
Guiding Robot Exploration in Reinforcement Learning via Automated Planning

Yohei Hayamizu1*, Saeid Amiri2, Kishan Chandan2, Keiki Takadama1, and Shiqi Zhang2

1 The University of Electro-Communications, Tokyo, Japan
2 The State University of New York at Binghamton, Binghamton, NY, USA

hayamizu@cas.lab.uec.ac.jp, keiki@inf.uec.ac.jp
{samiri1; kchanda2; zhangs}@binghamton.edu

Abstract

Reinforcement learning (RL) enables an agent to learn from
trial-and-error experiences toward achieving long-term goals;
automated planning aims to compute plans for accomplishing
tasks using action knowledge. Despite their shared goal of
completing complex tasks, the development of RL and auto-
mated planning has been largely isolated due to their different
computational modalities. Focusing on improving RL agents’
learning efficiency, we develop Guided Dyna-Q (GDQ) to
enable RL agents to reason with action knowledge to avoid
exploring less-relevant states. The action knowledge is used
for generating artificial experiences from an optimistic sim-
ulation. GDQ has been evaluated in simulation and using a
mobile robot conducting navigation tasks in a multi-room
office environment. Compared with competitive baselines,
GDQ significantly reduces the effort in exploration while im-
proving the quality of learned policies.

Introduction
Recent advances in artificial intelligence have enabled
robots to conduct a variety of service and interaction tasks
in human-inhabited environments (Hawes et al. 2017; Khan-
delwal et al. 2017; Veloso 2018). When a world model of
dynamics and rewards is available, one can use Markov de-
cision process (MDP) algorithms to compute action poli-
cies (Puterman 2014). In practice, however, world models
are frequently unavailable or tend to change over time due
to exogenous changes. Reinforcement learning (RL) algo-
rithms have been used to help agents learn action policies
from trial-and-error experiences toward maximizing long-
term utilities (Sutton and Barto 2018).

There are various types of RL algorithms. Model-based
RL enables agents to learn a world model while learning an
action policy to achieve long-term goals (Brafman and Ten-
nenholtz 2002; Mann and Choe 2011; Kaiser et al. 2020).
Model-based RL can easily incorporate domain knowledge,
such as world dynamics, from a human expert into the pro-
cess of policy learning. In addition, model-based RL is goal-
independent from the model construction perspective, ren-
dering the learned world model applicable to other tasks.
The learned model cannot represent all dynamics, and thus,

*Research conducted while visiting SUNY Binghamton.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

model-based RL can be susceptible to domain changes. We
are still interested in model-based RL in this work acknowl-
edging its limitations, due to the characteristics of service
robotics domains, such as widely available domain knowl-
edge (e.g., how rooms are connected through doors), and
highly diverse service requests (e.g., requests of guiding vis-
itors from and to different indoor locations).

In this paper, we focus on addressing the low sample-
efficiency challenge of model-based RL algorithms. We de-
velop Guided Dyna-Q (GDQ) that consolidates the two clas-
sical paradigms of model-based RL and automated planning
to help the agent avoid exploring less-relevant states toward
more sample-efficient model learning and decision making.
GDQ reasons with action knowledge to optimistically simu-
late action sequences to “accomplish” tasks. The simulated
experience is then used to initialize and update Q-values
toward efficient policy learning. In particular, we use An-
swer Set Programming (ASP) to formulate action knowl-
edge (Lifschitz 2019), and use Dyna-Q for model-based
RL (Sutton and Barto 2018), though GDQ is not restricted
to particular planning or learning paradigms. It should be
noted that we only use widely available action knowledge,
such as “To open a door, one has to be in front of it first,”
where knowledge acquisition is not a problem. The goal is to
improve the learning efficiency in service robotics domains,
and show that GDQ can leverage the complementary fea-
tures of learning and planning paradigms to produce the best
performance. We summarize GDQ, including the interplay
between RL and automated planning, in Figure 1.

We have evaluated GDQ in simulation, and demonstrated
the learning process using a real mobile robot. Results show
that GDQ significantly improves the learning efficiency in
comparison to existing model-based and model-free RL
methods, including Q-Learning and Dyna-Q (Sutton and
Barto 2018), as well as a competitive baseline that uses ac-
tion knowledge to guide RL (Leonetti, Iocchi, and Stone
2016). In a real-world office environment with more than
20 rooms, GDQ helped a mobile robot learn the optimal so-
lution from only 30 episodes, whereas vanilla Dyna-Q could
not find a meaningful solution in a reasonable runtime.

Background
In this section, we briefly summarize the concepts of rein-
forcement learning and automated planning.

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

625



Figure 1: An overview of Guided Dyna-Q (GDQ), where the key is the interplay between an automated planner and a rein-
forcement learner. The red-color loop corresponds to the standard control loop of Dyna-Q, where the agent (robot) interacts
with the environment to update both its world model, and its Q-value function. Beyond that, GDQ further incorporates an au-
tomated planner into the learning process in the blue-color loop where goal-independent action knowledge (highly sparse, and
potentially inaccurate) is used for computing action sequences toward goal achievement. The action sequences are then used
for updating both the world model and the Q-value function.

Reinforcement Learning
Within the MDP context, the agent must learn action policies
from trial-and-error experiences when world models (reward
functions, transition functions, or both) are not known. For
instance, Q-learning is a model-free RL algorithm, and its
Q-value function can be updated as below.

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
where r is the immediate reward after taking action a in state
s. This update procedure enables the agent to incrementally
learn from every single (s, a, s′, r) sample.

Model-based RL algorithms learn the world model, in-
cludingR(s, a) and T (s, a, s′), and then use planning algo-
rithms to compute the action policy. Dyna-Q (Sutton 1991)
is a model-based RL framework, and includes the two pri-
mary components of model-free RL (Q-learning) and proba-
bilistic planning (e.g., value iteration). The real-world inter-
action experience is used for two purposes in Dyna-Q: world
model learning, and action policy learning. Besides, Dyna-Q
is able to generate extra (simulation) experience through in-
teracting with the learned world model, which further speeds
up the policy learning process. We use declarative action
knowledge to prevent the Dyna-Q agent from exploring less-
relevant states.

We use Dyna-Q as a building block in the implementation
of GDQ, because it is simple and has been widely studied in
the RL literature. It should be noted that GDQ practitioners
can replace Dyna-Q with other model-based RL methods.

Automated Planning
Automated planning methods aim at computing a sequence
of actions toward accomplishing complex tasks (Ghallab,
Nau, and Traverso 2016). One has to declaratively en-
code action knowledge into an automated planner, includ-
ing actions’ preconditions and effects. Since the develop-
ment of STRIPS (Fikes and Nilsson 1971), many action lan-
guages have been developed for formally representing ac-
tion knowledge. The following shows an example of using

STRIPS to formulate action stack¸ , where preconditions in-
clude the robot arm holding object X̧ and object Y̧ being
clear. Executing this action causes the hand to be empty, and
object Y̧ not clear anymore.

operator(stack(X,Y),
Precond [holding(X),clear(Y)],
Add [handempty,on(X,Y),clear(X)],
Delete [holding(X),clear(Y)])

There are a number of action languages that can be
used for encoding action knowledge, including PDDL that
has been widely used in real-world planning systems (Mc-
Dermott et al. 1998). Answer set programming (ASP) is
a general-purpose knowledge representation and reason-
ing paradigm, and supports automated planning (Lifschitz
2019). We use ASP in this research mainly because of its
good performance in knowledge-intensive domains (Jiang
et al. 2019b). For instance, in navigation tasks, the robot
needs to reason about potentially many rooms and their con-
nections. The action knowledge we use is simple and pub-
licly available (Yang et al. 2014; Jiang et al. 2019b), so we
do not discuss knowledge acquisition in this paper.

Algorithm
In this section, we present Guided Dyna-Q (GDQ), the
key contribution of this research. GDQ leverages goal-
independent action knowledge for sample-efficient policy
learning by enabling the interplay between a model-based
reinforcement learner and an automated planner.

We use Π(SA,AA,M) to represent our automated plan-
ner, where SA and AA are the state and action sets re-
spectively. A task to the automated planner is defined as
M = (sA0 , s

A
G) where sA0 , s

A
G ∈ SA are the initial state and

goal states respectively. For simplification, the goal is de-
fined as a single state, though it can be a set of states in prac-
tice. Given task M , an automated planning system can use
Π(SA,AA,M) to compute a set of plans, H, where p ∈ H
is in the form of a sequence of state-action pairs, and each
action sequence leads state transitions from the initial state

626



Algorithm 1 Optimistic Initialization: OPTINIT

Input: S, A, SA, AA, M = (sA0 , s
A
G)

Parameter: γ, α, Rmax

Output: π
1: for ∀s ∈ S, a ∈ A(s) do {Initialize Q-values,R, and T }
2: Q(s, a)← 0.0;R(s, a)← 0.0; T (s, a, s0)← 1.0
3: end for
4: H ← Π(SA,AA,M) {Compute a set of optimistic plans}
5: for p inH do
6: for

〈
sA, aA

〉
in p do

7: s, a← O(sA)
8: R(s, a)← Rmax {Optimistically updateR}
9: end for

10: end for
11: π ← random policy {Randomly initialize a policy}
12: while π 6= π′ do
13: π′ ← π
14: for ∀s ∈ S do
15: Q(s,π(s))←R(s,π(s))+γ

∑
s′∈S
T (s,π(s),s′)Q(s′,π(s′))

16: π(s)← argmaxaQ(s, a)
17: end for
18: end while
19: return π

sA0 all the way to the goal state sAG.

p =
〈〈
sA0 , a

A
0

〉
,
〈
sA1 , a

A
1

〉
, · · · ,

〈
sAG
〉〉

We use an automated planning system (Gebser et al. 2011)
that supports “optimisation statements” for generating a set
of the shortest plans (action costs are not considered in this
process). In order to enable the reinforcement learner to ex-
ploit the plans, we introduce a mapping function, O, that
constructs the correspondence between the planner’s action
space AA and the learner’s action space A, and the corre-
spondence between their state spaces SA and S .

∀sA∈SA, ∀aA∈AA(sA), s∈O−1(sA)⇒ s∈S, a∈A(s)

where A(s) ⊆ A, and a ∈ A(s) is applicable in state s.
Next, we describe how the plans generated by the au-

tomated planner are used for optimistic initialization (Sec-
tion ), policy update (Section ), and their integration, i.e.,
the GDQ algorithm.

Optimistic Initialization
The plans computed by the automated planner are referred to
as optimistic plans, because real-world domain uncertainty
is frequently overlooked in building the planners. For in-
stance, a robot taking the action of “navigate to room R”
sometimes does not result in the robot being in room R due
to the possibility of obstacles blocking the way. The goal of
optimistic initialization (OPTINIT) is to use the plans com-
puted by the automated planner to initialize Q-values, and
prevent the agent from exploring less-relevant states.

Algorithm 1 presents our optimistic initialization process.
The input includes the state and action spaces of both the
reinforcement learner and the automated planner. M is the
provided task. The output is an initial policy π, which is gen-
erated by the agent interacting with the world.

Algorithm 2 Policy Update: POLICYUP

Input: S, A, SA, AA, M = (sA0 , s
A
G), π, C, Rsum

Parameter: γ, α, Rmax, m, N
Output:R, T , π
1: Collect the current world state s from the world
2: a← π(s), with ε exploration rate
3: Collect resulting state s′ and reward r after taking a
4: Update the Q-value using real interaction experience
Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]

5: C(s, a, s′)← C(s, a, s′) + 1
6: Rsum(s, a)← Rsum(s, a) + r
7: if

∑
s′ C(s, a, s′) > m then

8: T (s, a, s′)← C(s, a, s′)/
∑

s′′ C(s, a, s′′)
9: R(s, a)← Rsum(s, a)/

∑
s′′ C(s, a, s′′)

10: end if
11: M ← (O(s), sAG)
12: H ← Π(SA,AA,M) {Compute a set of plans}
13: for n in {1 · · ·N} do
14: p← randomly selected plan inH
15:

〈
sA, aA

〉
← randomly selected transition in p

16: s, a← O−1(sA)
17: Update Q(s, a) using Bellman equation.
18: end for
19: ∀s ∈ S, ∀a ∈ A, π(s)← argmaxaQ(s, a)
20: returnR, T , π

Lines 1-3 are used for initializing the Q-values, as well
as the transition and reward functions. The transition func-
tion is initialized in a way that all state-action pairs deter-
ministically lead to the initial state. This setting is necessary
because all plans computed by the automated planner start
from the initial state. Given task M = (sA0 , s

A
G), our auto-

mated planner computes a set of optimistic plans in Line 4.
The two for-loops in Lines 5-10 assign the highest reward,
Rmax, to the reward of all state-action pairs that appear in
the plans from our automated planner. This is similar to how
R-MAX realizes the trade-off between exploration and ex-
ploitation (Brafman and Tennenholtz 2002). Lines 12-18 are
used for computing an action policy using policy iteration.
Finally, the computed policy is returned in Line 19.

It should be noted that the agent has not started inter-
acting with the environment while running OPTINIT (Algo-
rithm 1). This initialization process enables the agent to pri-
oritize states that are more relevant to the current task when
exploring its working environment, which enables the agent
to accomplish tasks more efficiently.

Policy Update and GDQ
The previous subsection (Section ) presents the process of
initializing the Q-function using the optimistic plans gener-
ated by our automated planner. Given the initializedQ-value
function, the agent is able to compute an initial policy, and
use this policy to interact with the real world. This subsec-
tion describes how the interaction experience, along with the
automated planner, is used to update the Q-value function at
runtime. Intuitively, the automated planner serves as an opti-
mistic simulator to enable the reinforcement learner to learn
from interaction experience in simulation.

Algorithm 2 presents the policy update process. Its in-

627



Algorithm 3 Guided Dyna-Q (GDQ)
Input: S, A, SA, AA, M = (sA0 , s

A
G), π, C

Output: π
1: Call Algorithm-1: π ← OPTINIT(S,A,SA,AA,M)
2: ∀s ∈ S, ∀a ∈ A, ∀s′ ∈ S, C(s, a, s′)← 0, Rsum(s, a)← 0
3: while Current state s is not terminal do
4: Call Algorithm-2:

R, T , π ← POLICYUP(S,A,SA,AA,M, π, C,Rsum)

5: end while
6: return π

put includes an action policy, a counter function C, and a
reward counter function Rsum, in addition to the input of
Algorithm 1. This policy is provided by Algorithm 1. Pa-
rameter m is a threshold, representing how many times a
state-action pair has been selected. Parameter N is used for
determining how many state-action pairs are simulated us-
ing the automated planner. The output includes not only a
policy, but also the reward and transition functions, because
our reinforcement learner is model-based.

Lines 1-4 are used for interacting with the real world
using the current action policy, π. Then, C(s, a, s′) is in-
creased by one for updating the number of state-action-
state triples. If the agent has visited a state-action pair for
more than m times (Line 7), the transition and reward func-
tions are updated. Intuitively,m is a parameter that indicates
a state-action pair being known or unknown. In Line 12,
the automated planner generates a set of plans. Using the
generated plans, we randomly select one transition from a
randomly-selected plan p ∈ H, and update the Q-value ac-
cordingly. This Q-value update process is repeated for N
times in Lines 13-18. Finally, the reward function, transition
function, and updated policy are returned.

Algorithm 3 is simply an integration of the two sub-
procedures for optimistic initialization (Algorithm 1) and
repeatedly conducted runtime policy update (Algorithm 2),
which identifies the main contribution of this research. In-
formally, Algorithm 1 helps the agent avoid the near-random
exploration behaviors through a “warm start” enabled by our
automated planner, and Algorithm 2 guides the agent to only
try the actions (in the real world) that can potentially lead to
the ultimate goal. Next, we present an instantiation of GDQ
followed by our experiment setup, and experimental results
from comparisons between GDQ and a number of baseline
methods selected from the literature.

GDQ Instantiation
While GDQ is a general-purpose algorithm for knowledge-
based RL, its implementation requires a task planner that
is domain-dependent (still task-independent). We consider
a mobile robot navigation domain, where the robot needs
to navigate in an indoor office environment. The rooms, in-
cluding hallways, are connected through doors that are of
different sizes. Big doors are more friendly to the robot,
though the robot needs to learn the “success rate” of nav-
igating through doors from trial and error. Our robot does

not have an arm and hence needs human help to open doors.
Some doors are located in areas where human help is better
available, while in some areas the robot might have to wait
a long time until people show up to help.

In each trial (episode), the robot is tasked with navi-
gating from its initial position to a goal position. There
are doors connecting rooms and corridors, and there are
different costs and success rates in navigation and door
opening actions. The robot has four types of actions of
goto(P,I), approach(D,I), opendoor(D,I), and
gothrough(D,I) for navigational purposes, where P is
one of the 19 positions, D is one of the 6 doors, and I is the
step number. The actions and parameters together form a
large action space for our RL agent. As an example, the fol-
lowing rule defines the effect of action gothrough(D,I),
at(R2,I+1):- gothrough(D,I),

at(R1,I), acc(R1,D,R2), I<n.

where acc(R1,D,R2) indicates that rooms R1 and R2 are
connected through door D. The rule states that, if the robot
is at room R1 at timestamp I, and acc(R1,D,R2) is true,
then going through door D causes the robot to be in room
R2 in the next step. n is the maximum steps allowed in the
navigation task.1

We used the BWI codebase (Khandelwal et al. 2017), in-
cluding their code for automated planning, in our robot nav-
igation experiments. GDQ is a general framework that can
be realized using different building blocks for learning and
planning. For instance, the Dyna-Q component for model-
based RL can be replaced by MBMF (Bansal et al. 2017)
or I2A (Racanière et al. 2017); the ASP-based automated
planner can be constructed using STRIPS (Fikes and Nils-
son 1971) or PDDL (McDermott et al. 1998).

Experiment
In this section, we focus on experimentally evaluating the
following three hypotheses that GDQ:

1. Performs better than existing RL methods from the litera-
ture in cumulative reward (Hypothesis-I);

2. Enables the robot to reduce the number of visits to “ir-
relevant” areas (Hypothesis-II), where an area is deemed
relevant to a navigation task, if there exists one optimal
plan that requires the robot navigating that area; and

3. Is more robust to goal changes (Hypothesis-III).

GDQ has been compared with a model-free RL baseline
(Q-Learning), a model-based RL baseline (Dyna-Q), and a
knowledge-based RL approach called DARLING (Leonetti,
Iocchi, and Stone 2016) that reasons with action knowledge
to avoid “unreasonable” exploratory behaviors.

We define seven areas in the map as shown in Figure 2,
and each area was manually separated into four subareas
(each corresponds to a state). Some of the areas are directly
accessible to each other (e.g., Areas 6 and 7), whereas the
others are connected through doors (e.g., Areas 1 and 2).

1More information on ASP-based planning systems is available
online: “https://github.com/potassco/guide”. The code of GDQ is
available at “https://github.com/YoheiHayamizu/gdq”

628



Figure 2: An occupancy-grid map (Left) of an indoor office environment with more than 20 rooms, where the map was built
using a mobile robot running simultaneous localization and mapping (SLAM) algorithms (Montemerlo et al. 2002; Thrun,
Burgard, and Fox 2005) and each pixel is labeled in color with its semantic meaning (area number). The initial and goal
positions used in the experiments are named as P1...P5. Red lines refer to the room doors; and the front (Middle) and back
(Right) of our Segway-based mobile robot platform that was used for building the map and evaluations of the GDQ algorithm.

We have labeled six doors in the map that our robot can use
to enter rooms. All doors are automatic, meaning that, to go
through a door, the robot must get close to it, and open it be-
fore taking the gothrough action. The real robot needs help
from people for door opening actions (printing on its screen
“Please help me open the door”), which requires different
time durations depending on people’s availability. In simula-
tion, each door is associated with a success-rate distribution,
and another distribution over action costs. We tried to give
realistic distributions to match the real door’s physical prop-
erties (width, location, weight, etc). D0, D2, and D5 are
difficult doors, where D2 is the most difficult to be opened.
D1, D3, and D4 are easy, where D3 is the easiest. The sim-
ulation environment used in experiments has been created
as an extension of OpenAI Gym, a standard platform for RL
research (Brockman et al. 2016).

Simulation Experiment
The agent receives a big reward, Rmax, in successful trials;
receives a big penalty,−Rmax, in failure trials; and receives
a small cost, c, at all other times. In this experiment,Rmax =
20, and c = 1. Our agent tries a random action in probability
ε = 0.1. The learning rate is α = 0.1, and the discount factor
is γ = 0.95. We set a threshold as the maximum number of
actions allowed in each episode: not being able to complete a
task within 20 actions makes a trial unsuccessful. Each “run”
includes 2500 episodes in a row, and each data point of our
figures is an average of over 10 runs. We have conducted
four independent experiments in simulation.

Cumulative Reward Figures 3 presents the cumulative
rewards collected from the robot conducting Tasks A, B, C,
andD, as well as the tasks’ initial and goal positions. We ob-
serve that GDQ performed the best in learning rate in com-
parison to the four baselines, which supports Hypothesis-I.

Looking into Task-C (bottom-left subfigure), there are the
following valid routes that can lead to the goal position while
producing different costs and success-rates: [1 → 2 → 6],
[1 → 3 → 6], [1 → 3 → 4 → 7 → 6], [1 → 3 → 2 → 6],
[1 → 3 → 4 → 5 → 7 → 6], where each number cor-
responds to the index of an area. The shortest routes are

[1 → 2 → 6], and [1 → 3 → 6]. However, the two routes
have doors of D0 and D2, which are both difficult. In com-
parison, [1 → 3 → 2 → 6] provides the best trade-off be-
tween traveling distance and door difficulty, and is the best
solution. GDQ enabled the robot to converge to this solution
earlier than all other baseline methods.

Exploration Aiming to evaluate Hypothesis-II on explo-
ration, we manually provided the ground truth relevance in-
formation, where we introduce function IRR that maps a
task to a set of irrelevant areas

irrelevant areas← IRR(task)

Back to our testing domain, the irrelevant areas to each
task are: {1, 2, 3} ← IRR(A), {1, 2, 3, 6} ← IRR(B),
{4, 5, 7} ← IRR(C), and {2, 5} ← IRR(D)

Table 1 shows the results in evaluating the performances
in exploration. The bold text indicates the method that pro-
duced the least visits, and we say the robot successfully
avoids the area using this method. Consider the last four
rows that correspond to Task-D. We see that GDQ enabled
the robot to visit Area-2 for as few as only 37.2 times, which
is much lower than the number of visits required by the other
methods (say Q-Learning requires 479.8 visits), while still
produced the best performance in policy quality. This ob-
servation is consistent with our prior knowledge that Areas
2 and 5 are less-relevant to Task-D. In all four tasks, the
robot successfully avoided the irrelevant areas (see the high-
lighted areas with bold and the listed irrelevant areas in col-
umn Task), supporting Hypothesis-II.

Switching Task To evaluate Hypothesis III, we studied
four scenarios where the robot’s goal is changed after 2500
episodes of training. This experiment was repeated 10 times
for computing the averages and standard errors as presented
in Figure 4. The two subfigures show the results collected
from two cases of task changes. We can see that GDQ
can adapt to the task change and learn an optimal policy
much faster than the baselines, leveraging the learned task-
independent transition function.

629



0 500 1000 1500 2000 2500
Episode

−20

−10

0

10

C
u

m
u

la
ti

ve
R

ew
ar

d

Q-Learning Dyna-Q DARLING GDQ

(a) Task A: MA = (P1, P3)

0 500 1000 1500 2000 2500
Episode

−20

−10

0

10

C
u

m
u

la
ti

ve
R

ew
ar

d

Q-Learning Dyna-Q DARLING GDQ

(b) Task B: MB = (P1, P4)

0 500 1000 1500 2000 2500
Episode

−25

−20

−15

−10

−5

0

5

10

C
u

m
u

la
ti

ve
R

ew
ar

d

Q-Learning Dyna-Q DARLING GDQ

(c) Task C: MC = (P2, P3)

0 500 1000 1500 2000 2500
Episode

−25

−20

−15

−10

−5

0

5

10

C
u

m
u

la
ti

ve
R

ew
ar

d

Q-Learning Dyna-Q DARLING GDQ

(d) Task D: MD = (P2, P4)

Figure 3: Average cumulative reward over ten runs (each run includes 2500 episodes), while the robot working on different
indoor navigation tasks in simulation. GDQ produced the best performance in all four tasks.

0 1000 2000 3000 4000 5000
Episode

−25

−20

−15

−10

−5

0

5

10

C
u

m
u

la
ti

ve
R

ew
ar

d

Q-Learning Dyna-Q DARLING GDQ

(a) Task C to Task D

0 1000 2000 3000 4000 5000
Episode

−20

−10

0

10

C
u

m
u

la
ti

ve
R

ew
ar

d

Q-Learning Dyna-Q DARLING GDQ

(b) Task C to Task E: ME = (P3, P1)

Figure 4: The robot conducted two tasks in each experiment to evaluate Hypothesis-III, where the task was changed at the
2500th episode. Average cumulative reward over ten runs (each run includes 5000 episodes), while the robot working on
different indoor navigation tasks in simulation. GDQ produced the best performance in the two experiments.

Real Robot Experiment
We have conducted experiments using a Segway-based mo-
bile robot platform (Figure 2 on the right). In the real world,
the robot has to ask people to help open doors, where the
action cost and success rate are noisy and out of our con-
trol. We forbade the robot from entering Area-5 in real-
world experiments, because it is a long corridor, and nav-
igating through that area takes a very long time. The fol-
lowing parameters are used in the real-robot experiment:
Rmax = 1000, α = 0.5, γ = 0.95, and ε = 0.1. The robot’s
task is MX = (P5, P3), referred to as Task-X .

Different from simulation experiments, we use time to
measure the cost of navigation and door-opening actions (in-

stead of a predefined fixed value). A maximum of 10 steps
is allowed, i.e., if the robot cannot complete Task-X in 10
steps, the corresponding trial will be deemed unsuccessful.
We have conducted a total of 30 trails using the real robot.

Each trial took up to 30 minutes to complete. The
Segway-based robot runs out of battery in about five hours,
and the experiments were conducted on three consecutive
days (5 hours a day, and 15 hours in total). Due to the long
time required for each trial (especially in the early learning
phase), we only compared GDQ with one baseline.

Figure 5 reports the results collected from the real-robot
experiment. Looking at the very left of the two curves, the
“jump start” of GDQ shows that Algorithm 1 (OPTINIT)

630



Task Method Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7

GDQ 0.0(0.0) 14.3(0.6) 23.8(1.1) 944.0(42.5) 351.9(15.9) 272.1(12.3) 613.2(26.4)
Task A DARLING 1.0(0.1) 10.0(0.5) 27.9(1.3) 853.9(40.8) 388.3(18.6) 260.1(12.4) 551.6(26.4)
1, 2, 3 Dyna-Q 12.5(0.4) 169.6(5.5) 312.3(10.2) 1146.2(37.4) 668.6(21.8) 200.2(6.5) 553.1(18.6)

Q-Learning 16.6(0.4) 394.4(9.3) 833.3(19.7) 1435.7(34.0) 1126.3(26.7) 93.4(2.2) 322.2(7.6)

GDQ 0.0(0.0) 0.5(0.0) 3.2(0.2) 935.4(50.0) 352.3(18.8) 0.0(0.0) 581.4(31.0)
Task B DARLING 0.6(0.0) 4.7(0.3) 16.4(0.9) 839.9(47.7) 353.3(20.1) 1.2(0.0) 545.1(31.0)
1,2,3,6 Dyna-Q 0.7(0.0) 50.3(1.6) 177.0(5.6) 1372.6(43.4) 697.5(2.2) 0.0(0.0) 861.5(27.3)

Q-Learning 1.0(0.0) 143.3(4.4) 459.2(14.1) 1318.1(40.3) 981.5(30.0) 0.0(0.0) 364.1(11.1)

GDQ 1025.1(31.7) 984.9(30.5) 621.8(19.3) 13.6(0.4) 7.5(0.2) 575.4(17.8) 2.5(0.1)
Task C DARLING 1343.9(40.9) 832.4(25.4) 582.1(17.7) 22.2(0.7) 6.9(0.2) 491.6(15.0) 3.2(0.1)
4,5,7 Dyna-Q 1943.0(43.5) 854.9(19.1) 861.9(19.3) 203.5(4.6) 101.1(2.3) 495.3(11.1) 6.0(0.1)

Q-Learning 3146.4(59.7) 472.0(9.0) 1143.0(21.7) 378.4(7.2) 125.7(2.4) 0.5(0.0) 0.6(0.0)

GDQ 1031.2(31.8) 37.2(1.1) 637.4(19.6) 943.4(29.1) 6.7(0.2) 20.5(0.6) 570.0(17.6)
Task D DARLING 1503.7(43.5) 282.1(8.2) 578.9(16.7) 553.5(16.0) 12.3(0.4) 133.9(3.9) 394.3(11.4)

2, 5 Dyna-Q 1981.8(44.0) 395.0(8.8) 882.4(19.6) 638.3(14.2) 169.2(3.8) 98.4(2.2) 344.0(7.6)
Q-Learning 3152.3(59.8) 479.8(9.1) 1140.7(21.6) 374.7(7.1) 127.4(2.4) 0.6(0.0) 0.5(0.0)

Table 1: This table shows how many times the robot visited each area using four different methods (including GDQ) in con-
ducting the four different tasks. The goal is to show GDQ helps the robot avoid visiting areas that are less-relevant to the given
task. Bold text indicates the fewest visits to the less-relevant areas (listed in the “Task” column) among the four methods.

5 10 15 20 25 30
Episode

−500

−250

0

250

500

750

C
u

m
u

la
ti

ve
R

ew
ar

d

Dyna-Q

GDQ

Figure 5: Task MX = (P5, P3) on a real robot. GDQ en-
abled the robot to find the optimal path in 22 trials, while
Dyna-Q could not find a meaningful solution in 30 trials.

helped the robot successfully avoid the “random” explo-
ration behaviors in the early phase. Once the robot started
interacting with the real world, we can see the cumulative
reward of GDQ is consistently higher than Dyna-Q, except
for only the 17th episode. After that, GDQ soon found the
optimal solution. In comparison, Dyna-Q could not find a
meaningful solution within a total of 30 episodes.

Figure 6 visualizes the frequency of our robot visiting dif-
ferent locations, where a light gray color represents a lower
frequency of visits. We see that GDQ enabled the robot to
focus more on the left side of the subarea, whereas, using
the baseline approach, the robot traversed the right subarea
(irrelevant) more. We have generated a video for the demon-
stration of GDQ’s performance on a real robot.2

Related Work
Automated planning is a branch of automated reasoning re-
search that aims to compute a sequence of actions to ac-
complish complex tasks. Automated planning methods fre-

2https://youtu.be/X Lc-8CD8No

Figure 6: Heatmaps of a subarea of our office domain for vi-
sualizing where the robot visited using the Dyna-Q baseline
(Left) and GDQ (Right).

quently assume that the agent always gets the desired action
outcomes, and unexpected outcomes are handled by plan
monitoring and replanning. In comparison, RL methods as-
sume non-deterministic action outcomes, and agents learn
from interaction experience. We briefly summarize existing
algorithms that leverage automated planning (Ghallab, Nau,
and Traverso 2016) to improve the performance of reinforce-
ment learning methods (Sutton and Barto 2018) .

Knowledge-based RL: Researchers have developed algo-
rithms to integrate model-free RL and automated planning
to avoid taking unreasonable actions in exploration. Algo-
rithm DARLING is perhaps the earliest work that leverages
action preconditions and effects from human knowledge for
RL agents to avoid visiting risky or useless state, and has
been applied to mobile robot navigation, and grid world
domains (Leonetti, Iocchi, and Stone 2016). Researchers
have integrated automated planning and Q-learning focus-
ing on non-stationary domains under uncertainties (Ferreira

631



et al. 2017). Those algorithms exploited the flexibility of RL
approaches and the accuracy of the declarative knowledge
from humans. Other algorithms use action knowledge to im-
prove model-free RL agents’ performance in exploratory be-
haviors (Ferreira et al. 2019; Zhang et al. 2019). In these
works, researchers exploited the pre-designed models for
constraining the state or action spaces. In comparison, GDQ
(ours) equips the RL agent with the capability of simulating
optimistic interaction experience using action knowledge for
model learning and policy learning purposes.

Researchers have developed algorithms to use subgoals
to guide RL agents. Those subgoals can be learned and
represented using non-monotonic logics (Furelos-Blanco
et al. 2020), or action languages (Efthymiadis and Kudenko
2013). The main difference from the above-mentioned meth-
ods is that GDQ uses model-based RL, whereas they used
model-free RL methods that are task-oriented. Our ser-
vice robotics domain includes potentially many service re-
quests, rendering task-independent methods more suitable.
Recently, Zhang and Sridharan researches on leveraging
knowledge to improve RL agents’ learning performance.

Hierarchical RL and Automated Planning: Planning
methods have been used to guide the higher level of hierar-
chical RL methods (Icarte et al. 2018; Yang et al. 2018; Lyu
et al. 2019; Jiang et al. 2019a; Illanes et al. 2020; Gordon,
Fox, and Farhadi 2019). In those methods, the agents use an
action language to compute plans to decompose a complex
task into a sequence of subtasks, and each subtask is then
implemented by a reinforcement learner. For instance, the
work of Jiang et al. (2019a) showed that the introduction of a
few milestone positions at the task level can improve mobile
robots’ performance in indoor navigation tasks. The work
of Icarte et al. (2018) built reward machines using temporal
knowledge from domain experts to guide RL agents’ learn-
ing behaviors, and also the reward machine can be learned
from trial-and-error experiences (Icarte et al. 2019).

The domain knowledge used in those works significantly
improved the learning efficiency of RL agents. However, de-
signing the hierarchy is frequently difficult, and many of the
hierarchical methods trade optimality for learning efficiency.
In comparison, GDQ uses action knowledge that is either
publicly available (in our case) or can be easily encoded.
Also, the optimistic experience of GDQ generated using ac-
tion knowledge does not introduce any hard constraints, so
GDQ inherits the optimality guarantee from RL algorithms.

Logical Probabilistic Paradigms: There is the funda-
mental “logic-probability” gap between model-based RL
and automated planning, where model-based RL relies on
probabilistic transition systems, and traditionally automated
planning does not model quantitative uncertainty. Aim-
ing at bridging this gap, automated planning researchers
have used logical-probabilistic paradigms to represent ac-
tion knowledge, so as to directly reason about probabilis-
tic transitions for model-based RL. For instance, Ng and
Petrick (2019) recently developed an algorithm that gener-
ates and updates logical-probabilistic action models of au-

tomated planning using model-based RL. They used Proba-
bilistic PDDL (Younes and Littman 2004) for action model-
ing. Alternatively, researchers have developed new knowl-
edge representation paradigms to help agents simultane-
ously reason with human knowledge and learn the model
through interaction with the environment (Wang, Zhang, and
Lee 2019; Lu et al. 2020; Sridharan et al. 2019; Veiga et al.
2019; Sanner and Kersting 2010). The above-mentioned
methods require the human developer to manually encode
logical-probabilistic knowledge, which requires significant
professional skills and might soon become infeasible in
large domains. In comparison, GDQ requires the minimum
amount of action knowledge (widely available in our case),
such as “After going through a door, a robot will be on the
other side of it (Yang et al. 2014; Jiang et al. 2019b), render-
ing GDQ more applicable to real-world domains.

Conclusions
In this paper, we develop Guided Dyna-Q (GDQ) for bridg-
ing the gap between model-based RL, and automated plan-
ning. The goal is to help the agent (robot) avoid exploring
less-relevant states toward speeding up the learning process.
GDQ has been demonstrated and evaluated both in simula-
tion and using a real robot conducting navigation tasks in an
indoor office environment. From the experimental results,
we see that, using the widely available action knowledge,
GDQ performed significantly better than competitive base-
line methods from the literature, demonstrating the best per-
formance in learning efficiency.

Acknowledgments
This work has taken place in the Autonomous Intelligent
Robotics (AIR) Group at SUNY Binghamton. AIR research
is supported in part by grants from the National Science
Foundation (NRI-1925044), Ford Motor Company (URP
Awards 2019 and 2020), OPPO (Faculty Research Award
2020), and SUNY Research Foundation.

References
Bansal, S.; Calandra, R.; Chua, K.; Levine, S.; and Tomlin,
C. 2017. Mbmf: Model-based priors for model-free rein-
forcement learning. arXiv preprint arXiv:1709.03153 .
Brafman, R. I.; and Tennenholtz, M. 2002. R-max-a general
polynomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research .
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540 .
Efthymiadis, K.; and Kudenko, D. 2013. Using plan-based
reward shaping to learn strategies in starcraft: Broodwar. In
CIG. IEEE.
Ferreira, L.; Bianchi, R.; Santos, P.; and de Mantaras, R. L.
2017. Answer set programming for non-stationary markov
decision processes. Applied Intelligence .
Ferreira, L.; dos Santos, T.; Bianchi, R.; and Santos, P.
2019. Solving Safety Problems with Ensemble Reinforce-
ment Learning. In AJCAI, 203–214. Springer.

632



Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artif. Intell. 2(3-4): 189–208.

Furelos-Blanco, D.; Law, M.; Russo, A.; Broda, K.; and Jon-
sson, A. 2020. Induction of Subgoal Automata for Rein-
forcement Learning. In AAAI, 3890–3897.

Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The Potsdam
answer set solving collection. Ai Communications .

Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
planning and acting. Cambridge University Press.

Gordon, D.; Fox, D.; and Farhadi, A. 2019. What should
I do now? marrying reinforcement learning and symbolic
planning. arXiv preprint arXiv:1901.01492 .

Hawes, N.; Burbridge, C.; Jovan, F.; Kunze, L.; Lacerda, B.;
et al. 2017. The strands project: Long-term autonomy in
everyday environments. IEEE Robotics & Automation Mag-
azine 24(3): 146–156.

Icarte, R. T.; Klassen, T.; Valenzano, R.; and McIlraith, S.
2018. Using reward machines for high-level task specifica-
tion and decomposition in reinforcement learning. In ICML.

Icarte, R. T.; Waldie, E.; Klassen, T.; Valenzano, R.; Castro,
M.; and McIlraith, S. 2019. Learning reward machines for
partially observable reinforcement learning. NeurIPS .

Illanes, L.; Yan, X.; Icarte, R. T.; and McIlraith, S. A. 2020.
Symbolic Plans as High-Level Instructions for Reinforce-
ment Learning. In ICAPS, volume 30, 540–550.

Jiang, Y.; Yang, F.; Zhang, S.; and Stone, P. 2019a. Task-
Motion Planning with Reinforcement Learning for Adapt-
able Mobile Service Robots. In 2019 IEEE/RSJ Interna-
tional Conference on IROS.

Jiang, Y.; Zhang, S.; Khandelwal, P.; and Stone, P. 2019b.
Task planning in robotics: an empirical comparison of
PDDL- and ASP-based systems. Front. Inf. Technol. Elec-
tron. Eng. 20(3): 363–373.

Kaiser, L.; Babaeizadeh, M.; Miłos, P.; Osiński, B.; Camp-
bell, R. H.; Czechowski, K.; et al. 2020. Model Based Rein-
forcement Learning for Atari. In ICLR.

Khandelwal, P.; Zhang, S.; Sinapov, J.; Leonetti, M.;
Thomason, J.; Yang, F.; Gori, I.; et al. 2017. Bwibots: A
platform for bridging the gap between ai and human–robot
interaction research. IJRR .

Leonetti, M.; Iocchi, L.; and Stone, P. 2016. A synthesis of
automated planning and reinforcement learning for efficient,
robust decision-making. Artif. Intell. .

Lifschitz, V. 2019. Answer set programming. Springer.

Lu, K.; Zhang, S.; Stone, P.; and Chen, X. 2020. Learning
and Reasoning for Robot Dialog and Navigation Tasks. In
SIGDIAL.

Lyu, D.; Yang, F.; Liu, B.; and Gustafson, S. 2019. SDRL:
Interpretable and Data-Efficient Deep Reinforcement Learn-
ing Leveraging Symbolic Planning. In AAAI.

Mann, T. A.; and Choe, Y. 2011. Scaling up reinforcement
learning through targeted exploration. In AAAI.
McDermott, D.; Ghallab, M.; Howe, A.; et al. 1998. PDDL-
the planning domain definition language.
Montemerlo, M.; Thrun, S.; Koller, D.; and Wegbreit, B.
2002. FastSLAM: a factored solution to the simultaneous
localization and mapping problem. In AAAI, 593–598.
Ng, J. H. A.; and Petrick, R. P. A. 2019. Incremental
Learning of Planning Actions in Model-Based Reinforce-
ment Learning. In IJCAI.
Puterman, M. L. 2014. Markov Decision Processes.: Dis-
crete Stochastic Dynamic Programming. John Wiley &
Sons.
Racanière, S.; Weber, T.; Reichert, D.; Buesing, L.; Guez,
A.; Rezende, D. J.; Badia, A. P.; et al. 2017. Imagination-
augmented agents for deep reinforcement learning. In Ad-
vances in NeurIPS.
Sanner, S.; and Kersting, K. 2010. Symbolic dynamic pro-
gramming for first-order POMDPs. In AAAI.
Sridharan, M.; Gelfond, M.; Zhang, S.; and Wyatt, J. 2019.
REBA: A refinement-based architecture for knowledge rep-
resentation and reasoning in robotics. JAIR .
Sutton, R. S. 1991. Dyna, an Integrated Architecture for
Learning, Planning, and Reacting. SIGART Bull. .
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
Robotics. MIT Press.
Veiga, T.; Silva, M.; Ventura, R.; and Lima, P. 2019. A hi-
erarchical approach to active semantic mapping using prob-
abilistic logic and information reward POMDPs. In ICAPS.
Veloso, M. M. 2018. The Increasingly Fascinating Oppor-
tunity for Human-Robot-AI Interaction: The CoBot Mobile
Service Robots. ACM Transactions on HRI .
Wang, Y.; Zhang, S.; and Lee, J. 2019. Bridging Common-
sense Reasoning and Probabilistic Planning via a Probabilis-
tic Action Language. Theory and Practice of Logic Pro-
gramming .
Yang, F.; Khandelwal, P.; Leonetti, M.; and Stone, P. H.
2014. Planning in answer set programming while learning
action costs for mobile robots. In AAAI-SSS.
Yang, F.; Lyu, D.; Liu, B.; and Gustafson, S. 2018. PEORL:
Integrating Symbolic Planning and Hierarchical Reinforce-
ment Learning for Robust Decision-Making. In IJCAI.
Younes, H. L.; and Littman, M. L. 2004. PPDDL1. 0: An
extension to PDDL for expressing planning domains with
probabilistic effects. Techn. Rep. CMU-CS-04-162 2: 99.
Zhang, H.; Gao, Z.; Zhou, Y.; Zhang, H.; Wu, K.; and Lin,
F. 2019. Faster and Safer Training by Embedding High-
Level Knowledge into Deep Reinforcement Learning. arXiv
preprint arXiv:1910.09986 .
Zhang, S.; and Sridharan, M. 2020. A Survey of Knowledge-
based Sequential Decision Making under Uncertainty. arXiv
preprint arXiv:2008.08548 .

633


