously unseen adversaries.

Preliminary
This section reviews the preliminary of the decision-making
framework and solution techniques.

Decision-making Framework
The multiagent scenarios with uncertain opponent types
as described in the Introduction Section is a special case
of Bayesian Games. A Bayesian game (BG) (Cheon and
Iqbal 2008) is given by G = 〈I, 〈S,H〉, {b0}, {Ai}, {Oi},
P, {Ri}〉, where,
• I is a finite set of agents indexed by 1, . . . , n,
• Ω = 〈S,H〉 is the set of state of nature, which includes the

physical states and the agent hidden states corresponding
to agent types in our problem,

• b0 ∈ ∆(S ×H) is the common prior probability distribu-
tion over Ω, where ∆ is the probabilistic simplex,

• Ai is the action space of each agent, and we use a =
〈a1, . . . , an〉 to denote the joint action, with ai ∈ Ai,
1code: github.com/MachengShen/robust opponent modeling

• Oi is the observation space for each agent, and we use
o = 〈o1, . . . , on〉 to denote the joint observation, with
oi ∈ Oi,

• P is the Markovian state transition and observation proba-
bility, denoted as PT (s′|s,a) and PO(o|s,a),

• Ri : Ω×A → R is the reward function of each agent.

Note that the reward function depends on both the state,
action and the hidden agent types. The same action against
different types of opponents could result in rewards of op-
posite signs (positive v.s. negative). As a result, correctly
inferring the opponent’s type is crucial for the protagonist
agent to maximize its reward.

Belief Space Reward
In partially observable domains, the belief-space value func-
tion is used instead of the state value function for decision-
making, which is defined as the expected cumulative reward
with respect to the state-action distribution under the belief
space policy π,

V π(b0) =
∞∑
t=0

γtEst∼p(st),at∼π(bt)[R(st, at)], (1)

where p(st) is the state distribution and bt is the belief over
the state. If the belief is unbiased, then p(st) = b(st) and
Eq. 1 reduces to

V π(b0) =
∞∑
t=0

γtr(bt, at), (2)

where r(b, a) = Es∼b(s)[r(s, a)] is the belief-space reward.
In model-free reinforcement learning (RL), reward is sam-
pled from the environment at each step. The belief-space
reward sample r(bt, at) has lower variance than the actual
reward sample r(st, at) because the uncertainty associated
with the state distribution has been analytically marginalized
out. This low variance is beneficial for RL algorithms. In
general, however, the state distribution pt and the belief bt
could be different, for example, when the environment model
P used for belief update is biased. In this case, the policy
maximizing the belief space cumulative reward Eq. 2 does
not necessarily maximize the actual cumulative reward Eq. 1.
This mismatch is inevitable in multiagent scenarios with un-
certain opponent types, because it is impossible to perfectly
model an opponent, which makes these type of problems chal-
lenging. Therefore, developing an accurate opponent type
inference scheme is crucial for learning a good belief-space
policy.

Approach
We first give an overview of our approach. We use MARL
to derive a game-theoretic model of the opponent, where
the protagonist agent and the opponent agent are trained
against each other. Note that this learned opponent model is
an ‘imagined opponent’, which is different than the unseen
opponent during the testing. This opponent model is only
used to update the protagonist agent’s belief about the type
of the opponent during the testing. We use neural network to

579

represent a belief space policy for the protagonist agent. The
belief state is updated via Bayes’ rule using the learned op-
ponent model. The opponent model learning process consists
of an ensemble policy training step and a policy distillation
step. We apply a neuro-evolutionary method to improve the
diversity of the ensemble population to avoid over-fitting to a
single opponent model, which improves the robustness of the
opponent modeling. The above steps are illustrated in Fig. 1.
We present the detail of each step in the following sections.

MARL with Ensemble Training
To improve the policy robustness of the protagonist agent, we
formulate its RL objective as the average cumulative reward
against an ensemble of opponent policies of size K, as in
(Lowe et al. 2017),

J (πi) = Ek∼unif(1,K),
ai∼πi,

a−i∼π(k)
−i

[∞∑
t=0

γtri(s,a)

]
, (3)

where unif(1,K) denotes the uniform distribution. The pol-
icy ensemble {π(k)

−i , k = 1, 2, ...,K} is also learned from
training the opponent agent against the protagonist policy.
Via this concurrent learning, both the protagonist agent and
its opponent improve their policies. Nonetheless, there is no
explicit mechanism to enforce distinction among the policies
within the ensemble. As a result, there could be policies that
are very similar to the others. To address this redundancy
issue, we apply the cooperative evolutionary reinforcement
learning (CERL) approach (Khadka et al. 2019). The key idea
is to use different hyper-parameter settings for each opponent
policy, use an off-policy learning algorithm and a shared ex-
perience replay buffer to improve the sample efficiency for
efficient training.

Belief Space Policy and Belief Update
We use the belief space approach for agent policy learning.
Agents explicitly maintain a belief over the hidden states
(including the uncertain opponent types), and learns a belief-
space policy that maps belief to action. We parameterize this
mapping using a multi-layer perceptron (MLP). Instead of
Eq. 3, the learning objective becomes,

J (πi) = Ek∼unif(1,K),
ai∼πi(bi),

a−i∼π(k)
−i

[∞∑
t=0

γtri(bi,a)

]
. (4)

A belief update mechanism is required to fully specify
the agent policy. The belief is the posterior distribution
over the hidden states given action and observation history,
bti = p(st, ht|o0:t

i). The intuition behind this hidden state
inference is: the observation is affected by the joint action,
which depends on the joint policy as well as the hidden type;
the joint policy also depends on some hidden state such as
agent type. Therefore, reasoning about the hidden agent type
via modeling the agent policy is possible.

We present the belief update rule for hidden type inference,
starting from introducing our key assumptions.

Assumption 1 (Objective observation). Agents’ observa-
tions are conditionally independent of their internal type
states, given the physical state and joint action.
Assumption 2 (Independent decision-maker). Each agent i
makes its own decision conditioned on its own type variable
hti, and its immediate observation oti.
Assumption 3 (Time-invariant agent type). Within each
episode, the agent types are sampled at the beginning of
this episode and do not change over time.

Based on these assumptions, we derive the belief update
scheme beginning from the Bayes’ rule,

bti ∝ p(oti|st, ht, o0:t−1
i)p(st, ht|o0:t−1

i) (5)
the first term of which can be written as

p(oti|st, ht, o0:t−1
i) = p(oti|st, ht)

=

∫
p(oti|at, st, ht)p(at|st, ht)dat

(6)

where the first term, p(oti|at, st, ht), is the observation
probability. It is reasonable to assume p(oti|at, st, ht) =
p(oti|at, st) = PO(oti|at, st), i.e., agents’ observations are
independent from their internal type states (see Assumption
1). The second term in Eq. (6) p(at|st, ht) is the key connec-
tion between opponent type inference and opponent policy
modeling. Intuitively, this term is closely related to agent
policy, we introduce the joint observation immediately be-
fore all the agents taking actions, denoted as ot

−
, and rewrite

p(at|st, ht) as follows,

p(at|st, ht) =

∫
p(at|ot

−
, st, ht)p(ot

−
|st, ht)dot

−
. (7)

The second term p(ot
− |st, ht) is the observation probabil-

ity PO(ot
− |st). This probability is not conditioned on the

immediate joint actions, because the joint actions have not
been taken yet. The first term p(at|ot− , st, ht) is related to
the joint policies. In order to reveal this connection, we in-
voke Assumption 2. Based on this assumption, we have the
following factorization,

p(at|ot
−
, st, ht) = p(at|ot

−
, ht) ≈

N∏
j

πj(o
t
j |hj). (8)

To summarize, Eq. (6) can be represented as:
p(oti|st, ht, o0:t−1

i) = Eat∼π(ō|h)[PO(oti|at, st)], (9)

where ō =
∫
PO(ot

− |st)dot− . The interpretation of Eq. (9)
is that the probability of receiving an observation oti is the
expected observation by marginalizing out all the possible
joint actions over the observation probability PO(oti|at, st),
where the probability of the joint actions π(ō|h) is obtained
from the joint policies using the expected joint observation
of all the agents.

The second term in Eq. (5), p(st, ht|o0:t−1
i) can be ex-

pressed as∫
p(st, ht|st−1, ht−1)p(st−1, ht−1|o0:t−1

i)dst−1dht−1

=

∫
p(st, ht|st−1, ht−1)bt−1

i dst−1dht−1. (10)

580

Figure 1: Illustration of the workflow: we train one protagonist policy that uses an internal opponent model for belief update.
The opponent model is learned by distilling an ensemble of opponent policies trained against the protagonist policy. Both the
protagonist and the opponent improve their policies concurrently in the training environment

To further simplify this expression, we invoke
Assumption 3 so that p(st, ht|st−1, ht−1) =
p(st, ht|st−1, ht−1)δ(ht|ht−1), where δ(ht|ht−1) de-
notes the Dirac-delta measure. With this assumption, Eq. (10)
simplifies to

p(st, ht|o0:t−1
i) =

∫
p(st|st−1, ht)bt−1

i dst−1. (11)

Combining Eqs. (5), (9), and (11) yields the recursive belief
update rule,

bti ∝ Eat∼π(ō|h)[PO(oti|at, st)]
∫
p(st|st−1, ht)bt−1

i dst−1,

(12)
which has the following interpretation: To infer the state of
current step, we can predict it based on the posterior belief
of the last step, by propagating the physical state distribu-
tion and correcting the belief over the hidden type variable
via comparing the actual observation with the anticipated
observation according to agent policy modeling.

Remark 1. In the belief update rule, the inference over the
hidden type variable is implicit inside the expectation term.
The observation probability is crucial to the discriminative
power of this inference. To illustrate this point, consider an
extreme case where the observation contains no information
about agents’ actions, i.e., PO(oti|at, st) is not a function of
at. In this case, this expectation term will be independent
of the joint policy (will be a constant due to normalization
condition of expectation). As a result, no information about
the hidden type variable can be extracted from this term.
This makes sense, because if the observation tells us nothing
about the actions taken by the other agents (dictated by their
policies and hidden types), then it is impossible to update our
belief over their hidden types. Conversely, if the observation
contains full information about the joint action (e.g., the pro-
tagonist directly observes the joint action), this expectation
term would be highly dependent on the joint policies (there-

fore, on the hidden type variable), and the discriminative
power of this inference scheme is maximized.

The observation probability PO(oti|at, st), the state tran-
sition probability p(st|st−1, ht−1), and agent policies π, are
required to implement the belief update, which is anticipated.
This work focuses on a special case in which the physical
states are fully observable to all the agents, so agents do not
need to maintain a belief over st. This assumption simplifies
the computational aspect of the problem, but it does not di-
minish the central difficulty of the problem, i.e., inferring the
hidden type of opponent.

To approximate the policies of agent j of each possible
type {h(m)

j }Mm=1, recall that, in the ensemble training step,

we create K different policies {π(k)
j,m}Kk=1 for each agent of

each type. Here we use shorthand πj,m to denote agent j
with type h(m)

j . Each policy within one ensemble can be in-
terpreted as one of the likely strategies that could be adopted
by agent j with type h(m)

j . However, in the belief update
equation, we need only one single policy for agent j with
type h(m)

j . As a result, we must synthesize the policy en-
semble into one representative policy that best represents
the average behavior of the policy ensemble. We learn this
representative policy by minimizing the information theoretic
distance (Kullback−Leibler (KL) divergence) between this
policy and the policy ensemble. The resulting optimization
problem to learn the representative policy π0

j,m is then

J(π0
j,m) =

K∑
k=1

KL(π
(k)
j,m, π

0
j,m), (13)

which is policy distillation (Teh et al. 2017). The solution to
this minimization is,

π0
j,m =

1

K

K∑
k=1

π
(k)
j,m, (14)

581

Procedure 1 Ensemble evaluation
1: Fix the protagonist policy
2: Train a single opponent policy against the fixed protago-

nist policy
3: Obtain the average protagonist agent reward rp and op-

ponent reward ro after training

Procedure 2 Ensemble Optimization

1: Randomly select an operation ξ from {pop, append,
exchange} to apply on the policy ensemble

2: Obtain a new metrics ρnew via Procedure 2
3: Accept the operation ξ with probability p, where
p = exp(min{0, ρold − ρnew}/T)

which happens to be the average over the policies within one
ensemble. As a result, we can approximate π0

j,m by training a
policy distillation network to minimize the residue of Eq. (14)
using data sample, which is computationally much more
efficient than calculating all the K policies during testing.

Policy Ensemble Optimization
The ensemble training step typically improves the robustness
of the protagonist agent’s policy. However, two problems
need to be addressed to make this approach more effective
and efficient. First, we want a metric for measuring policy
robustness and we want to explicitly optimize this robustness
metrics. Second, we want to reduce the additional computa-
tion overhead introduced by ensemble training.

We address these two problems by training a hold-out ad-
versary agent to exploit the protagonist agent’s policy, and
use the resulted protagonist agent’s reward as a robustness
score. Instead of using a fixed-size ensemble, we dynamically
resize the ensemble through three operations: pop, append,
and exchange. pop randomly removes one policy from the
ensemble and pushes it into a deactivation-set. append ran-
domly selects one policy from the deactivation-set and adds it
to the ensemble. exchange randomly selects one policy from
both the ensemble and the deactivation-set and exchanges
them.

The objective of modifying the ensemble is to obtain a
good trade-off between robustness and computational com-
plexity, which is dominated by the ensemble size. We propose
to measure the robustness via Procedure 1, and we define the
following metric (with weights λi)

ρ = −rp + λ1r
o + λ2K, (15)

where K is the varying size of the policy ensemble. The
combined reward term −rp + λ1r

o is a measure of the ro-
bustness of the protagonist policy, which is noisy due to the
intrinsic stochasticity of RL, while K is a surrogate measure
for computation complexity. Minimizing ρ leads to a trade-
off between policy robustness and computation complexity.
We interpret this minimization problem as a stochastic op-
timization over the powerset of the initial policy ensemble.
We solve this stochastic optimization via simulated annealing
(Procedure 2).

Hyper-parameter Value
Opponent loss weight λ1 0.1
Ensemble size weight λ2 1.0

Initial temperature T0 30.0
Minimum temperature Tmin 0.2

Temperature decay rate 0.975

Table 1: Hyper-parameter of ensemble optimization

Figure 2: Sketch of the scenario, the opponent (bottom mid-
dle) could be an adversary or a neutral agent. The protagonist
agent (upper right corner in the green region) must infer the
identity of the opponent and tag the adversary and let the
neural agent pass.

Evaluation
This section addresses the following questions:
1. Is it necessary to use ensemble training, considering its

additional computation overhead?
2. Is it beneficial to explicitly model opponent policy and

maintain a belief?
3. How much improvement do we get from ensemble train-

ing?

Scenario: Urban-security Game
We design a two-player urban-security game with uncertain
opponent types to evaluate our algorithm, as illustrated in
Fig. 2. There are two agents: the protagonist agent (the offi-
cer) and the opponent agent with two possible types (either
a neutral agent or an adversary). The opponent’s objective
is to reach its home base (a neutral opponent goes to the
ally’s base, the blue castle, while an adversarial opponent
goes to the enemy’s base, the red castle). The protagonist’s
objective is to identify the type of its opponent and obtain
reward by tagging the adversarial opponent and let pass the
neutral opponent. Mistakenly tagging a neutral would incur a
large penalty to the protagonist. The protagonist cannot enter
the blue region of the map, so once the opponent has passed
the green region and entered the blue region, the protago-
nist cannot tag it anymore. If the opponent is an adversary,

582

it receives a large penalty if tagged. The opponent always
receives penalty if it has not reached its base, and the penalty
increases with its distance from its base. Based on the game
rules, an adversarial opponent could try multiple strategies.
For example, one strategy is to rush towards its home base to
minimize the distance penalty. However, if it takes this greedy
strategy, the protagonist can quickly identify this adversary
and try to tag it (large penalty for the adversary). Another
strategy is to initially head towards the ally base, to trick the
protagonist agent into believing that the opponent is a neutral
opponent. Once the adversary is close enough to the blue
region, it can safely head to its base. This strategy incurs
a larger distance penalty but might get a higher reward by
avoiding being tagged.

State and Action Space The state of each agent
is its 2-d position, i.e., Si = [0, 8] × [0, 8]. The
protagonist agent has a discrete action space Ap =
[move left,move right,move up,move down, tag, probe],
and the opponent agent’s action space is Ao =
[move left,move right,move up,move down].

Each of the ‘move’ action changes the agent position by
one unit distance. The tag action succeeds if and only if the
distance between the two agents is less than 2.5. The probe
action is equivalent to query a noisy measurement of the
opponent’s true type, where there is 0.8 probability getting
the correct type and 0.2 probability getting the wrong type.
The protagonist agent could take this probe action to help
with its inference besides simply observing the opponent.
Each probe action incurs cost, so the protagonist agent has to
wisely decide when and how many times to probe.

Reward The reward of the opponent agent consists of two
parts: (1) rd = −0.25d2/5, where d is its distance from its
home base; (2) rtagged = −10 if being tagged.

The state-action reward of the protagonist agent consists of
several parts: (1) rtag adversary = 10 if tagging an adversarial
agent; (2) rtag neutral = −20 if tagging a neutral agent; (3)
rd2o = −0.25d

2/5
o , where do is the distance between the pro-

tagonist agent and the opponent. This is a heuristic reward
to help the protagonist agent learning sensible behaviors;
(4) Tag cost rtag cost = −0.2, no matter tagging is success-
ful or not; (5) Probe cost rprobe cost = −0.25C, where C is
the cumulative counts of the probing action so far, i.e., the
probe cost per time increases as the total number of probing
increases. This effectively prevents the agent from abusing
the probe action.

Ensemble Training vs. Single Model
To answer the first question, we compared the protagonist
policy learned from training against an ensemble of opponent
policies and that from training against a single opponent
policy. We used a similar ensemble as used in (Khadka et al.
2019), which consists of four opponent policies, each policy
is learned from training against the protagonist policy. We
used four different discount factors for the opponent learning
objectives: γ1 = 0.9, γ2 = 0.99, γ3 = 0.997, γ4 = 0.9995.
An interpretation of this setting is a variety of opponent
playing styles ranging from myopic to far-sighted strategies.

Algorithm* Protagonist Adversary
belief space, with EO & CE -14.4±1.49 -83.0±17.0
LSTM, with EO & CE -17.7±1.9 -66.2±13.8
belief space, w/o EO & CE -16.5±1.1 -58.6±24.9
LSTM, w/o EO & CE -16.8±3.1 -49.4±6.6

* EO: ensemble optimization, CE: cooperative evolution.

Table 2: Mean evaluation reward: vs. LSTM

For comparison, we also trained the protagonist policy in-
dividually against each opponent model, so we obtained five
protagonist policies in total. For evaluation, we trained five
separate opponent evaluation policies, each corresponding to
one of the protagonist policies. The evaluation policies all
used the same discount factor γ = 0.99.

Fig. 3(a) and Fig. 3(b) (each curve is averaged over three
runs) show the training and evaluation rewards. During train-
ing, the single model policies generally lead to higher protag-
onist reward, while the ensemble training results in the lowest
protagonist reward. This suggests that the protagonist policy
overfits to one of the single opponent models, thus achieving
high training reward but low evaluation reward. In contrast,
the protagonist policy trained against the ensemble achieves
the best evaluation reward. It is worth pointing out that, in the
second single model setting, although the hyper-parameter
γ2 = 0.99 is the same as that of the evaluation opponent, the
evaluation reward is still significantly worse than the train-
ing reward. This is not surprising, as the agent could learn
different policies even with the same hyper-parameter set-
ting. Therefore, overfitting is almost inevitable when training
against a single model.

Belief Space Policy vs. Implicit Approach via RNN
To answer the second question, we replaced belief space pol-
icy with a recurrent policy parameterized by a Long short
term memory network (LSTM). Fig. 4 (histogram of rewards
from 10 runs) and Table 2 (mean rewards) show the com-
parison between these two settings, where the belief space
policy consistently outperforms the recurrent policy. This
result agrees with our conjecture that learning a recurrent
policy is difficult due to the lack of prior knowledge on the
information structure and the high-variance of the state-space
reward.

Ablation Study
To answer the third question, we compared our algorithm
with its ablated versions: (I) without neuro-evolution, (II)
without both neuro-evolution and ensemble optimization. For
the ablated version II, we randomly sampled subsets of the
ensemble from its powerset and used the fixed subset for
training. We ran 10 independent simulations for each of the
ablated version. Fig. 5 (histogram of rewards from 10 runs)
and Table 3 (mean rewards) shows the evaluation rewards of
the full and ablated versions of our algorithm. This result sug-
gests that both neuro-evolution and ensemble optimization
have important contributions to the performance improve-
ment.

583

(a) Protagonist training reward (b) Protagonist evaluation reward

Figure 3: Training and evaluation rewards of the protagonist agent: Single opponent models (γ = 0.9, γ = 0.99, γ = 0.997,
γ = 0.9995) performs better than ensemble training in the training phase due to overfitting to simple opponent models, while
ensemble training outperforms single opponent models in evaluation

Ablated version* Protagonist Adversary
with EO & CE -14.4±1.49 -83.0±17.0
w/o EO -15.5±2.2 -65.8±28.5
w/o EO & CE -16.5±1.1 -58.6±24.9

* EO: ensemble optimization, CE: cooperative evolution.

Table 3: Mean evaluation reward: ablation study

Accuracy of Hidden Type Inference

To gain insight into the reason behind the results shown
above, we present the accuracy of the opponent’s hidden type
inference under the different opponent modeling settings:

1. MDP-S: The baseline approach, where the opponent agent
is modeled as a goal-directed MDP agent, and the optimal
goal-achieving policy is used by the protagonist agent for
opponent type inference.

2. GT-S: A game theoretic opponent modeling approach with
a single opponent policy where the protagonist agent and
the opponent concurrently update their policies during
the training, and the protagonist agent uses this learned
opponent model for type inference during the testing.

3. GT-E: A game theoretic opponent modeling approach with
an ensemble of opponent policies, and the protagonist
agent uses the distilled policy from this ensemble for type
inference during the testing.

We randomly sampled the opponent type with an equal prob-
ability (50%) of neutral and adversary. Table 4 shows the
average true positive rate (TPR, successfully identify an ad-
versary), true negative rate (TNR, successfully identify a
neutral), precision, recall, and mean rewards for both agents.

Metrics*/Approach MDP-S GT-S GT-E
TPR10 0.12 0.34 0.68
TPR20 0.06 0.26 0.74
TNR10 0.91 0.73 0.85
TNR20 0.96 0.82 0.91
Precision10 0.57 0.56 0.82
Precision20 0.60 0.59 0.89
Recall10 0.12 0.34 0.68
Recall20 0.06 0.26 0.74
Protagonist reward -19.44 -17.55 -14.4
Adversary reward -50.48 -58.19 -83.0

* TRPn: TPR after n time steps, similarly for the other
metrics.

Table 4: Opponent type inference accuracy / Rewards

The TPR corresponding to MDP-S is quite low, indicating
that the protagonist agent completely mis-classifies the adver-
sary agent as a neutral agent. As the time step increases (com-
parison between TPR10 and TPR20), this mis-classification
becomes worse (from 0.12 to 0.06). This result indicates
that there is a significant mismatch between the protagonist’s
model of the adversary policy and the actual adversary policy
during the testing. Besides, the true negative rate is quite
high. This result suggests that the adversary indeed learned
a policy that confuses the protagonist agent by mimicking
the behavior of a neutral agent, and therefore, the protagonist
agent always classifies the opponent as a neutral agent. Simi-
larly, the TPR corresponds to GT-S is also significantly lower
than the prior probability (50%), which indicates a mismatch
between the opponent model and the actual opponent, while
GT-S outperforms MDP-S by a large margin since the game-
theoretic aspect accounts for the strategic reasoning between
the adversary and the protagonist agent which is missing in
the MDP-S approach. In contrast, the TPR corresponding
to GT-E significantly outperforms the other two approaches.
Moreover, as the time step increases, the TPR also increases

584

(a) Protagonist reward: higher is better

(b) Opponent (adversary) reward: lower is better

Figure 4: Evaluation rewards distribution of the protagonist
agent (top) and the opponent agent (bottom): (1) belief space
policy, with ensemble optimization (EO) and cooperative-
evolution (CE); (2) LSTM, with EO and CE; (3) belief space
policy, without EO and CE (single opponent model); (4)
LSTM, without EO and CE (single opponent model); Belief
space policy (1) and (3) outperforms LSTM (2) and (4)

from 0.68 to 0.74, which indicates that this opponent model
successfully captures an adversary’s general behavior pattern
and is able to generalize to previously unseen adversaries.

The TNR statistics of these three modeling approaches
are all significantly higher than 50%, which indicates a good
success rate of identifying a neutral agent. This result is also
anticipated due to the fact that the neutral agent’s policy is
simple (heading towards its goal), so it can be accurately
learned by the protagonist agent. Although the TNR of MDP-
S is highest among these three modeling approaches, this
high TNR does not necessarily indicate MDP-S is good at
identifying the neutral agent, but rather always ‘guessing’ the
opponent as being neutral. As a result, the recall scores of
the MDP-S and the GT-S approaches are much lower than
that of the GT-E approach, and consequently lead to a poorer
protagonist agent performance as indicated by the rewards.

(a) Protagonist reward: higher is better

(b) Opponent (adversary) reward: lower is better

Figure 5: Evaluation rewards of the protagonist agent (top)
and the opponent agent (bottom): (1) with both ensemble
optimization (EO) and cooperative-evolution (CE); (2) with
CE but without EO; (3) without EO and CE (single opponent
model); EO + CE outperforms CE only, which outperforms
single opponent model

Related Works
Our work is at the intersection of hidden-information/(hidden-
role) games, robust MARL, and adversarial attack. The Deep-
Role algorithm (Serrino et al. 2019) is the first deep MARL
approach for hidden role games, to the best of the authors’
knowledge. It combines counterfactual regret minimization
(CFR) with deep value networks trained through self-play
and integrates deductive reasoning into the RL module to
reason about joint beliefs and deduce partially observable
actions. Our work is similar to (Serrino et al. 2019) in terms
of opponent modeling: both works learn deep policy through
self-play and explicitly infer opponent type using the learned
policy. However, (Serrino et al. 2019) did not explicitly con-
sider the robustness of the learned policy, while we demon-
strated in our example that robustness is a critical issue in
hidden role games, and proposed solutions to effectively im-
prove the robustness through ensemble training.

Ensemble training techniques for robust MARL have been

585

developed/applied in (Lowe et al. 2017), (Bansal et al. 2017),
(Jaderberg et al. 2017), (Jaderberg et al. 2018), (Schrittwieser
et al. 2019). Among these works, (Schrittwieser et al. 2019)
is the only one that actively optimizes the ensemble within
the population-based-training (PBT) (Jaderberg et al. 2017)
framework. In (Schrittwieser et al. 2019), the main exploiters
trained against their main agents and the league exploiters
trained against all past players play a similar role as the
ensemble evaluation procedure does in our work. That ar-
chitecture has achieved considerable improvements in the
robustness, leading to superhuman level performance in Star-
Craft II, but the associated significant increase in complexity
makes this technique impractical for most implementations.
In contrast, our ensemble optimization scheme requires much
less computation.

Adversarial attacks against deep neural network and coun-
termeasures have also been widely studied, e.g., in (Akhtar
and Mian 2018), (Yuan et al. 2019), (Gleave et al. 2019a),
(Ilahi et al. 2020). The works on adversarial attacks in RL
mostly focus on different types of problems where the ad-
versary can manipulate the reward (Han et al. 2018), policy
(Huang et al. 2017), observation (Behzadan and Munir 2017)
or environment (Chen et al. 2018) of the protagonist agent.
Our work is different from these bodies of work, in that the
adversary is unable to directly manipulate the reward, policy
or environment. Our work is based on a similar assumption
as in (Gleave et al. 2019b): the adversary cannot directly
manipulate the protagonist’s observation but can carefully
choose an adversarial policy to act in the multi-agent environ-
ment to create natural adversarial observations. In (Gleave
et al. 2019b), the authors showed that in a humanoid robot
domain, the adversary can learn policies that reliably win
against the protagonist agent but generate seemingly random
and uncoordinated behavior (feature-level attack), which in-
duce substantially different activations in the protagonist
policy network than when the protagonist agent plays against
a normal opponent. Also, these adversarial policies are more
successful in high-dimensional environments. In contrast, our
work focuses on scenarios where the adversarial attack is on
the strategic level (adversary type hidden, carefully chooses
action from low-dimensional discrete action space that ma-
neuvers the protagonist agent’s belief). In addition, the main
focus of our work is on developing an inference scheme on
the hidden type of the opponent and a robust policy learning
algorithm in MARL, while (Gleave et al. 2019b) focuses on
investigating the possibility of learning an adversarial policy
against a fixed victim, which is essentially a single-agent
problem.

The scope of this work is also closely related with mul-
tiagent reasoning and goal recognition, where the standard
assumption is the availability of a library of action mod-
els (one action model is analogous to one single policy of a
certain opponent type in our work), as in (Fagan and Cunning-
ham 2003), (Sohrabi, Riabov, and Udrea 2016). Therefore,
our MDP-S baseline corresponds to goal recognition with a
library of MDP action models, and the GT-S baseline corre-
sponds to goal recognition with a library of game-theoretic
action models, which requires a game-solver for bayesian
games. This requirement is non-trivial with planning-based

approaches. As a result, planning-based multiagent reason-
ing was mostly studied in very restricted domains (e.g., ma-
trix games as in (Huang and Zhu 2018); two-stage games
as (Nguyen et al. 2019)), while our approach is more scal-
able. Besides, we demonstrated that game-theoretic modeling
alone is insufficient for learning robust policy, and our results
show that the ensemble training is critical for improving ro-
bustness of policy against adversarial exploitation, which has
rarely been explored in planning-based multiagent reasoning
works.

Summary
We summarize the key findings of this work as follows:

• We present algorithms based on MARL and ensemble
training for robust opponent modeling and posterior infer-
ence over the opponent type from the observed action.

• We demonstrate that the explicit opponent modeling out-
performs a black-box RNN approach, and the ensemble
training approach outperforms a single agent model. We
analyze the reason for this observation by inspecting the
agent type inference, and show that the performance of the
protagonist agent policy is highly correlated to the quality
of the type inference accuracy.

Acknowledgements
This research is supported by Scientific Systems Company,
Inc. The authors would like to thank Chuangchuang Sun and
Kasra Khosoussi for their insightful discussions and Amazon
Web Services for computation supports.

References
Akhtar, N.; and Mian, A. 2018. Threat of adversarial attacks
on deep learning in computer vision: A survey. IEEE Access
6: 14410–14430.

Andrychowicz, M.; Baker, B.; Chociej, M.; Jozefowicz, R.;
McGrew, B.; Pachocki, J.; Petron, A.; Plappert, M.; Pow-
ell, G.; Ray, A.; et al. 2018. Learning dexterous in-hand
manipulation. arXiv preprint arXiv:1808.00177 .

Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; and Mor-
datch, I. 2017. Emergent complexity via multi-agent compe-
tition. arXiv preprint arXiv:1710.03748 .

Bard, N.; Johanson, M.; Burch, N.; and Bowling, M. 2013.
Online implicit agent modelling. In Proceedings of the 2013
international conference on Autonomous agents and multi-
agent systems, 255–262.

Behzadan, V.; and Munir, A. 2017. Vulnerability of deep
reinforcement learning to policy induction attacks. In Inter-
national Conference on Machine Learning and Data Mining
in Pattern Recognition, 262–275. Springer.

Bjarnason, R. V.; and Peterson, T. S. 2002. Multi-agent
learning via implicit opponent modeling. In Proceedings of
the 2002 Congress on Evolutionary Computation. CEC’02
(Cat. No. 02TH8600), volume 2, 1534–1539. IEEE.

Carmel, D.; and Markovitch, S. 1998. Model-based learning
of interaction strategies in multi-agent systems. Journal

586

of Experimental & Theoretical Artificial Intelligence 10(3):
309–332.
Chakraborty, D.; and Stone, P. 2014. Multiagent learning in
the presence of memory-bounded agents. Autonomous agents
and multi-agent systems 28(2): 182–213.
Chen, T.; Niu, W.; Xiang, Y.; Bai, X.; Liu, J.; Han, Z.; and Li,
G. 2018. Gradient band-based adversarial training for gener-
alized attack immunity of a3c path finding. arXiv preprint
arXiv:1807.06752 .
Cheon, T.; and Iqbal, A. 2008. Bayesian Nash equilibria and
Bell inequalities. Journal of the Physical Society of Japan
77(2): 024801.
Fagan, M.; and Cunningham, P. 2003. Case-based plan recog-
nition in computer games. In International Conference on
Case-Based Reasoning, 161–170. Springer.
Gleave, A.; Dennis, M.; Kant, N.; Wild, C.; Levine, S.; and
Russell, S. 2019a. Adversarial policies: Attacking deep rein-
forcement learning. arXiv preprint arXiv:1905.10615 .
Gleave, A.; Dennis, M.; Kant, N.; Wild, C.; Levine, S.; and
Russell, S. 2019b. Adversarial policies: Attacking deep rein-
forcement learning. arXiv preprint arXiv:1905.10615 .
Han, Y.; Rubinstein, B. I.; Abraham, T.; Alpcan, T.; De Vel,
O.; Erfani, S.; Hubczenko, D.; Leckie, C.; and Montague, P.
2018. Reinforcement learning for autonomous defence in
software-defined networking. In International Conference on
Decision and Game Theory for Security, 145–165. Springer.
Hausknecht, M.; and Stone, P. 2015. Deep recurrent Q-
learning for partially observable mdps. In 2015 AAAI Fall
Symposium Series.
He, H.; Boyd-Graber, J.; Kwok, K.; and Daumé III, H. 2016.
Opponent modeling in deep reinforcement learning. In Inter-
national conference on machine learning, 1804–1813.
Huang, L.; and Zhu, Q. 2018. Dynamic Bayesian Games
for Adversarial and Defensive Cyber Deception. ArXiv
abs/1809.02013.
Huang, S.; Papernot, N.; Goodfellow, I.; Duan, Y.; and
Abbeel, P. 2017. Adversarial attacks on neural network poli-
cies. arXiv preprint arXiv:1702.02284 .
Ilahi, I.; Usama, M.; Qadir, J.; Janjua, M. U.; Al-Fuqaha, A.;
Hoang, D. T.; and Niyato, D. 2020. Challenges and Coun-
termeasures for Adversarial Attacks on Deep Reinforcement
Learning. arXiv preprint arXiv:2001.09684 .
Jaderberg, M.; Czarnecki, W. M.; Dunning, I.; Marris,
L.; Lever, G.; Castaneda, A. G.; Beattie, C.; Rabinowitz,
N. C.; Morcos, A. S.; Ruderman, A.; et al. 2018. Human-
level performance in first-person multiplayer games with
population-based deep reinforcement learning. arXiv preprint
arXiv:1807.01281 .
Jaderberg, M.; Dalibard, V.; Osindero, S.; Czarnecki, W. M.;
Donahue, J.; Razavi, A.; Vinyals, O.; Green, T.; Dunning,
I.; Simonyan, K.; et al. 2017. Population based training of
neural networks. arXiv preprint arXiv:1711.09846 .

Khadka, S.; Majumdar, S.; Miret, S.; Tumer, E.; Nassar,
T.; Dwiel, Z.; Liu, Y.; and Tumer, K. 2019. Collabora-
tive evolutionary reinforcement learning. arXiv preprint
arXiv:1905.00976 .

Lockett, A. J.; Chen, C. L.; and Miikkulainen, R. 2007. Evolv-
ing explicit opponent models in game playing. In Proceed-
ings of the 9th annual conference on Genetic and evolution-
ary computation, 2106–2113.

Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, O. P.; and Mor-
datch, I. 2017. Multi-agent actor-critic for mixed cooperative-
competitive environments. In Advances in Neural Informa-
tion Processing Systems, 6379–6390.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 .

Moravčı́k, M.; Schmid, M.; Burch, N.; Lisỳ, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science 356(6337): 508–513.

Nguyen, T. H.; Wang, Y.; Sinha, A.; and Wellman, M. P.
2019. Deception in Finitely Repeated Security Games 33:
2133–2140.

OpenAI. 2018. OpenAI Five. OpenAI blog URL https:
//blog.openai.com/openai-five/.

Rubin, J.; and Watson, I. 2011. Implicit opponent modelling
via dynamic case-base selection. In Workshop on case-based
reasoning for computer games at the 19th international con-
ference on case-based reasoning, 63–71.

Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2019. Mastering atari, go, chess and
shogi by planning with a learned model. arXiv preprint
arXiv:1911.08265 .

Serrino, J.; Kleiman-Weiner, M.; Parkes, D. C.; and Tenen-
baum, J. 2019. Finding Friend and Foe in Multi-Agent Games.
In Advances in Neural Information Processing Systems, 1249–
1259.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676): 354.

Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan Recog-
nition as Planning Revisited. In IJCAI, 3258–3264.

Teh, Y.; Bapst, V.; Czarnecki, W. M.; Quan, J.; Kirkpatrick,
J.; Hadsell, R.; Heess, N.; and Pascanu, R. 2017. Distral:
Robust multitask reinforcement learning. In Advances in
Neural Information Processing Systems, 4496–4506.

Yuan, X.; He, P.; Zhu, Q.; and Li, X. 2019. Adversarial
examples: Attacks and defenses for deep learning. IEEE
transactions on neural networks and learning systems 30(9):
2805–2824.

587

