
Data-Driven Decision-Theoretic Planning using Recurrent
Sum-Product-Max Networks

Hari Tatavarti, 1 Prashant Doshi, 2 and Layton Hayes 1

1 Institute for AI, University of Georgia, Athens, GA 30602 USA
2 Dept. of Computer Science & Institute for AI, University of Georgia, Athens, GA 30602 USA

pdoshi@uga.edu

Abstract
Sum-product networks (SPN) are knowledge compilation mod-
els and are related to other graphical models for efficient prob-
abilistic inference such as arithmetic circuits and AND/OR
graphs. Recent investigations into generalizing SPNs have
yielded sum-product-max networks (SPMN) which offer a
data-driven alternative for decision making that has predomi-
nantly relied on handcrafted models. However, SPMNs are not
suited for decision-theoretic planning which involves sequen-
tial decision making over multiple time steps. In this paper, we
present recurrent SPMNs (RSPMN) that learn from and model
decision-making data over time. RSPMNs utilize a template
network that is unfolded as needed depending on the length
of the data sequence. This is significant as RSPMNs not only
inherit the benefits of SPNs in being data driven and mostly
tractable, they are also well suited for planning problems. We
establish soundness conditions on the template network, which
guarantee that the resulting SPMN is valid, and present a struc-
ture learning algorithm to learn a sound template. RSPMNs
learned on a testbed of data sets, some generated using RD-
DLSim, yield MEUs and policies that are close to the optimal
on perfectly-observed domains and easily improve on a recent
batch-constrained RL method, which is important because
RSPMNs offer a new model-based approach to offline RL.

Introduction
Decision-theoretic planning (DTP) views planning as a se-
quence of decisions, each optimizing the planner’s combined
immediate and longer-term utility. However, DTP relies on
accurately specifying the planning problem – a difficult task
in practice – and DTP is essentially intractable for all but the
simplest problems. This motivates investigating new tractable
models for DTP, which can be learned directly from data,
thereby allowing the tremendous progress of machine learn-
ing techniques to cross over into planning.

Arithmetic circuits (Huang, Chavira, and Darwiche 2006)
and sum-product networks (SPN) (Poon and Domingos 2011)
directly learn a network polynomial that is graphically rep-
resented as a network of sum and product nodes from do-
main data. Evaluations of the polynomial provide the joint or
conditional distributions under conditions of validity. These
graphical models are appealing because most types of infer-
ence can be performed in time that is linear in the size of the

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

network. On the other hand, inference in Bayesian networks
is generally exponential. A limitation of SPNs is that the size
of the learned network is not bounded. Given the benefit of
these generative models, Melibari et al. (2016) introduced
recurrent SPNs for modeling sequence data of varying length
and to perform tractable inference on sequences.

Sum-product-max networks (SPMN) (Melibari, Poupart,
and Doshi 2016) generalize SPNs by adding two new types
of nodes: max and utility nodes. Max nodes correspond to
decision variables and utility nodes to the reward function,
which allow SPMNs to computationally represent a proba-
bilistic decision-making problem. If the SPMN learned from
data is valid by satisfying a set of properties, then it correctly
encodes a function that computes the maximum expected
utility given the partial order between the variables. As such,
SPMNs represent a shift in paradigm for decision-making
models: from being primarily handcrafted to enabling ma-
chine learning from decision-making data.

Motivated by these recent generalizations of the SPN, we
present a new graphical model that extends the twin benefits
of an SPN (tractable inference and directly learned from data)
to a new class of problems. This new model, which we refer
to as a recurrent SPMN (RSPMN) can be seen as a synthesis
of a recurrent SPN and an SPMN: it allows extending the
decision-making problem across multiple time steps thereby
modeling DTP problems for the first time. Given temporal
decision-making data of any finite length, we present an ef-
fective method for learning an RSPMN of any finite length
from this data and evaluating it to obtain the maximum ex-
pected utility (MEU) and the corresponding policy. A key
component of the learned model is the template network,
whose repeated application makes the temporal generaliza-
tion possible.

We prove that unfolding the learned RSPMN produces
a valid SPMN, which, in combination with a result from
Melibari et al. (2016), establishes that its evaluation is equiva-
lent to using the sum-max-sum rule. On a testbed of decision-
making datasets from simulations in perfectly-observed do-
mains, learned RSPMNs generate MEUs that are near opti-
mal. RSPMNs offer a model-based approach to DTP where
sequential data has already been collected. It is also applica-
ble to offline (batch) reinforcement learning; thus we com-
pare the MEUs with those from a recent batch Q-learning
method (Fujimoto et al. 2019) and report favorable results.

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

606

Preliminaries
We briefly review SPNs followed by its generalization
to single-shot decision-making contexts, SPMNs. An
SPN (Poon and Domingos 2011) over n random variables
X1, . . ., Xn is a rooted directed acyclic graph (DAG) whose
leaves are the distributions of the random variables and whose
internal nodes are sums and products. Each edge emanating
from a sum node has a non-negative weight. The value of
a product node is the product of the values of its children.
The value of a sum node is the weighted sum of its children’s
values. The value of an SPN is the value of its root, which
is the output of a polynomial whose variables are the indica-
tor variables and the coefficients are the weights (Darwiche
2000). An SPN is valid iff the normalized polynomial rep-
resents the joint probability distribution over the variables
and yields the correct marginals. Completeness and decom-
posability are sufficient conditions for validity. Both impose
some conditions on the scope of a node.

Definition 1 (Scope) The scope of a node is the union of
scopes of its children, where the scope of a leaf node is the
set of random variables whose distribution it holds.

In other words, the scope is the set of variables that appear in
the sub-SPN rooted at that node. Next, we define the condi-
tions sufficient for an SPN to be valid.

Definition 2 (Sum-complete) An SPN is complete iff all
children of the same sum node have the same scope.

Definition 3 (Decomposable) An SPN is decomposable iff
no variable appears in the scopes of more than one child of a
product node.

Various structure and parameter learning algorithms have
been presented to learn valid SPNs from data (Poon and
Domingos 2011; Adel, Balduzzi, and Ghodsi 2015; Gens and
Domingos 2013; Lowd and Rooshenas 2013). Most types of
inference on the structure thus learned is tractable in the size
of the network.

SPMNs (Melibari, Poupart, and Doshi 2016) generalize
SPNs by adding max nodes that represent decision vari-
ables and utility nodes to represent the utility function. An
SPMN over decision variables D1, . . . , Dm, random vari-
ables X1, . . . , Xn, and utility functions U1, . . . , Uk is a
rooted directed acyclic graph. Its leaves are either distribu-
tions over random variables or utility nodes that hold constant
values. An internal node is either a sum, product, or max node.
Each max node corresponds to one of the decision variables
and each outgoing edge from a max node is labeled with
one of the possible values of the corresponding decision vari-
able. Value of a max node i is maxjεChildren(i)vj , where
Children(i) is the set of children of i, and vj is the value of
the subgraph rooted at child j.

Recall the concepts of information sets and partial ordering
in influence diagrams (Koller and Friedman 2009). Informa-
tion sets I0, . . ., Im are subsets of the random variables such
that the random variables in the information set Ii−1 are
observed before the decision associated with variable Di,
1 ≤ i ≤ m, is made. Any information set may be empty
and variables in Im need not be observed before some deci-
sion node. An ordering between the information sets may be

established as follows: I0 ≺ D1 ≺ I1 ≺ D2, . . ., ≺ Dm ≺
Im. This is a partial order, denoted by P≺, because variables
within each information set may be observed in any order.
Melibari et al. show that a set of properties are sufficient to
ensure that an SPMN correctly encodes a function that com-
putes the MEU given the partial order between the variables
and some utility function U . An SPMN is valid if it satisfies
Defs. 2 and 3, and two new additional properties:

Definition 4 (Max-complete) An SPMN is max-complete iff
all children of the same max node have the same scope, where
the scope is as defined previously.

Definition 5 (Max-unique) An SPMN is max-unique iff
each max node that corresponds to a decision variable D
appears at most once in every path from root to leaves.

An SPMN is solved by assigning values to the random
variables that are consistent with the evidence. Then, we per-
form a bottom-up pass of the network during which operators
at each node are applied to the values of the children. The
optimal decision rule is found by tracing back (i.e., top-down)
through the network and choosing the edges that maximize
the decision nodes.

Recurrent SPMNs
Popular frameworks such as a Markov decision process
(MDP) and languages such as dynamic influence dia-
grams (Shachter and Bhattacharjya 2010) model planning as
a temporal sequence of decision-making steps. For our pur-
poses, each of these steps can be modeled using a structure
analogous to an SPMN. This yields a structure that is similar
to a dynamic influence diagram, which unfolds an influence
diagram with temporal links as many times as the number
of steps in the extended problem thereby generating a larger
influence diagram that models the complete sequence.

We take this perspective to modeling DTP, which involves
sequential decision making and introduce a recurrent SPMN
(RSPMN), which unfolds a template network as many times
as the number of time steps in each sequence of data. While
the template network is not rooted at a single node and is
not a valid SPMN, we obtain these by learning an additional
component: a top network that caps the unfolded templates,
which, in conjunction with some properties on the structure
of the template, then yields a valid SPMN.

An alternative approach to the RSPMN is to directly learn
the SPMN from the sequence data using the LearnSPMN al-
gorithm (Melibari, Poupart, and Doshi 2016). But, this poses
two main challenges. First, an increase in the sequence length
often leads to an exponential blow up of the size of the net-
work and subsequently in evaluation time as we demonstrate
later in our experiments. Second, the LearnSPMN algorithm
requires a fixed number of variables in each data record.
Hence, it may not be used when the sequence length varies
between records as there may not always be an efficient way
to either fill in the missing time steps for shorter sequences
or eliminate extra sequences from the longer ones.

We begin by describing which domain attributes should
be present in the data to allow the learning of RSPMNs
followed by the components of the RSPMN.

607

Data Schema
Useful data for learning RSPMNs consists of a finite
temporal sequence of values of state and utility variables,
and decisions that are actions. More formally, consider a
planning problem where the (fully observed) state of the
environment is characterized by n variables, X1, X2, . . .,
Xn; actions by a combination of m decision variables, D1,
D2, . . ., Dm; and a single utility variable U . A candidate
data record of at most T steps is then a sequence of T tuples
of the form 〈(I0, d1, I1, d2, . . . , Im−1, dm, Im, u)0, (I0, d1,
I1, d2, . . . , Im−1, dm, Im, u)1,. . ., (I0, d1, I1, d2, . . . ,
Im−1, dm, Im, u)T−1)〉. Recall from the previous section,
I0, I1, . . . , Im are information sets where Ii−1, 1 ≤ i ≤ m
consists of values of the state variables in the information
set of Di. Additionally, u in each tuple is the value of utility
variable U given the realizations of the state variables and
decisions in that tuple.

RSPMN Properties and Validity
An RSPMN models sequences of decision-making data of
varying lengths using a fixed set of parameters by unfolding
a template network. In the context of a dynamic influence
diagram, our template corresponds to an influence diagram
with temporal links between nodes that are repeated in each
time slice.

Definition 6 (Template network) A template network is a
DAG r root nodes and at least n+1 leaf nodes where n is the
number of state variables and there is one utility function. The
root nodes form a set of interface nodes Ir. The leaf nodes
in the network hold the distributions over the random state
variables X1, X2, . . . , Xn, hold constant values as utility
nodes, or are latent interface nodes. The root interface nodes
and interior nodes can be sum, product, or max nodes. Let L
denote the set of leaf latent interface nodes. Each latent node
in L is related to a root interface node in Ir of the template
network through a mapping f : L→ Ir.

The f -mappings can be seen as time delay edges that
link and let replace latent interface nodes at time step t
with root interface nodes at t + 1, thereby enabling re-
currence of the template. The leaf latent node assumes
a scope after unrolling the template network. The scope
of a latent node at time step t is equal to the scope of
a root interface node of the template at time step t + 1,
scope(lti) = scope(irt+1

i). More formally, for any pair of la-
tent nodes lti , l

t
j ∈ L, let f(lti) = irt+1

i , f(ltj) = irt+1
j , where

irt+1
i , irt+1

j ∈ Ir, then
(
scope(irt+1

i) = scope(irt+1
j)

)
⇒

(
scope(lti) = scope(ltj)

)
.

Intuitively, the leaf latent interface nodes can be viewed
as summarizing the latent information coming from the next
template network. They pass information between templates
of different steps. In other words, they pass up the information
in a bottom-up evaluation of the RSPMN and pass down the
information in a top-down pass. As such, the root and leaf
latent nodes play a key role in linking the template networks
during unfolding. To ensure that the unfolded network is a
valid SPMN with a single root, we define another special
network.

Definition 7 (Top network) A top network is a rooted DAG
consisting of sum and product nodes, and whose leaves
are the latent interface nodes. Edges from a sum node are
weighted as in a SPN.

Of course, the bottom-most template network – corre-
sponding to the final time step T of the planning – has its leaf
interface nodes removed. Sum or product parents of these
interface nodes with no other children are also pruned. We
may effectively achieve this by setting the values of all these
interface nodes as 1 (thus summing them out) and any utility
values to pass set to 0.

Next, we seek to ensure that the SPMN formed after inter-
facing the top network and repeated templates is valid. One
way to check for validity is to ensure that all the sum nodes
in the unfolded SPMN are complete, the product nodes are
decomposable, and max nodes are complete and unique as
defined previously. However, can we define constraints on
the top and template networks that will ensure validity of the
unfolded SPMN? If so, we may establish the validity without
checking the full network, which may grow to be quite large.
To establish this, we first introduce a sound template.

Definition 8 (Soundness of the template) A template net-
work is sound iff all sum nodes in the template are sum-
complete as defined in Def. 2; all product nodes in the tem-
plate are decomposable as defined in Def. 3; all max nodes in
the template are max-unique and max-complete as defined in
Defs. 4 and 5; the scope of all the root interface nodes in Ir
is the same, i.e., scope(iri) = scope(irj) ∀ iri, irj ∈ Ir;
and, the scopes of the leaf latent interface nodes in L are
related to that of the mapped root interface nodes in Ir,

(scope(iri) = scope(irj))⇒ (scope(li) = scope(lj)) .

Theorem 1 establishes that a sound template network com-
bined with a valid top network is sufficient to generate a valid
SPMN on unfolding the RSPMN. We provide the inductive
proof in the technical Appendix included in the supplement.

Theorem 1 (Validity of RSPMN) If, (a) in the top network,
all sum nodes are complete and product nodes are decompos-
able, i.e., top network is valid, and (b) the template network
is sound as defined in Def. 8, then the SPMN formed by inter-
facing the top network and the template network unfolded an
arbitrary number of times as needed is valid.

Learning of RSPMNs
We present a general algorithm for learning the structures
and parameters of a valid top network and a sound template
network from data whose schema was outlined in the previ-
ous section. Each data record of length T is a capture of an
episode during which a decision-maker interacts with the en-
vironment for T steps (observing the state, acting, and obtain-
ing reward). Let there be E such episodes. For convenience,
we denote a tuple (I0, d1, I1, d2, . . . , Im−1, dm, Im, u)t as
τ t. Consequently, the data set has E records each consisting
of T tuples 〈τ0, τ1, . . . , τT−1〉e where e = 1, 2, . . . , E. Let
us also note that all variables related to time step t+1 assume

608

Algorithm 1: LEARNRSPMN
Input : Dataset 〈τ0, τ1, . . . , τT−1〉e where

e = 1, 2, . . . , E; Partial Order P≺

Output : top network, template network
1 St=2← Run LEARNSPMN on wrapped 2-time step data
〈τ t

′
, τ t

′+1〉e e = 1, 2, . . . , E; t′ = 0, . . . , T − 2
2 Create top network and set of root interface nodes Ir from
St=2

3 Create initial template network from Ir and St=2

4 Revise initial template using sequence data to obtain the
final template

their values after time step t. This is reflected in the expanded
P≺, which now specifies the partial order not only among
variables of a single time step but also includes variables of
the next time step. This is sufficient because the partial order
among variables of two consecutive steps does not change
over time.

Algorithm 1 LEARNRSPMN presents the four main steps
in learning the RSPMN from data. We describe and illustrate
each of these steps below in more detail while deferring the
pseudocode to the supplementary material. We also illustrate
their applications on a simple 2×2 grid problem.

Each cell in the grid is represented by two binary state
variables X,Y , which represent the x, y coordinates of the
cell, respectively. Here, the top-left cell is (0, 0) and (1, 1)
indexes the bottom-right cell. The agent can decide to either
move in one of the four cardinal directions or perform a
No-op, which is represented using a single decision variable,
A. Let (0, 0) be the start state, (1, 0) a penalizing state with
a reward of -10, and (1, 1) the goal state with a reward of
10. All transitions are deterministic and cost -1. Reward is
represented by the utility variable U . We simulated a random
agent for T = 4 to generate sequence decision-making data
of 10K records.

Step 1(Alg. 2 in the appendix). Learn an SPMN from 2-
time step data Planning environments can often be modeled
as Markovian. Thus, state transition probabilities and utility
functions can be sufficiently learned from data spanning two
time steps. Consequently, the first step of LEARNRSPMN is
to use Melibari et al.’s LearnSPMN algorithm (2016) to learn
a valid SPMN, St=2, from 2-time step data. Subsequently,
St=2 serves as a basis for obtaining the template network.

However, which two time steps of a data record should we
utilize? One may think that it would be sufficient to limit to
tuples of the first two steps 〈τ0, τ1〉 in each data record, or to
tuples of any two consecutive steps. But, an agent often starts
the episode at the same start state and is often at the same in-
termediate state in a subsequent time step. As such, data in the
first two time steps, or for that matter, any fixed pair of time
steps, is seldom fully representative of the transition proba-
bilities and the dynamic situation. Hence, we consider each
consecutive pair of tuples 〈τ t′ , τ t′+1〉 t′ = 0, 1, . . . , T − 2
in each episode and wrap it to create a data set with T × E
rows spanning two time steps.

As the expanded P≺ represents the partial order among

Figure 1: SPMN St=2 learned on wrapped 2-time step data
for the example grid problem. Xt, Y t, At, and Ut represent
the corresponding variables for step t, where t ∈ {1, 2}. A
single choice is shown from each decision node for clarity.
(If not, each decision node A in the illustration would contain
5 branches each for one direction and No-op.)

the variables of two consecutive time steps, it is sufficient
for use in LearnSPMN. Then, LearnSPMN is run over the
wrapped data set with P≺ as the partial order. Figure 1 shows
a learned 2-time step SPMN from the grid data.

Step 2(Alg. 3 in the appendix). Obtain top network and
Ir nodes To obtain the nodes in Ir, we extract a 1-time step
network St=1 from St=2. We point out that it is necessary to
use a 2-time step SPMN to obtain St=1. To realize this, let a
state-action pair 〈s0, a0〉 transition to state s1 while 〈s2, a0〉
transition to s3. If St=1 is learned from data of a single time
step, the correlations between variables of different steps are
obviously not ascertained. Due to this, both state values s0
and s2 may get included in a single substructure. However,
the 2-time step data makes it clear that they effect differing
transitions. This would be identified during independence
testing, thereby modeling them separately by creating differ-
ent clusters for each of these states in the first step as they
result in a transition to a different next state. Importantly, this
helps identify the behaviorally distinct states of the domain
and helps create an interface node for each of them. Although
the 2-time step SPMN structure can capture consecutive tran-
sitions, it is not desirable to use as a template. Intuitively, this
is because 2-time step structure would enable us to unfold in
even numbers 2, 4, 6, . . . of time steps and not an arbitrary
number of time steps. Moreover, the 1-time step structure is
sufficient to model a template whereas a 2-time step structure
would unnecessarily result in more nodes.

To generally obtain St=1, we simply remove all those
sum nodes whose immediate children have scopes that
consist of subset of variables in the next time step
(I0, D1, I1, D2, . . . , Im−1, Dm, Im, U)1. If there are no such
sum nodes, but instead variables of the next time step are di-
rectly linked to product nodes (as in Fig. 1 where the orange

609

0.
51

0.49

0.52 0.
48

0.
49 0.51

1
.0

3
.0

4
.0

1
.0

+

x x

X + X +

x x x x

Y A Y A Y A Y A

x x x x

U U U U

+

x x

X + X +

x x x x

Y A Y A Y A Y A

x x x x

U U U U

+

x x

X + X +

x x x x

Y A Y A Y A Y A

x x x x

U U U U

Figure 2: St=1 obtained from the St=2 of Fig. 1 with the
orange nodes removed.

nodes are children of the product nodes), then we remove the
nodes corresponding to these children. This results in St=1

with no nodes whose scopes include variables of the next
time step – yet appropriately modeling its impact on the first
time step. Figure 2 illustrates St=1 for the grid problem.

Now, we obtain the nodes in Ir using St=1 albeit lim-
iting the interface nodes to be products. We start by using
breadth-first search to identify the top-most product nodes
whose scopes equal the set of all variables of the first-time
step (I0, D1, I1, D2, . . . , Im−1, Dm, Im, U)0. Starting from
such top-most product nodes (the two blue product nodes in
Fig. 2), the root interface nodes are obtained by identifying
all the distinct state distributions from these product nodes.
Identifying such distinct state distributions is particularly
useful because having such states and their corresponding
structures, we could use them to model the transitions from
one state to the next. Ir is obtained from St=1 by recursively
traversing all the branches of the top-most product node until
we find a product node without any sum node as a child.
We will always find such nodes as these are product nodes
whose children are either leaf distributions or max nodes.
This corresponds to the four product nodes in Fig. 2 below
the top two blue colored nodes. Each of these product nodes
is returned as a set containing itself, and the leaf nodes of
all the parent product nodes on path to this product node
are added to this set. Each such set corresponds to a distinct
distribution of I0 and corresponding transitions and distribu-
tions in (D1, I1, D2, . . . , Im−1, Dm, Im, U). A product node
is created for each of these sets and the elements of the set
are added as children of the product node as shown in Fig. 3.
Each of these product nodes is a root interface node. Each of
these interface nodes holds an SPMN that corresponds to a
state distribution (there are four interface nodes for the four
states in illustration). The interface nodes, for example, can
help learn the probability of transitioning from one state st
on taking at to some other state st+1 in the next time step.
Observe that union of the scopes of the children of each in-
terface node in Ir is identical. This makes the scopes of all
the interface nodes Ir identical, which is needed to learn a
sound template.

1
.0

3
.0

4
.0

1
.0

x x x x

x X x x X x

Y A Y A Y A Y A

x x x x

U U U U

x x x x

x X x x X x

Y A Y A Y A Y A

x x x x

U U U U

x x x x

x X x x X x

Y A Y A Y A Y A

x x x x

U U U U

Figure 3: Illustrations of the root interface nodes obtained
using the network in Fig. 2. The four colored product nodes
function as the root interface nodes.

0
.2
5

0
.2
5

0.24

0.26

+

L0 L1 L2 L3

Figure 4: The top network with color-coded latent interface
nodes indicating a bijective relationship with the similarly
color-coded nodes in Ir.

The top network is then simply a sum node with as many
children as the nodes in Ir. Each of these children is a latent
interface node with a one-one relationship to a root interface
node. The weights on the edges from the sum node are equal
and correspond to a uniform distribution; these are adapted
in a subsequent step. Alternately, the weights on these edges
can be obtained by multiplying the weights on sum nodes
through each of the paths that resulted in the specific ir node.
We show the top network in Fig. 4.

Step 3(Alg. 5 in the appendix). Building an initial tem-
plate Let |Ir| denote the number of root interface nodes
created in the previous step. We begin by creating a sub-
network SL rooted at a sum node with as many children as
|Ir|. The weights on the edges are equal and correspond to a
uniform distribution. Each of the children is a leaf latent inter-
face node observing the following relationship, f(li) = iri,
i = 1, 2, . . . , |Ir|, and f is a bijective map. As such, each
latent interface node corresponds to a distinct root interface
node. For our grid example, SL includes a sum node with
four children.

The network from Step 2 containing the root interface
nodes forms a basis for creating the initial template. Begin-

610

ning at each root node in Ir, we traverse the graph to the
bottom-most sum, product, or max node. In case of a product
node, we add a new edge and link it to a new subnetwork
SL. In case of a sum or max node, each of its children nodes
is now replaced by a product node with two outgoing edges.
One of these edges links to the previous child node while the
other edge links to SL. Including all latent nodes in SL can
be effectively thought of as having observed a state and taken
a decision at time step t results in reaching all the other states
in the next step t+ 1 with equal probability.

As each latent interface node is related to a root interface
node through the bijective mapping and the root interface
nodes have identical scopes, the sum node of each SL is
complete. As SL is added beside every leaf node, it does not
impact the properties of other nodes. Therefore, the initial
template network is sound.

Step 4(Alg. 6 in the appendix). Learning the final tem-
plate network Parameters of the template network are the
edge weights of the outgoing edges from the sum nodes in-
cluding SL. We adapt the hard expectation-maximization
for SPNs (Poon and Domingos 2011; Peharz 2015) to the
recurrent structure of the template to update the structure
and parameters of the initial template. Broadly, it involves
performing a bottom-up pass during which the likelihoods of
each sum, product, and max node are calculated using a data
record 〈τ0, τ1, . . . , τT−1〉. Then, a top-down (backpropaga-
tion) pass beginning at the rooted top network, which selects
a maximum likelihood path and updates integer counts on
the edges from sum nodes along that path.

Data from the last tuple τT−1 is entered in the leaf ran-
dom variable nodes of the bottom-most template (recall that
the bottom-most template network has its leaf latent nodes
removed). Likelihoods are propagated upwards through the
network by performing the sum, product, and max operations
represented by the nodes until we obtain a likelihood for
each (product) node in IrT−1. Using the bijection function
that relates the nodes in L with the nodes in Ir, we may
propagate the likelihoods of the nodes in IrT−1 to the cor-
responding latent nodes in LT−2. The previously mentioned
bottom-up pass is repeated using the likelihoods of the leaf
latent nodes and data from tuple τT−2 entered into the leaf
random variable nodes of time step T − 2 template, thereby
yielding another set of likelihoods for the nodes. Regressing
in data to time step 0, the bottom-up pass continues assigning
a likelihood to each node in the template terminating when
the root node of the top network is reached.

Given the likelihoods computed at each node for each time
step, the top-down pass begins at the root node of the top
network and at time step 0. It traverses downward visiting
each node, selecting the child node with the highest like-
lihood for each sum node (including subnetwork SL) and
updating the count (initialized at zero) on the edge connect-
ing the sum node to the child, selecting the child with the
highest likelihood for the max node, and following each edge
of the product node. The bijection mapping is used to go
from the leaf latent nodes with maximum likelihood in time
step t − 1 to the mapped root interface nodes of time step
t. An edge from a sum node chosen again has its previous

1
.0

3
.0

4
.0

1
.0

1
.0

1
.0

1
.0

1
.0

x x x x

XY A Y A XY A Y A

x x x x

U + U + U + U +

L1 L2 L2 L2

x x x x

XY A Y A XY A Y A

x x x x

U + U + U + U +

L1 L2 L2 L2

x x x x

XY A Y A XY A Y A

x x x x

U + U + U + U +

L1 L2 L2 L2

Figure 5: The final template network from the bottom and
top-down passes for the grid problem. Notice that we retain
the leaf latent nodes at each SL from the initial template with
the maximum likelihoods only.

count incremented by 1. The top-down pass terminates at the
bottom-most network representing time step T − 1.

New weights of outgoing edges from each sum node are ob-
tained as: count on edge from sum→ child node

sum node visited . Thereafter, any leaf
latent nodes and indeed any children of a sum node with
zero counts are pruned. We may perform both the bottom-up
and top-down passes without actually unfolding the template
network by following the implicit links represented by the
bijection mapping. Applying this step, the learned final tem-
plate for our illustrative grid problem is shown in Fig. 5. As
we prune just the latent interface nodes, the scope of SL does
not change and the template network remains sound.

MEU and Policy Evaluation
We may evaluate the RSPMN formed by interfacing the top
network with the learned final template iterated as many times
as the length of each data record or as desired to compute the
MEU for each state and obtain a policy.

The MEU is obtained by evaluating the template network
bottom-up as in an SPMN and passing the values between
the templates of different time steps through the latent leaf
nodes. The value at the root node of the top network gives
the final desired value. The utility values of the leaf latent
interface nodes of the bottom-most template (last time step)
are set to zero. After evaluating the bottom-most template
network, each root interface node of the template network
holds a utility value. In the next iteration, the utility values of
the leaf latent interface nodes are assigned the utility values
of the mapped root nodes computed in the previous iteration,
and the process is repeated until time step 0 and the top
network is evaluated. Assuming that the template network
learned a model of the true transitions well, each bottom-up
pass through the template can be thought of as performing
one Bellman update in the value iteration technique. This
can be run until the desired length of the sequential problem
is reached. Subsequently, each node of the template holds a
corresponding expected utility value.

To additionally get the best action given an observation,
the template network is interfaced with the top network and

611

Data set X, D #Episodes T #Cols |SPMN| |RSPMN|
GridUniverse1 1, 1 100K 8 24 138,492 (13, 210)
FrozenLake1 1, 1 100K 8 24 1,068,246 (18, 401)
Maze1 2, 1 100K 8 24 352,312 (11, 184)
Taxi1 4, 1 20K 50 150 – (80, 1815)
SkillTeaching2 12, 4 100K 10 170 – (137, 4878)
Elevators2 13, 4 200K 10 180 – (143, 5390)
CrossingTraffic2 18, 4 100K 15 345 – (82, 2349)

Table 1: Superscript 1 denotes simulations of Gym domains
and 2 denotes simulations of RDDLSim (Sanner 2010) MDP
domains. X, D give the numbers of state and decision vari-
ables in the domain, #Cols is the total number of columns
in each data record. We also report the size of the learned
structures. |RSPMN| gives the sizes of the (top, template)
networks respectively. ‘ – ’ denotes that the SPMN was not
learned in 12 hrs on an Ubuntu Intel i7 64GB RAM PC.

variables are assigned values corresponding to the observed
state. A top-down pass starting at the root node of the top
network and choosing the decision with the MEU at each
max node reached (as in an SPMN) yields the best action(s)
for that state.

Experiments
We implemented LEARNRSPMN in the open-source SPFlow
library (Molina et al. 2019) and evaluated it on a new testbed
of sequential decision-making data sets that adhere to the
data schema discussed previously. Our code is available on
GitHub at https://github.com/c0derzer0/RSPMN.

Evaluation testbed As there are few existing data sets on
simulations of decision-making domains, we created a new
testbed listed in Table 1 and available for public use from
the GitHub repository. Each data set is generated by using a
random policy which interacts with the environment collect-
ing the 〈state, action, reward〉 generated at each step. Each
episode is run for T time steps, which is selected to be suffi-
cient to reach the goal state. A new episode is started if either
the last time step is reached or if the agent reaches the goal
or another terminal state.

For each data set in the testbed, we learn an SPMN us-
ing the LearnSPMN algorithm. This was made possible by
padding the sequences so that all sequences have the same
length – on reaching a terminal state, the agent stayed in that
state until the length of the sequence is T . The top and tem-
plate networks of a RSPMN were learned using our LEARNR-
SPMN. We show the sizes of the learned networks as the
total number of nodes in each, in the last two columns of Ta-
ble 1. Notice the blow up in the sizes of the SPMNs learned
for the sequential data sets. The SPMN has many repeated
structures for the state distributions over time. For the larger
RDDLSim domains, the sizes of the top and template net-
works also grow but we did not observe a disproportionate
growth, while the SPMNs could not be learned.

MEU and policy comparisons Table 2, which reports the
key results, compares the MEU from the start state of each

domain as obtained by evaluating the learned RSPMNs and
any learned SPMNs with the (near-)optimal values. We ob-
tained the optimal values from converged deep Q-networks
for the Gym domains and by solving the MDP using value
iteration for the RDDLSim domains. Observe that RSPMNs
yield MEUs that are very close to the optimal and signifi-
cantly better than those from the learned SPMNs. Clearly, the
sequential data sets do not have sufficient episodes to learn
high-quality SPMNs.

RSPMNs and SPMNs also represent a model of the en-
vironment as present in the data, which then influences the
MEU and the policy. So, how well did the structure learn-
ing method capture the environment dynamics? To answer
this question, we simulated the policies obtained from the
RSPMNs in their respective Gym environments and noted
down the average rewards. Table 2 shows that these aver-
age rewards, recorded across 10K episodes, nearly match the
MEUs obtained directly from the RSPMNs. This implies that
the networks are modeling the environment accurately. We
also compare with the policies learned by the discrete batch-
constrained Q-learning (Fujimoto et al. 2019) with default
parameters on the data sets as a baseline. This is a technique
similar to deep Q-networks but constrained to learning from
a data set. We report the average rewards obtained by simulat-
ing its learned policies on 10K episodes for all the domains.
Clearly, Table 2 shows that BCQ expects far more data on
several domains to learn a good policy.

Next, we report the deviation in policy learned by the
RSPMN from the optimal one. This is the total number of
states where the actions differ and reported as a percentage
∆% of the total number of states. Notice the large deviations
for FrozenLake, Taxi, and the RDDLSim domains although
the learned policies show MEUs close to the optimal. This
is likely due to the presence of multiple optimal policies in
these large domains. For the sake of completeness, we also
report the log likelihoods of the models in the last column.

Table 3 shows our final set of results on the clock time it
takes for learning the initial template structure, learning the
final template of the RSPMN, and learning the large SPMNs
when possible. The time to learn an SPMN was capped at
about 12 hrs. Observe that both learning and evaluating the
large SPMNs takes a few orders of magnitude longer than
learning the templates. However, the template learning times
also increase for the larger RDDLSim domains with Eleva-
tors taking more than 4 hours. On the other hand, the MEU
evaluation remains quick for all the domains taking less than
a minute.

Related Work
SPNs are related to other graphical models for probabilis-
tic inference such as arithmetic circuits (Park and Darwiche
2004) and AND/OR graphs (Dechter and Mateescu 2007).
Bhattacharjya and Shachter (2007) proposed decision circuits
as a representation that ensures exact evaluation and solution
of influence diagrams in time linear in the size of the network.
A decision circuit extends an arithmetic circuit with max
nodes for optimized decision making, which is analogous to
how SPMNs extend SPNs. However, decision circuits are
obtained by compiling IDs. Previous work has shown that

612

MEU Average reward
Data set Optimal RSPMN SPMN RSPMN BCQ ∆ % LL (RSPMN)
GridUniverse 6 6 6 5.9 5.9 0 -0.87
FrozenLake 0.8 0.818 0.13 0.8 0.3 62.5 -6.17
Maze 0.966 0.966 0.052 0.96 0.96 0 -0.86
Taxi 8.9 9 - 8.9 -200 60.25 -2.45
SkillTeaching -3.022 -3.06 - -3.009 -7.36 83.3 -2.09
Elevators -7.33 -7.47 - -7.357 -9.14 80 -4.8
CrossingTraffic -4.428 -4.425 - -4.427 -5.91 94.7 -8.44

Table 2: Our key results comparing the MEUs of the optimal policy, learned RSPMNs, SPMNs, and batch-constrained Q-learning.
∆ % gives the policy deviations between the policies obtained from RSPMN and the optimal ones.

Template learning MEU eval
Data set Initial Final SPMN learning RSPMN SPMN
GridUniverse 2m 26.33s 1m 1.49s 4h 25m 31.72s 0.72s 8.8s
FrozenLake 1m 49.8s 2m 02.78s 12h 5m 40.77s 23.21s 1m 26.85s
Maze 2m 51.19s 54.84s 2h 31m 49.51s 0.62s 24.87s
Taxi 9m 21.79s 2h 28m 15.75s – 18.45s –
SkillTeaching 59m 5.87s 29m 28.49s – 3.84s –
Elevators 1h 19m 3.91s 4h 19m 29.53s – 20s –
CrossingTraffic 8m 46.14s 1h 37m 53.17s – 18.45s –

Table 3: Initial and final template learning times are shown in first two columns. These are significantly less than those learning
the large SPMNs. Run times of MEU evaluations on the learned SPMNs and RSPMNs are shown next.

SPMNs are efficiently reducible to decision circuits in time
that is linear in the size of the SPMN (Melibari, Poupart, and
Doshi 2016). However, no dynamic extension of decision cir-
cuits has been presented nor any algorithms to learn decision
circuits directly from data.

Attias (2003) posed planning using MDPs as a likelihood
maximization problem where the “data” is the initial state
and the final goal state or the maximum total reward. Tous-
saint et al. (2006) extended this to infer finite-state automata
for infinite-horizon partially-observable MDPs. A most likely
controller is inferred using expectation-maximization on a
mixture of increasing-horizon DBNs. This approach is ap-
pealing because it allows the advances in inference to bear on
planning. It differs from SPMNs by requiring a specification
of the planning domain; these form the required parameters
of the DBN. Furthermore, inference in DBNs is essentially
intractable although this may be speeded up using some of
the network compilation models. In contrast, SPMNs and
RSPMNs offer a tractable approach to DTP that maximizes
expected utility and is fundamentally different from planning
as inference.

Offline (batch) learning seeks to derive an optimal policy
from a given set of prior experiences. This set is analogous
to our simulations, and may either be fixed or allowed to
grow. While offline RL is not as well studied as its online
counterpart, the general approach is to modify online tech-
niques for use in batch contexts. Prominent methods, such
as experience replay (Lin 1992) and fitted Q-iteration (Ernst,
Geurts, and Wehenkel 2005), are model-free and utilize the
Q-update rule synchronously over all data until convergence.
Recently, methods based on deep neural networks such as
BCQ (Fujimoto et al. 2019) have appeared.

Concluding Remarks
RSPMNs offer a model-based approach to DTP, learning the
policy directly from data, which is provably tractable in the
size of the network. We introduced RSPMNs and presented
the first method to learn the structure and parameters of the
model. We established RSPMN’s favorable performance
in comparison to batch RL. RSPMNs are also useful for
off-policy evaluations (Gottesman et al. 2019) where the
environment model is learned from the data, which is then
used for policy evaluations.

An important future extension is to explore anytime tech-
niques for learning compact networks where the number of
nodes may grow with additional resources. Another extension
would be to adapt online structure learning (Kalra et al. 2018)
for RSPMNs. This can then be used to dynamically update
the model while the agent is interacting with environment.

Acknowledgements
This research is supported in part by NSF grant #1815598
to PD. We thank Alejandro Molina for help with the open-
source SPFlow codebase for SPNs. We also thank Pascal
Poupart for discussions that helped shape the direction of this
research.

References
Adel, T.; Balduzzi, D.; and Ghodsi, A. 2015. Learning the
Structure of Sum-Product Networks via an SVD-based Algo-
rithm. In Conference on Uncertainty in AI (UAI).

Attias, H. 2003. Planning by Probabilistic Inference. In Ninth
International Workshop on AI and Statistics (AISTATS).

613

Bhattacharjya, D.; and Shachter, R. D. 2007. Evaluating
influence diagrams with decision circuits. In Proceedings of
the conference on Uncertainty in artificial intelligence, 9–16.
Darwiche, A. 2000. A Differential Approach to Inference in
Bayesian Networks. In UAI, 123–132.
Dechter, R.; and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artificial intelligence 171(2-3): 73–
106.
Ernst, D.; Geurts, P.; and Wehenkel, L. 2005. Tree-based
batch mode reinforcement learning. Journal of Machine
Learning Research 6(Apr): 503–556.
Fujimoto, S.; Conti, E.; Ghavamzadeh, M.; and Pineau, J.
2019. Benchmarking Batch Deep Reinforcement Learning
Algorithms. arXiv preprint arXiv:1910.01708 .
Gens, R.; and Domingos, P. 2013. Learning the structure of
sum-product networks. In Proceedings of The 30th Interna-
tional Conference on Machine Learning, 873–880.
Gottesman, O.; Liu, Y.; Sussex, S.; Brunskill, E.; and Doshi-
Velez, F. 2019. Combining parametric and nonparametric
models for off-policy evaluation. In International Conference
on Machine Learning, 2366–2375.
Huang, J.; Chavira, M.; and Darwiche, A. 2006. Solving
MAP Exactly by Searching on Compiled Arithmetic Circuits.
In AAAI, volume 6, 3–7.
Kalra, A.; Rashwan, A.; Hsu, W.; Poupart, P.; Doshi, P.; and
Trimponias, G. 2018. Online structure learning for feed-
forward and recurrent sum-product networks. In Advances
in Neural Information Processing Systems (NeurIPS), 6944–
6954.
Koller, D.; and Friedman, N. 2009. Probabilistic graphical
models: principles and techniques. MIT press.
Lin, L.-J. 1992. Self-Improving Reactive Agents based on
Reinforcement Learning, Planning and Teaching. Machine
Learning 8(293–321).
Lowd, D.; and Rooshenas, A. 2013. Learning Markov net-
works with arithmetic circuits. In Proceedings of the Six-
teenth International Conference on Artificial Intelligence and
Statistics, 406–414.
Melibari, M.; Poupart, P.; and Doshi, P. 2016. Sum-Product-
Max Networks for Tractable Decision Making. In Twenty-
Fifth International Joint Conference on Artificial Intelligence
(IJCAI), 1846–1852.
Melibari, M.; Poupart, P.; Doshi, P.; and Trimponias, G. 2016.
Dynamic Sum Product Networks for Tractable Inference on
Sequence Data. In International Biennial Conference on
Probabilistic Graphical Models (PGM), JMLR: Workshop &
Conference Proceedings, Vol 52, 345–355.
Molina, A.; Vergari, A.; Stelzner, K.; Peharz, R.; Subramani,
P.; Mauro, N. D.; Poupart, P.; and Kersting, K. 2019. SPFlow:
An Easy and Extensible Library for Deep Probabilistic Learn-
ing using Sum-Product Networks.
Park, J. D.; and Darwiche, A. 2004. A differential semantics
for jointree algorithms. Artificial Intelligence 156(2): 197–
216.

Peharz, R. 2015. Foundations of Sum-Product Networks for
Probabilistic Modeling. Ph.D. thesis, Aalborg University.
Poon, H.; and Domingos, P. 2011. Sum-product networks:
A new deep architecture. In 12th Conf. on Uncertainty in
Artificial Intelligence (UAI), 2551–2558.
Sanner, S. 2010. Relational Dynamic Influence Diagram
Language (RDDL): Language Description. Specification in
IPPC 2011.
Shachter, R.; and Bhattacharjya, D. 2010. Dynamic pro-
gramming in infuence diagrams with decision circuits. In
Twenty-Sixth Annual Conference on Uncertainty in Artificial
Intelligence (UAI), 509–516.
Toussaint, M.; and Storkey, A. J. 2006. Probabilistic inference
for solving discrete and continuous state Markov Decision
Processes. In International Conference on Machine Learning
(ICML), 945–952.

614

