
Task-Aware Waypoint Sampling for Robotic Planning

Sarah Keren1,2,Gerard Canal3, Michael Cashmore4
1Harvard University, School of Engineering and Applied Sciences, Cambridge, USA

2The Hebrew University of Jerusalem, School of Computer Science and Engineering, Israel
3Department of Informatics, King’s College London, UK,

4University of Strathclyde, Computer and Information Sciences, Glasgow, UK

Abstract
To achieve a complex task, a robot often needs to navigate in a
physical space in order to complete activities in different loca-
tions. For example, it may need to inspect several structures,
making multiple observations of each structure from different
perspectives. Typically, the positions from which these activi-
ties can be performed are represented as waypoints – discrete
positions that are sampled from the continuous physical space
and used to find a task plan. Existing approaches to waypoint
selection either iteratively consider the entire space or use do-
main knowledge to consider each activity separately. This can
lead to task planning problems that are more complex than is
necessary or to plans of compromised quality. Moreover, all
previous approaches only consider geometric constraints that
can be imposed on the waypoint selection process.
We present Task-Aware Waypoint Sampling (TAWS), which
offers two key novelties. First, it is an anytime approach that
combines the benefits of random sampling with the use of do-
main knowledge in waypoint selection by performing a one-
time computation of the connectivity graph from which way-
points are sampled. In addition, TAWS is the first approach
that accounts for performance preferences, which are prefer-
ences a system operator may have about the generated task
plan. These can account, for example, for areas near door-
ways where it is preferable that the robot does not stop to
perform activities. We demonstrate the performance benefits
of our approach on simulated automated manufacturing tasks.

Introduction
Robots are typically assigned complex missions that require
performing various activities in different locations. To com-
plete the overall mission, a mobile robotic agent must rea-
son about a physical space and decide both which activi-
ties must be performed as well as how to navigate between
the positions from which it can perform each activity. Since
the physical space is continuous, task planning is typically
performed using an abstraction of the space. A common
abstraction approach is to use a finite set of discrete way-
points that represent configurations (positions) in the space.
The waypoints represent nodes in a probabilistic road map
(PRM) (Kavraki et al. 1996), in which the edges represent
feasible paths between waypoints and their estimated nav-
igation costs. The PRM is used by a task planner to find

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a feasible sequence of activities and navigations between
waypoints from which the activities can be performed that
accomplishes the assigned task.

When generating waypoints there is a trade-off between
the complexity and completeness of the resulting represen-
tation. Intuitively, a small set of waypoints is a coarse ab-
straction of the physical space that limits the positions that
can be used to achieve the task, potentially leading to lower
quality plans or unsolvable problems. On the other hand, a
larger set of waypoints will lead to a higher probability of
finding a plan, but may exceed the computational capacity
of the task planner.

Generally, there are two common approaches to gener-
ating a set of waypoints. With Fixed Waypoint Generation
(FWPG), a set of waypoints is generated by selecting a sin-
gle waypoint for each possible activity (Edelkamp et al.
2018). FWPG provides a sufficient coverage of the plan-
ning space, but may yield representations that are too big for
the planner to handle. On the other end, with a Pure PRM
(PPRM) approach (Kavraki et al. 1996), a PRM is created
by randomly sampling waypoints. The size of the graph can
be set to comply with the planner’s capacity, but since the
placement of waypoints is random, the coverage of the space
may be insufficient. This may require iteratively generating
a new PRM until a solution is found.

In this work, we suggest a novel approach to waypoint
generation which bridges the gap between the two common
approaches to sampling and provides good coverage of the
space, while accounting for the planner’s capacity. Our ap-
proach, Task-Aware Waypoint Sampling (TAWS), is an any-
time approach that starts by generating a very Dense PRM
(DPRM). The DPRM captures a fine representation of the
reachability information of the space, and includes with very
high probability a representation of a solution to the task.
TAWS then launches an iterative, anytime planning process,
sampling at each step waypoints from the DPRM accord-
ing to probabilities induced by the task description. If a plan
cannot be found using the current set of waypoints or if there
is time to improve the quality of the current best solution, a
larger set is re-sampled. In contrast, if the planner’s capacity
is exceeded, a smaller set is re-sampled.

As with PPRM, TAWS relies on sampling a set of way-
points to generate the PRM used by the task planning. How-
ever, it avoids the need to reconstruct a PRM at every plan-

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

643



(a) 3D representation of an example fac-
tory environment, with the robot (gray
square in the center), and the machines in
green.

(b) A map of the physical space high-
lighted by the areas from which the robot
can interact with each of 12 different ma-
chines (green crosses).

(c) The dense PRM imposed over the map.
Each collision-free edge (blue lines) con-
nects two waypoints (configurations).

Figure 1: An example setting from the RCLL domain

(a) Map of the physical space specify-
ing first aid stations (yellow) and door-
ways (white), which represent perfor-
mance preferences of areas where robots
can never block and preferably should
avoid, respectively.

(b) Map representing the combination of
the performance preferences and the ma-
chine interaction areas.

(c) Waypoints (red squares) are sampled
from the DPRM for task planning. Ma-
chines that can be accessed from each
waypoint are highlighted by green edges.

Figure 2: Integrating Performance preferences into the sampling process

ning iteration. As with FWPG, TAWS incorporates domain
knowledge into the waypoint selection process, but instead
of using it to fix a set of waypoints, it uses it to set the prob-
abilities according to which waypoints are sampled from the
DPRM. This can be used to increase efficiency by, for ex-
ample, prioritizing waypoints from which more than one ac-
tivity can be performed. Moreover, it makes it possible to
account for performance preferences, arbitrary user-defined
preferences over positions from which the robot can perform
its activities but that cannot be directly represented in the
map used by the robot for navigation. Such preferences can
reflect, for example, social norms (e.g., areas where some
social event is taking place and should be avoided by noisy
robots), safety and efficiency constraints (e.g., a carpeted
area that is hard for robots to traverse, or an area near a
first aid kit robots shouldn’t block), and areas where perfor-
mance is enhanced (e.g., it is preferable for a robot to operate
near a charging station since it will be able to recharge and
recover if its battery is unexpectedly depleted). TAWS can

account for these arbitrarily defined preferences by chang-
ing the probability of sampling certain positions according
to the specified preferences.

Example 1 Consider the scenario used for the RoboCup
Logistics League (RCLL) (Niemueller, Lakemeyer, and Fer-
rein 2015) and depicted in Figure 1, in which robots must
navigate in a factory in order to collect items from a set of
machines and deliver them to their destinations. In such sce-
narios, if the environment is fixed and known, FWPG can
be used to prescribe a finite set of waypoints, including a
waypoint for each activity robots may need to perform (e.g.,
picking up an item from a machine). The result may include
many redundant waypoints or waypoints that cannot be con-
nected, or lead to inefficient plans since each activity is con-
sidered separately. Also, FWPG does not allow for iterations
if the planner’s capacity is exceeded. On the other hand,
the PPRM approach might require many iterations to solve
problems of realistic size or produce inefficient plans since
the size of the PRM and the accuracy of its cost estimations

644



are limited by the planner’s capacity.
TAWS takes a hybrid approach by first producing a single

dense PRM (DPRM) that is used throughout the search for
a plan. This is likely to lead to plans that are more efficient
at execution time since the DPRM provides more accurate
navigation cost estimates. Moreover, TAWS can be used to
reduce the probability that robots’ plans include waypoints
that block doorways or to guarantee not to include way-
points that block access to first aid stations.

We offer two key contributions. First, we suggest per-
forming a one-time computation of a connectivity graph in
a given environment, thus decoupling between the connec-
tivity analysis and the task planning process. This enables
the use of high quality navigation cost estimations through-
out the planning process, regardless of the size of the cur-
rent representation of the task planning problem (the cur-
rent PRM) or the capacity of the task planner. Secondly, we
support performance preferences that induce the waypoint
sampling probabilities and yield plans that comply with both
hard constraints and with user-defined preferences regarding
the way a robot accomplishes its task.

To demonstrate the performance benefits of TAWS, we
use a set of simulated manufacturing tasks in an automated
factory. First, we show that the use of a DPRM instead of an
iterative or fixed generation of a PRM yields shorter plans
that are computed more efficiently. In addition, we show that
TAWS produces plans that maximize compliance with the
specified performance preferences when compared to cur-
rent approaches, without compromising their quality.

Related Work
Typical robotic control systems must determine which activ-
ities need to be performed, and how to navigate between the
activities. Common approaches to planning for robots com-
bine motion planning and task planning (Gravot, Cambon,
and Alami 2005; Cambon, Alami, and Gravot 2009; Kael-
bling and Lozano-Pérez 2011; Dornhege, Hertle, and Nebel
2013; McMahon and Plaku 2014; Srivastava et al. 2014;
Toussaint 2015; Fernández-González, Karpas, and Williams
2017; Canal et al. 2018; Garrett et al. 2020). Motion plan-
ning is the process of finding a way to perform a basic activ-
ity, such as picking up an item or moving between two ad-
jacent locations. Task planning is the search for a sequence
of activities that is predicted to achieve the goal while mini-
mizing duration and other costs such as energy use.

When planning in complex scenarios, task planning typ-
ically uses an abstraction of the space. One way to abstract
the space is by using geometric computations that help the
high-level planner make appropriate choices. For example,
(Kaelbling and Lozano-Pérez 2011) handle the integration
of continuous geometric planning with task planning by us-
ing geometric “suggesters”, which construct configurations
dynamically during an “aggressively” hierarchical planning
process. Another approach integrates the motion planner’s
geometric search for positions into the symbolic forward-
search of a task planner. For example, (Cambon, Alami, and
Gravot 2009) offer an integrated task and motion planner
that reasons about geometric constraints that describe the

positions from which it is possible to accomplish some activ-
ity as sub-manifolds of the configuration space of the robot.
These sub-manifolds are mapped to high-level symbols that
can be used by a task planner.

Another approach to abstraction uses waypoints that rep-
resent discrete positions (Cashmore et al. 2014; McMahon
and Plaku 2014; Edelkamp et al. 2018). This reduces the
complexity of the problem, making it possible to focus on
the task-planning aspect of the problem, i.e., selecting and
scheduling activities, while using heuristic approximations
to estimate navigation and motion costs. Once a high-level
task plan is produced, motion planning is delegated to a low-
level motion planner. One of the benefits of this approach is
that it is typically agnostic to the specific task and motion
planners used.

In this paper we focus on waypoint-based approaches
and on the selection of waypoints for task planning. Way-
points can be selected randomly, for example using a
PRM (Kavraki et al. 1996), or can be generated using
knowledge of the space and task (Plaku and Hager 2010;
Edelkamp et al. 2018). The disadvantage of the random ap-
proach is that in order to ensure coverage of all interesting
areas, a large number of waypoints might be required. For
simple problems, such as inspection missions (Cashmore
et al. 2014), this can be feasible. However, in a more com-
plex task this will result in problems that are too hard to
solve within a reasonable time.

On the other hand, generating fixed waypoints means that
for each affordance in the physical space (corresponding to
a non-navigation action that the robot might make) a set of
waypoints of fixed size is generated. To demonstrate, in the
RCLL setting in Example 1, the approach by (Edelkamp
et al. 2018) generates a separate waypoint for each item
pickup activity by randomly sampling a position around the
machine the item is positioned at. This holds even if the
machine has more than one item. These waypoints are con-
nected together using a PRM, adding additional waypoints
to cover the space, if needed. The resulting representation
is guaranteed to include a solution. However, as the num-
ber of activities increases, the size of the resulting task plan-
ning problem may unjustifiably exceed the planner’s capac-
ity, containing many redundant waypoints.

Another limitation of the fixed waypoint selection ap-
proach is that it completely relies on domain knowledge to
select a waypoint for each activity. In some cases such do-
main knowledge may not be available. In domains with com-
plex configuration spaces, it may not be possible to explic-
itly prescribe in advance the region from which an activity
can be performed, making it necessary to sample waypoints
and determine whether an activity is achievable from them.
For example, consider a mobile base carrying an arm with
5-degrees of freedom, performing a picking up task in a clut-
tered scene. Due to the clutter, it is not possible to describe
in advance a region for the base from which it is guaranteed
that the arm can reach the target. However, it is possible to
sample instead a position and orientation for the base and
use a motion planner to determine if there is a collision-free
path for the arm to the target.

We suggest a new approach to waypoint sampling that

645



combines the benefits of random sampling with the use of
domain knowledge. In contrast to a fixed approach to way-
point selection, TAWS is an anytime approach that itera-
tively improves solution quality. In contrast to a random
sampling approach, it decouples the connectivity analysis
from task planning by creating and reusing a single dense
PRM (DPRM). TAWS uses domain knowledge to induce
the probabilities according to which waypoints are sampled
from the DPRM. This means that the quality of navigation
cost estimations does not depend on the current number of
waypoints that are used to represent the task. Most notably,
all approaches mentioned above only consider geometric
constraints that can be imposed on the waypoint selection
process. TAWS is the first approach that also accounts for
arbitrary performance preferences, thus making it possible
to prioritize or discourage specific behaviors.

Task Aware Waypoint Sampling (TAWS)
The input to a Task Aware Waypoint Sampling (TAWS) prob-
lem is a tuple p = 〈M,A,F 〉, where

• M is the set of configurations m ∈ Rn, where n repre-
sents the dimensions of the space,

• A is a set of non-navigation activities that can be per-
formed, and

• F is a set of performance preferences. Each preference
f ∈ F is a score function f :M → R≥0.

Each sampled waypoint corresponds to a configuration
m ∈ Rn. Each activity a ∈ A is associated with a function
ωa : M → [0, 1] specifying the probability of successfully
executing a from configuration m. Typically, these proba-
bility functions are generated using prescribed templates for
each activity type the robot can perform. Preferences f ∈ F
are used to describe areas from which it is (un)desirable that
the robot operates.

In Example 1, a robot navigates the factory floor and can
interact with a number of stationary machines. For simplic-
ity, we ignore the orientation of the robot, and describe the
configuration space as a 2-dimensional map (the floorplan)
i.e., m ∈ R2. The activity set represents the possible inter-
actions of the robot with each machine (e.g., picking up an
item from a machine). The function ωa : R2 → {0, 1} of
each machine is defined by a prescribed template that de-
fines the probability of successfully completing the activity
in a given configuration, taking into account adjacent obsta-
cles (e.g., walls) and the extent of the robot’s arms. Figure 1a
shows an example setting with 12 stationary machines. In
this setting, each activity is deterministically mapped to con-
figurations from which it can be achieved. The areas from
which it is possible to pickup objects from a machine are
depicted by rings around each machine (Figure 1b). The ar-
eas in pink are those from which more than one activity can
be performed. The performance preferences can prioritize
sampling from these areas. This can yield shorter plans in
settings in which more than one object needs to be collected
from a single machine or settings in which it is possible for
a robot to reach more than one machine from a single way-
point without the need to move. The performance prefer-

ences can also be used to decrease the probability of sam-
pling waypoints at doorways or to guarantee no waypoint is
sampled near first aid stations. Previous approaches that con-
sider each activity separately do not account for such task
level considerations when selecting the waypoints that are
sent to the task planner.

Sampling Procedure
TAWS separates between the connectivity analysis of a do-
main, which provides estimations of navigation costs within
the physical space, and the task planning process, which
finds a sequence of activities that accomplish the assigned
task. First, it generates a Dense PRM (DPRM) over the con-
figuration space. The process starts from the robot’s initial
position. The PRM is constructed by iteratively selecting a
waypoint for expansion from the existing PRM. A set of new
waypoints is cast from the chosen waypoint. Waypoints that
are not in collision with any obstacle in the map (and that are
traversable by the robot), are added to the graph. The coor-
dinates of each node and the length of each straight edge are
stored so that they can be used by the task planning process
to estimate the cost of traveling between the waypoints. The
accuracy of the estimations is correlated with the resolution
of the DPRM. A DPRM for the factory domain in Example
1 is shown in Figure 1c.

After completing the generation of the DPRM, the itera-
tive task planning stage begins. At each iteration, a number
of waypoints are sampled from the DPRM and sent to the
task planner to find a sequence of reachable activities that
accomplishes the task.

TAWS is an anytime approach; even if it finds a solution, it
will continue to search for better solutions until it is halted.
If a plan is found, it is recorded, and the number of way-
points is incremented in order to find a more efficient so-
lution. If the planner is unable to solve the problem within
a time bound, the number of waypoints is decremented. If
the planner claims that the problem is unsolvable, the num-
ber is incremented. This process is repeated iteratively until
timeout is reached.

The selection of waypoints at each iteration is done ac-
cording to the following procedure:

1. A sampling probability is assigned to each waypoint in
the DPRM, using a task specific score which is induced
by the activities and the performance preferences f ∈ F
and discussed in detail in the next section.

2. A waypoint is sampled from the DPRM and added to the
task plan’s model. The distance between the new way-
point and all existing waypoints is calculated by finding
the shortest path through the edges of the DPRM. This
value is added to the planning model as an estimate of the
path’s cost. In addition, the planing model is updated with
information about all the activities that can be performed
from the new waypoint.

3. The score function is updated to reduce the probability of
sampling more waypoints near the one sampled. The ra-
dius for reducing the probability near a sampled waypoint
is defined by the user.

646



After selecting the required number of waypoints, the result-
ing model is sent to a task planner that is chosen by the user.

Note that as opposed to previous approaches to way-
point sampling that were mentioned in the previous section,
TAWS iteratively selects waypoints from the DPRM, and not
from the underlying map. This means that even when the
number of waypoints that are sent to the planner decreases,
the quality of the estimations of the costs of navigating be-
tween the waypoints is not compromised. This is due to the
fact that these estimations are evaluated according to the
DPRM, which contains connectivity information about the
entire space, regardless of the number of waypoints in the
model that is sent to the task planner.

Combined Score
In order to account for both the probability of successfully
accomplishing an activity from a given configuration as well
as the performance preferences, TAWS uses a single com-
bined score (CS) that associates a score to each waypoint
(corresponding to a sampled configuration) in the DPRM.
This score, that can be defined arbitrarily to account for
different settings, is normalized over the waypoints in the
DPRM, and is used to specify the probability of sampling
each waypoint for inclusion in the task planning problem.

Specifically, theCS we suggest in Equation 1 can be used
for the type of settings we consider here. The score uses a
weighted sum over the different activities, while considering
preferences multiplicatively.

CS(m) =
∏
f∈F

f(m)
∑
a∈A

ωa(m) (1)

The above scoring approach increases the score (and corre-
sponding sampling probability) of waypoint m from which
multiple actions can be achieved by summing the probabil-
ities ωa(m) of successfully completing each activity from
m. The application-specific performance preferences can be
used to account for anything from breaking ties between oth-
erwise equally probable waypoints, to imposing hard con-
straints that prevent sampling in certain regions. The former
case can be achieved by setting f(m) to vary between 1− ε
and 1 for some small value ε, so that the score of a waypoint
is scaled down by up to 1−ε in areas where it is preferred not
to sample a waypoint. This may be relevant, for example, in
settings where it is preferred that a noisy robot avoids getting
close to a station of a human worker. In the latter case, hard
constraints such as for ensuring that a robot never blocks ac-
cess to a first-aid station, can be enforced by setting f(m)
to 0 in the critical area. This ensures that no waypoint can
be sampled in that area, as its combined score and therefore
sampling probability will be 0.

In Figure 2a, critical areas represent doorways and first
aid stations. The combined score is assigned according to
CS, the cost function in Equation 1, that considers both the
performance preferences and the activity information (Fig-
ure 2b). The score is normalized and used to set the prob-
ability of sampling each waypoint from the DPRM. Once
a waypoint is sampled, the probability of sampling nearby
waypoints is reduced. The sampled set is used to search for
a plan for the task (Figure 2c).

Evaluation
Our empirical evaluation was designed to answer two ques-
tions: (1) what is the benefit of using a single Dense
PRM (DPRM) from which waypoints are iteratively sam-
pled, and (2) what is the benefit of using TAWS to select
waypoints in accounting for performance preferences.

To address these questions we use a dataset that consists
of automated factory scenarios from the RoboCup Logis-
tics League (RCLL) (Niemueller, Lakemeyer, and Ferrein
2015). An example from this domain is demonstrated in Ex-
ample 1. In these scenarios the task of a robot is to complete
an order by moving between machines and benches to pick
up and place work-pieces. The work-pieces need to be com-
bined and processed at different machines to produce a com-
plete order that can be delivered at a delivery window. The
problem description is temporal, such that each activity and
navigation action has an estimated duration. In our setup, the
objective is to find a plan that minimizes the time it takes to
complete an order. Accordingly, we assess the quality of a
plan by the total estimated duration of the individual activi-
ties and navigations between the waypoints from which the
activities are performed. 1

We varied the number of machines from 1 to 40 with
1−10 work-pieces per order. Each machine could have sev-
eral work-pieces, and the same work-piece could be found
at different machines. For each machine count, we gener-
ated 10 different problems, varying the types and positions
of objects, for a total of 400 problems2.

Assessing The Benefit of Using a DPRM
To assess the benefits of using a DPRM, we compare TAWS,
that produces a single DPRM as a preprocessing step and
uses it throughout an iterative planning process, against
FWPG and PPRM.

We use the FWPG implementation from (Edelkamp et al.
2018), in which each activity is associated with a template
which prescribes the area from which it can be performed.
In this approach, a single PRM with a fixed number of way-
points is created by randomly sampling a waypoint for ev-
ery possible activity according to its template. This one-
shot approach sends the generated PRM to the task planner.
Since all activities are represented in the PRM, it is guar-
anteed to contain a solution to the problem. However, if the
planner fails, for example because the size of the PRM ex-
ceeds its capacity, the process ends with a failure. For the
PPRM approach we construct a (sparse) PRM at every iter-
ation, changing the size of the sampled set of waypoints as
needed. Similarly to TAWS, the PPRM approach is an any-
time approach, that continues to improve its solution until it
is halted.

In this part of our evaluation, no performance prefer-
ences were considered beyond the task description, so we
are only evaluating the benefit of decoupling the connectiv-

1Videos of our simulated scenario are available at https://vimeo.
com/user129497320

2The source code and experimental setup including all problem
files can be found at https://github.com/sarah-keren/ROB-IS

647



Solved Instances Mean Time to Solution (s) Mean Plan Duration (s)

Elapsed PPRM FWPG TAWS PPRM FWPG TAWS PPRM FWPG TAWS

5 secs 6 0 0 - - - - - -
10 secs 16 20 14 3.88 (0.00) 9.47 (0.36) 9.07 (0.30) 5.80 (0.80) 5.00 (0.00) 5.00 (0.00)

1 min 27 103 65 17.41 (14.66) 11.14 (1.11) 18.95 (7.48) 7.12 (1.27) 12.99 (4.12) 5.00 (0.00)
2 min 40 113 103 36.40 (31.64) 11.44 (1.24) 31.22 (20.60) 8.48 (2.31) 14.19 (3.62) 5.33 (0.64)
4 min 47 113 159 58.76 (45.79) 11.72 (1.50) 48.58 (44.78) 10.01 (3.54) 14.03 (3.79) 6.21 (2.10)
8 min 56 113 261 110.68 (99.93) 11.60 (1.43) 54.09 (51.10) 10.38 (3.42) 13.69 (3.88) 6.17 (2.05)

10 min 63 338 300 174.31 (174.12) 11.39 (1.42) 53.55 (52.43) 10.63 (3.37) 13.35 (4.55) 6.25 (2.15)

Table 1: Performance per approach; standard deviation in brackets.

Constraints Constraints and Preferences

PPRM FWPG TAWS PPRM FWPG TAWS

Instances solved 63 337 304 61 335 311
Time to first solution 276.38 (284.23) 57.13 (52.31) 15.96 (4.80) 215.84 (209.21) 59.66 (56.71) 16.52 (5.00)

First quality - duration 10.23 (2.76) 8.94 (4.51) 10.53 (4.46) 10.21 (2.70) 10.46 (4.96) 10.76 (4.21)
First quality - preferences - - - 9.80 (3.09) 16.60 (9.56) 0.63 (1.08)

Time to best solution 276.38 (284.23) 57.13 (52.31) 61.00 (61.68) 215.84 (209.21) 59.66 (56.71) 42.74 (33.65)
Best quality - duration 10.23 (2.76) 8.94 (4.51) 6.05 (1.86) 10.21 (2.70) 10.46 (4.96) 5.61 (1.11)

Best quality - preferences - - - 9.80 (3.09) 16.60 (9.56) 0.08 (0.16)

Table 2: Accounting for hard constraints (left), Accounting for constraints and preferences (right).

ity analysis from the task planning process by the one time
generation and reuse of the DPRM.

We embedded all three approaches in ROS using the ROS-
Plan framework (Cashmore et al. 2015) and used the POPF
temporal planner for task planning (Coles et al. 2010). For
each problem, each approach was given a total time bound
of 10 minutes to compute a solution. Since FWPG involves
a single call to the planner while PPRM and TAWS are
anytime approaches that iteratively call the planner, we ex-
perimented with different planning time allocations. Due to
space considerations we only report here the results achieved
for the setting in which each call to the planner by the
PPRM and TAWS within the 10 minute time bound was lim-
ited to 10 seconds, while FWPG had 10 minutes of planning
time 3. The initial sample set size for TAWS and PPRM was
1 and the sampling step size was 4. For FWPG the sample
set size is fixed by definition.

To compare the performance of the approaches we mea-
sured (1) the number of instances that were solved by each
approach, (2) the quality of the first and best solutions found
within seven time increments (5s, 10s, 1m, 2m, 4m, 8m and
10m), and (3) the amount of time it took to compute the first
and best solutions (for TAWS preprocessing times are in-
cluded in the results). The quality of a plan was measured
according to the total duration of the plan (shorter is better).

For each approach, Table 1 shows the number of instances
solved within each time increment. For problems solved by
all approaches, the table shows the mean time to solution and
mean plan duration in seconds. The standard deviation is in-
dicated in brackets. The results show that FWPG solves the

3The additional results can be found in the online appendix at
https://github.com/sarah-keren/ROB-IS.

largest number of problems within the 10 minute bound, and
that the most successful approach changes within the differ-
ent time intervals. In terms of computation time, FWPG out-
performs the other two approaches on the instances solved
by all approaches. The notable achievement of TAWS is in
terms of plan quality (plan duration). For all time intervals,
TAWS finds shorter solutions, with up to 40% reduction.

Since PPRM only solved a limited number of instances,
the results in Table 1 only reflect the performance of the
approaches on the smallest instances. We therefore com-
pared the performance of TAWS against FWPG on instances
solved by these approaches. In Figure 3 we compare plan
duration, and in Figure 4 we compare the time to solution
in seconds for an increasing problem size for FWPG, and
for the first and best solutions of TAWS. In Figure 3 in-
stances below the line are those for which TAWS achieved
a better result; TAWS achieved better plan quality over most
instances, with an average 88% plan duration compared to
FWPG across all problems solved by both approaches.

We have seen in Table 1 that for the small instances
solved by all three approaches, FWPG outperforms the other
two approaches in terms of the mean computation time.
By investigating problems according to their size (corre-
sponding to the number of activities that need to be per-
formed to achieve a task), Figure 4 reveals that FWPG’s
computation time tends to be fixed around either 600 or
5 seconds for any problem size. In contrast, TAWS’s time
to best solution increases with problem size, and is much
lower than FWPG for the majority of instances. On average,
TAWS reaches the first solution in 17% and the best solution
in 62% of the time taken by FWPG solution.

These results can be explained by recalling that
FWPG generates a single and potentially unnecessarily large

648



Figure 3: Comparison of best plan quality (plan duration
in seconds) for problems solved by both TAWS (vertical
axis) and FWPG (horizontal axis). Points below the line in-
dicate higher quality for TAWS.

problem description that is sent to the task planner, and
which includes a separate waypoint for each activity that
can be performed, including many activities that are irrel-
evant to achieving the task. In contrast, TAWS is an anytime
approach, that iteratively generates and sends to the planner
representations of the problem of varying size. In particular,
it can take advantage of the fact that more than one activ-
ity can be performed from a single waypoint. Most notably,
TAWS avoids the need to compute path costs at each iter-
ation, and instead performs a one-time computation of the
connectivity information, which it uses throughout the iter-
ative search for a solution (and its iterative improvement).
Our results show that despite the fact that TAWS is only
allowed 10 seconds of planner time per iteration, its any-
time approach is still able to find solutions more quickly than
FWPG and those solutions are of higher quality.

Accounting for Performance Preferences
To examine the best way to account for performance pref-
erences we introduce two kinds of preferences to the au-
tomated factory domain: hard constraints, and soft prefer-
ences. Hard constraints represent restrictions that cannot be
violated, such as disallowing dwelling at locations (way-
points) near first aid stations, as exemplified in Figure 2a. As
depicted in our score function in Equation 1, we account for
overlap information by increasing the probability of sam-
pling a waypoint according to the number of activities that
can be performed from it. In the factory domain, this prior-
itizes waypoints from which more than one machine can be
accessed and waypoints at machines from which more than
one work-piece can be collected.

Since neither FWPG nor PPRM account for performance
preferences, we extended both approaches to do so. For
FWPG, in which waypoints are chosen randomly from

Figure 4: Comparison of time to solution for FWPG and
time to first and best solutions for TAWS, on problems
solved by both approaches, for increasing problem sizes.

within the area from which each activity can be performed,
we used performance preferences to set the probability
of sampling a specific position within each area. Perfor-
mance preferences were used in two different stages of the
PPRM generation. The first variant uses the performance
preferences to influence which existing node in the PRM is
chosen for expansion, while the alternative uses them during
expansion to set the probability of sampling a new waypoint
around the selected waypoint. As the results were similar for
both variants we only report the results of the latter.

In addition to assessing plan quality according to its du-
ration and keeping track of the times to solution, we used
the following measure to evaluate a plan π according to its
compliance with the performance preferences specified by
the user.

P (π) =
∑

m∈Mπ

dur(m)
∑
f∈F

(1− f(m))

 (2)

where Mπ are the set of waypoints visited in the plan,
dur(m) is the total time spent at waypoint m, and f(m) ∈
{0, 1} is the normalized performance preferences score of
that waypoint’s position. This measure penalizes plans ac-
cording to the time spent in undesirable locations.

Note that the performance preferences score is accounted
for by the waypoint selection process and not directly mod-
elled in the resulting task planning domain. This allows our
approach to be used with any task planner, including tem-
poral, probabilistic, or contingent planners. Specifically, the
planner used in our experiments optimises plan duration.

Table 2 (left) shows the results achieved for instances
for which only hard constraints were specified. For each
approach, the table shows the number of instances solved
within the time bound. For problems solved by all three ap-
proaches, we show the mean time to the first and best so-
lution and the quality of the solutions in terms of duration.
Table 2 (right) shows the results for which both hard con-

649



Figure 5: Comparison of preference cost for FWPG and
TAWS, for increasing problem sizes.

Figure 6: Comparison of plan duration for FWPG and
TAWS in problems with soft preferences. Plan quality in
terms of plan duration is comparable.

straints and soft preferences were specified. In addition to
measuring plan duration, we include the mean performance
score according to Equation 2 (the breakdown according to
time intervals is included in the appendix (which can be
found at https://github.com/sarah-keren/ROB-IS).

The results show that adding performance prefer-
ences does not have a substantial effect on the number
of problems solved by each approach. For instances with
only hard constraints, the mean quality of the first solu-
tion is best for FWPG (which finds only a single solu-
tion), but TAWS reaches the first solution much faster. More-
over, TAWS achieves the best plan quality (lowest duration)
within the time bound. As shown in Table 2 (right), when
soft constraints are added TAWS achieves both the lowest
plan duration and the best preference score according to
Equation 2.

Again, since PPRM solves only a limited number of in-
stances, our analysis in Table 2 only accounts for smaller
instances. In Figures 5 and 6 we therefore exclude PPRM,
and compare solution quality for the instances solved by

FWPG and TAWS.
The results in Figure 5 show that FWPG is limited in

its ability to account for the performance preferences when
compared to TAWS, which manages to achieve a penalty of
0 (according to Equation 2) for most instances. In Figure 6
we see that the better score in terms of performance prefer-
ences achieved by TAWS does not compromise the plans’
quality in terms of plan duration, and that the plan duration
of the solutions achieved by both approaches is similar.

The superior performance of TAWS compared to
FWPG is due to the fact that TAWS samples a smaller set
of waypoints that are more likely to respect the performance
preferences. In contrast, since FWPG samples a fixed num-
ber of waypoints regardless of the problem size, it may re-
sult in many redundant waypoints that not only yield a more
complex problem, but that also increase the probability that
the resulting plan will make use of undesirable areas (or re-
duce the probability of using desirable areas).

Conclusion
We presented Task-Aware Waypoint Sampling (TAWS) as
a new approach to selecting waypoints for task planning.
TAWS’s novelty is in the way it decouples the connectivity
analysis of a domain from the task planning process, and its
ability to account for user defined performance preferences.

The connectivity information is captured through a Dense
PRM (DPRM), which is generated once and reused through
the anytime iterative planning process to provide high qual-
ity estimations of navigation costs. The task planning prob-
lem at each iteration is constructed by sampling waypoints
from the DPRM according to probabilities that are defined
by both the activities that are part of the domain description
and the performance preferences.

Our empirical evaluation on a set of automated factory
problems shows that TAWS finds solutions that maximize
compliance with the specified preferences, without compro-
mising computation time and plan duration.

In the future, we intend to evaluate TAWS in other settings
beyond the factory use-case. Specifically, we intend to inves-
tigate high-dimensional exploration scenarios, in which the
sampling probability of TAWS can be used to specify areas
in which a more meticulous search is desired. In addition,
evaluation in this work focused on comparing the estimated
plan duration of each approach. As a next step we intend
to include in our evaluation the plan execution, comparing
the execution time of the plans generated by each approach.
Finally, in this work desirable behaviors were induced by
changing the way in which the model for task planning was
generated. We plan to investigate how TAWS can be adapted
to settings in which robots are treated as “black boxes” and
their inner implementation cannot be modified. In such set-
tings, their behavior can instead be influenced by changing
the information that is provided to them, for example by
modifying the map that is used for navigation.

Acknowledgements
Sarah acknowledges the support of the Center for Research
on Computation and Society (CRCS) at Harvard University.

650



References
Cambon, S.; Alami, R.; and Gravot, F. 2009. A Hybrid Ap-
proach to Intricate Motion, Manipulation and Task Planning.
The International Journal of Robotics Research 28 (1): 104–
126.
Canal, G.; Pignat, E.; Alenyà, G.; Calinon, S.; and Torras, C.
2018. Joining high-level symbolic planning with low-level
motion primitives in adaptive HRI: application to dressing
assistance. In IEEE International Conference on Robotics
and Automation (ICRA), 3273–3278.
Cashmore, M.; Fox, M.; Larkworthy, T.; Long, D.; and Mag-
azzeni, D. 2014. AUV mission control via temporal plan-
ning. In Proceedings IEEE International Conference on
Robotics and Automation, 6535–6541.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtós, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. In
Proceedings International Conference on Automated Plan-
ning and Scheduling, ICAPS, 333–341.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Proceedings Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 42–49.
Dornhege, C.; Hertle, A.; and Nebel, B. 2013. Lazy evalu-
ation and subsumption caching for search-based integrated
task and motion planning. In IROS workshop on AI-based
robotics.
Edelkamp, S.; Lahijanian, M.; Magazzeni, D.; and Plaku,
E. 2018. Integrating Temporal Reasoning and Sampling-
Based Motion Planning for Multigoal Problems With Dy-
namics and Time Windows. IEEE Robotics and Automation
Letters 3(4): 3473–3480.
Fernández-González, E.; Karpas, E.; and Williams, B. C.
2017. Mixed Discrete-Continuous Planning with Convex
Optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAI), 4574–4580.
Garrett, C. R.; Chitnis, R.; Holladay, R.; Kim, B.; Silver, T.;
Kaelbling, L. P.; and Lozano-Pérez, T. 2020. Integrated task
and motion planning. arXiv preprint arXiv:2010.01083 .
Gravot, F.; Cambon, S.; and Alami, R. 2005. aSyMov: A
Planner That Deals with Intricate Symbolic and Geometric
Problems. Robotics Research. The Eleventh International
Symposium. Springer Tracts in Advanced Robotics 15: 100–
110.
Kaelbling, L. P.; and Lozano-Pérez, T. 2011. Hierarchical
task and motion planning in the now. In 2011 IEEE Interna-
tional Conference on Robotics and Automation, 1470–1477.
Kavraki, L. E.; Svestka, P.; Latombe, J. .; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation 12(4): 566–580.
McMahon, J.; and Plaku, E. 2014. Sampling-based tree
search with discrete abstractions for motion planning with
dynamics and temporal logic. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 3726–3733.

Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2015. The
RoboCup logistics league as a benchmark for planning in
robotics. Planning and Robotics (PlanRob-15) 63.
Plaku, E.; and Hager, G. D. 2010. Sampling-Based Mo-
tion and Symbolic Action Planning with geometric and dif-
ferential constraints. In IEEE International Conference on
Robotics and Automation, 5002–5008.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer.
In 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA), 639–646.
Toussaint, M. 2015. Logic-Geometric Programming: An
Optimization-Based Approach to Combined Task and Mo-
tion Planning. In International Joint Conference on Artifi-
cial Intelligence (IJCAI), 1930–1936.

651


