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Abstract

In order for an autonomous robot to efficiently explore an un-
known environment, it must account for uncertainty in sen-
sor measurements, hazard assessment, localization, and mo-
tion execution. Making decisions for maximal reward in a
stochastic setting requires value learning and policy construc-
tion over a belief space, i.e., probability distribution over
all possible robot-world states. However, belief space plan-
ning in a large spatial environment over long temporal hori-
zons suffers from severe computational challenges. More-
over, constructed policies must safely adapt to unexpected
changes in the belief at runtime. This work proposes a scal-
able value learning framework, PLGRIM (Probabilistic Lo-
cal and Global Reasoning on Information roadMaps), that
bridges the gap between (i) local, risk-aware resiliency and
(ii) global, reward-seeking mission objectives. Leveraging hi-
erarchical belief space planners with information-rich graph
structures, PLGRIM addresses large-scale exploration prob-
lems while providing locally near-optimal coverage plans. We
validate our proposed framework with high-fidelity dynamic
simulations in diverse environments and on physical robots in
Martian-analog lava tubes.

1 Introduction
Consider a large-scale coverage mission in an unknown en-
vironment, in which a robot is tasked with exploring and
searching a GPS-denied unknown area, under given time
constraints. This problem has a wide range of applications,
such as inter-planetary exploration and search-and-rescue
operations (Blank 2020; Nagatani et al. 2013). Essential el-
ements of an autonomy architecture needed to realize such
a mission include creating a map of the environment, accu-
rately predicting risks, and planning motions that can meet
the coverage and time requirements while minimizing risks.
In such an architecture, quantifying and planning over uncer-
tainty is essential for creating robust, intelligent, and optimal
behaviors.

From a value learning perspective, a coverage planning
problem in an unknown space can be considered an active

∗These authors contributed equally to this work.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Local IRM

Riskmap

Pose Graph

Global IRM

Figure 1: Hierarchical Information RoadMaps (IRMs)
generated during Au-Spot’s autonomous exploration of
Martian-analog caves at Lava Beds National Monument,
Tulelake, CA.

learning problem over the robot’s belief, where belief is de-
fined as the probability distributions over all possible joint
robot-world states. The objective is to find the best action
sequence that maximizes the accumulated reward over time.
The agent must accumulate data to incrementally build a
model of its environment, and need to understand the effects
of its actions on the quality and quantity of data it collects.

Since the agent’s future actions affect its belief of the
world and robot state, this coverage problem is funda-
mentally a Partially Observable Markov Decision Process
(POMDP) problem (Monahan 1982). The agent employs
the underlying intrinsic model of the sequential action-
observation process under uncertainty, so that it expands its
search structure over the belief space and learns the value
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in a more sample-efficient manner than model-free learn-
ing approaches. In addition, its non-myopic reasoning can
provide better performance than frontier-based exploration
approaches with one-step look-ahead.

Belief value learning in the POMDP setting intrinsi-
cally suffers from the curse of dimensionality (Kaelbling,
Littman, and Cassandra 1998) and curse of history (Pineau,
Gordon, and Thrun 2003). Many powerful methods are
proposed to extend the spatial and temporal horizons of
POMDPs with varying degrees of efficiency and accuracy,
such as (Silver and Veness 2010; Somani et al. 2013; Bonet
and Geffner 1998; Kim, Salzman, and Likhachev 2019). In
this paper, we focus on challenging exploration problems
with very large spatial extents (>1 km), long temporal hori-
zons (>1 hour), and high dimensional belief states (includ-
ing beliefs on the state of the environment) that exacerbate
the curses of dimensionality and history for POMDPs.

The main contribution of this work is in three-fold:
1) Scalable belief representation of local traversability and

global coverage states of large environments.
2) Hierarchical value learning for efficient coverage policy

search over a long horizon under uncertainty.
3) Policy reconciliation between planning episodes for adap-

tive and resilient execution in the real world.
More precisely, we introduce spatial and temporal approx-
imations of the coverage policy space to enable compu-
tational tractability for real-time online solvers. Spatially,
we decompose the belief space into task-relevant partitions
of the space, enriched with environment map estimates.
The partitioning structure is called an Information Roadmap
(IRM) as shown in Fig. 1 (Agha-mohammadi, Chakravorty,
and Amato 2014). Temporally, we decompose the problem
into local and global hierarchical levels and solve for be-
lief space policies that provide locally near-optimal cover-
age plans with global completeness. We then propose a Re-
ceding Horizon Planning (RHP)-based technique to address
real-world stochasticity in state estimation and control at
runtime.

The remainder of this paper is as follows: following the
related work discussion, Section 3 formalizes the unknown
environment coverage problem. In Section 4, we propose a
hierarchical belief representation and value learning frame-
work. Experimental results in simulation and on a physical
robot are presented in Section 5, and Section 6 concludes
this paper.

2 Related Work
Frontier-based exploration is a widely used approach for
autonomous exploration (e.g., (Yamauchi 1997; Tao et al.
2007; Keidar and Kaminka 2012; Heng et al. 2015;
González-Banos and Latombe 2002; Grabowski, Khosla,
and Choset 2003)). By continuing exploration until exhaust-
ing all remaining frontiers, frontier-based approaches can
guarantee completeness of the coverage of reachable spaces.
These methods typically rely on myopic (e.g., one-step)
look-ahead greedy policies, selecting the best frontier up-
front. Hence, they can be subject to local minima and pro-
vide suboptimal solutions in time.

Model-free reinforcement learning (RL) has been applied
to coverage and exploration problems (e.g., (Pathak et al.
2017; Burda et al. 2018a,b; Savinov et al. 2018)). In this
setting, the typical approach is to find a policy which maps
sensor data to actions, with the objective of maximizing
the reward. When it comes to long-range, large-scale, and
safety-critical missions on physical robots, collecting nec-
essary data can be a significant challenge for this class of
methods.

POMDP-based approaches generate a non-myopic policy
by considering long-horizon action sequences (e.g., (Kurni-
awati et al. 2011), (Bai et al. 2015)), interactively learning
the value function, and returning the best action sequence
that maximizes the accumulated rewards. Different meth-
ods have reduced the complexity of the POMDP problem
in coverage and exploration problems. Indelman, Carlone,
and Dellaert (2015) and Martinez-Cantin et al. (2009) em-
ployed a direct policy search scheme with a Gaussian belief
assumption. Lauri and Ritala (2016) extended this to non-
Gaussian beliefs using the POMCP (Partially Observable
Monte-Carlo Planning) solver. However, when it comes to
the large-scale coverage missions, the current approaches do
not scale well due to the curse of history and dimensionality
(Pineau, Gordon, and Thrun 2003).

Hierarchical planning structures (Kaelbling and Lozano-
Pérez 2011) aim to tackle larger problems by employing
multiple solvers running at different resolutions, and are
found to be effective. In the coverage and exploration con-
text, Umari and Mukhopadhyay (2017) applied hierarchical
planning to frontier-based exploration, while (Dang et al.
2019) extended the lower-level module to a more sophis-
ticated frontier selection algorithm which considers the in-
formation gain along each path. Lauri and Ritala (2016) re-
placed the lower-level module with a POMDP-based plan-
ner to improve local coverage performance with non-myopic
planning. Kim, Thakker, and Agha-Mohammadi (2019) pro-
posed a hierarchical online-offline solver for risk-aware nav-
igation. Vien and Toussaint (2015) suggested a hierarchical
POMCP framework which outperformed Bayesian model-
based hierarchical RL approaches in some benchmarks.

3 Problem Formulation
Autonomous exploration in unknown environments under
motion and sensing uncertainty can be formulated as a
Partially Observable Markov Decision Process (POMDP),
which is one of the most general models for sequential de-
cision making. In this section, we present a POMDP formu-
lation for coverage problems and address its intrinsic chal-
lenges.

3.1 Preliminaries
A POMDP is described as a tuple 〈S,A,Z, T,O,R〉, where
S is the set of joint robot-and-world states, A and Z are the
set of robot actions and observations. At every time step, the
agent performs an action a ∈ A and receives an observation
z ∈ Z resulting from the robot’s perceptual interaction with
the environment. The motion model T (s, a, s′) = p(s′ | s, a)
defines the probability of being at state s′ after taking action
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a at state s. The observation modelO(s, a, z) = p(z | s, a) is
the probability of receiving observation z after taking action
a at state s. The reward functionR(s, a) returns the expected
utility for executing action a at state s. Belief state bt ∈ B
at time t denotes a posterior distribution over states condi-
tioned on the initial belief b0 and past action-observation se-
quence, i.e., bt = p(s | b0, a0:t−1, z1:t).

The optimal policy of a POMDP for all time t ∈ [0,∞),
π∗0:∞ : B→ A, is defined as:

π∗0:∞(b) = argmax
π∈Π0:∞

E
∞∑
t=0

γtr(bt, πt(bt)), (1)

where γ ∈ (0, 1] is a discount factor for the future re-
wards, Π0:∞ is the space of possible policies, and r(b, a) =∫
s
R(s, a)b(s)ds denotes a belief reward which is the ex-

pected reward of taking action a at belief b.

3.2 Unknown Environment Coverage Problems
For our coverage planning problem, we define the state as
s = (q,W ), where q is the robot state and W is the world
state. We maintain two representations of the world, i.e.,
W = (Wr,Wc), where Wr denotes the world traversal risk
state and Wc is the world coverage state.
Wr encodes the traversability risk of the world with re-

spect to a robot’s dynamic constraints. This state is critical
in capturing traversability-stressing elements of the environ-
ment (slopes, rough terrain, and narrow passages, etc.) and is
typically constructed by aggregating long-range sensor mea-
surements. The cost function C(Wr, q, a) returns the actu-
ation effort and risk associated with executing action a at
robot state q on Wr.
Wc provides an estimation of what parts of the world have

been observed, or covered, by a particular sensor. The cov-
erage state is generated by specific sensor measurements,
which may not necessarily be useful as navigational feed-
back, but instead are based on a task at hand. For instance,
the coverage sensor may be a thermal camera for detecting
thermal signatures, or a vision-based camera for identifying
visual clues in the environment. As a robot moves, the sen-
sor footprint sweeps the environment, expanding the covered
area, or more generally, the task-relevant information about
the world.

The coverage planning objective is to determine a tra-
jectory through an environment that maximizes information
gain I while simultaneously minimizing action cost C. As
such, the traversal risk and coverage states form the basis of
the coverage reward function:

R(s, a) = f(I(Wc, a), C(Wr, q, a)), (2)

where I(Wc, a) = H(Wc) − H(Wc | a) is quantified as
reduction of the entropy H in Wc after taking action a.
Note that in unknown space coverage domains, we do not
have strong priors about the parts of the world that have
not yet been observed. Hence, knowledge about Wc and
Wr in Eq. (2) at runtime is incomplete and often inaccu-
rate. Thus, in such domains, a Receding Horizon Planning
(RHP) scheme has been widely adopted as the state-of-the-
art (Bircher et al. 2016).

In POMDP formulation with RHP, the objective function
in Eq. (1) is modified:

π∗t:t+T (b) = argmax
π∈Πt:t+T

E
t+T∑
t′=t

γt
′−tr(bt′ , πt′(bt′)), (3)

where T is a finite planning horizon for a planning episode at
time t. Given the policy from the last planning episode, only
a part of the optimal policy, π∗t:t+∆t for ∆t ∈ (0, T ], will
be executed at runtime. A new planning episode will start at
time t+ ∆t with updated belief about q, Wc, and Wr.

3.3 Challenges
We broadly identify the challenges associated with solving
the unknown coverage planning problem, Eq. (3), as compu-
tational complexity—in both time and space—and conflict-
ing policy objectives over consecutive planning episodes,
arising from unexpected updates in the belief at runtime.

Time Complexity
POMDP planning suffers from the curse of dimensionality
(Kaelbling, Littman, and Cassandra 1998) and the curse of
history (Pineau, Gordon, and Thrun 2003). The former diffi-
culty refers to fact that size of the belief grows exponentially
with the size of the underlying state space. The latter diffi-
culty refers to the fact that the number of action-observation
sequences grows exponentially with the planning depth d,
i.e.,O(|A|d|Z|d). As an example, for large-scale exploration
of a 1 km-long environment with an action resolution of 1 m,
the planning depth d must be at least 103 in order to reason
about the coverage plan across the environment.

Space Complexity
In addition to the classic time complexity of POMDPs, space
complexity also poses a considerable challenge when han-
dling the unknown environment coverage problem. Since
s = (q,W ), the space complexity is dominated by the world
state W . For example, in a grid world, the memory com-
plexity isO(|n|k), with n and k denoting the number of dis-
cretization levels and the grid dimension, respectively. For a
1 km2 environment at a 0.1 m resolution, with floating-point
risk and coverage values stored in every cell, required mem-
ory is 800 MB. This amount of memory should be allocated
for every search node, and thus the full space complexity of
planning is O(|A|d|Z|d|n|k) during each planning episode.

Unexpected Belief Updates
As the robot explores its environment, it receives new sen-
sory information, updates its belief, and constructs a new
coverage policy in a receding horizon fashion. Policies gen-
erated during consecutive planning episodes must respect
the kinodynamic constraints of the robot, while simultane-
ously adapting to unexpected hazards in the environment.
We refer to these two distinct, and often opposed, objec-
tives as consistency and resiliency of the receding-horizon
policy, respectively. Path consistency ensures smooth tra-
jectories and continuous velocities during transitions from
one policy to the next, while path resiliency ensures the path
adapts to unexpected changes in the world risk state. Thus,
it is imperative to find a balance between policy consistency
and resiliency, particularly for safety-critical systems.
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Figure 2: Illustration of PLGRIM framework for large-scale
exploration in unknown environments. It i) maintains hier-
archical beliefs about the traversal risks and coverage states,
ii) performs hierarchical value learning to construct an ex-
ploration policy, and iii) reconciles policies over receding-
horizon planning episodes.

4 PLGRIM: Hierarchical Coverage Planning
on Information Roadmaps

In this section, we present a novel and field-hardened cover-
age planning autonomy framework, PLGRIM (Probabilistic
Local and Global Reasoning on Information roadMaps), for
exploration of large-scale unknown environments with com-
plex terrain. Our proposed methods to tackle the challenges
described in Section 3.3 are:

1) Space Complexity: We introduce a hierarchical belief
space representation that is compact, versatile, and scal-
able. We refer to this representation as an Information
RoadMap (IRM). Hierarchical IRMs can effectively en-
code a large-scale world state, while simultaneously cap-
turing high-fidelity information locally.

2) Time Complexity: We propose hierarchical POMDP
solvers that reason over long horizons within a suitable
replanning time with locally near-optimal performance.
Higher-level policies guide lower-level policies, resulting
in a cascaded decision process.

3) Unexpected Belief Updates: We introduce a receding-
horizon policy reconciliation method that respects the
robot’s dynamic constraints while ensuring resiliency to
unexpected observations.

In the following subsections, we provide the technical de-
tails about the proposed framework, illustrated in Fig. 2.

4.1 Overview
To enable efficient and reactive robot behaviors on very large
scales, we decompose the problem into tractable subprob-
lems by introducing spatial and temporal abstractions. Spa-
tially, the belief space is approximated by a task-dependent
structure, enriched with environment map estimates. Tempo-
rally, the belief space is approximated by the aggregation of
multiple structures, each spanning a different spatial range.
Finally, we introduce a cascaded optimization problem that
returns a policy over the stratified belief space in real time.

Belief Decomposition
Let us denote the global world state as W g and the local
world state as W `, which is a subset of the global state, i.e.,
W ` ⊂ W g , around the robot. We define local and global
belief states as b` = p(q,W `) and bg = p(q,W g), respec-
tively, where p(W `) is a local, robot-centric, rolling-window
world belief representation with high-fidelity information,
and p(W g) is a global, unbounded world belief representa-
tion with approximate information.

Policy Decomposition
We decompose the policy into local and global policies: π`
and πg , respectively. The overall policy π ∈ Π is constructed
by combining the local and global policies:

π(b) = π`(b`;πg(bg)). (4)

We approximate the original RHP optimization problem in
Eq. (3) as cascaded hierarchical optimization problems as
follows:

πt:t+T (b) = argmax
π∈Πt:t+T

E
t+T∑
t′=t

γt
′−tr(bt′ , π(bt′))

≈ argmax
π`∈Π`t:t+T

E
t+T∑
t′=t

γt
′−tr`(b`t′ , π

`(b`t′ ;π
g
t:t+T (bgt ))), (5)

where πgt:t+T (bg) = argmax
πg∈Πgt:t+T

E
t+T∑
t′=t

γt
′−trg(bgt′ , π

g(bgt′)).

(6)

where r`(b`, π`(b`)) and rg(bg, πg(bg)) are approximate be-
lief reward functions for the local and global belief spaces,
respectively. Note that the codomain of the global policy
πg(bg) is a parameter space Θ` of the local policy π`(b`; θ`),
θ`∈Θ`.

According to this formulation, we maintain the hierarchi-
cal belief representations (Section 4.2) and solve for hier-
archical POMDP policies (Section 4.3). For local planning
consistency and resiliency, we extend Eq. (5) to a joint opti-
mization problem given the previous planning episode pol-
icy (Section 4.4).

4.2 Hierarchical Belief Representation
We introduce a hierarchical approximation of the belief
space by decomposing the environment representation into
multiple information-rich structures, each referred to as an
Information Roadmap (IRM). We construct and maintain
IRMs at two hierarchical levels: the Local IRM and Global
IRM, as illustrated in Fig. 1.

World Belief Information Sources
During its exploration of an unknown environment, at any
given time, the robot’s understanding of the world is limited
to noisy estimates of an observed subset of the world. IRMs
are constructed from these estimates–namely, the Riskmap
and Pose Graph. A Riskmap, constructed through the aggre-
gation of point cloud sensor measurements, is a local rolling-
window map that provides risk assessment, effectively en-
coding the risk belief over the local world state W ` (Fan
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Algorithm 1 Hierarchical IRM Construction
input: Riskmap, Pose Graph
# Local IRM
Local IRM G` = (N `, E`)← (∅, ∅)
Add uniformly sampled nodes {n`

i}i around the robot to N `

for each n`
i ∈ N ` do

Compute risk probability p(n`
i,r) and coverage probability

p(n`
i,c) from Riskmap and Pose Graph for n`

i

Add p(n`
i,r) and p(n`

i,c) to the properties of n`
i

end for
Add edges for 8-connected neighbors, {eij}`i,j , to E`

for each e`ij ∈ E` do
Compute traversal risk ρij and distance dij for e`ij
Add ρij and dij to the properties of e`ij

end for
# Global IRM
if not initialized then

Global IRM Gg = (Ng
b ∪N

g
f , E

g)← (∅, ∅)
end if
Get the current robot pose q from Pose Graph
if q is farther from any breadcrumb node ∀ng

i ∈ Ng
b than d̄b

then
Add a new breadcrumb node ng = q to Ng

b
end if
Run FRONTIERMANAGER to add new frontiers {ng

f+} with
coverage probabilities {p(ng

f+,c
)}, and prune invalidated fron-

tiers, {ng

f−
}, based on the current Riskmap and Pose Graph

. (Keidar and Kaminka 2012)
for each node ng

i ∈ NGg (q) do
for each nearby node ng

j ∈ NGg (ng
i ) do

Compute the traversal distance dij and risk ρij
if dij < d̄e and ρij < ρ̄e then

Add an edge egij to Eg with properties dij and ρij
else

Remove the edge egij from Eg

end if
end for

end for
return G` and Gg

et al. 2021). A Pose Graph estimates the past trajectory of
the robot from relative pose measurements and informs the
coverage belief over the global world state W g (Ebadi et al.
2020).

World Belief Construction
For compact and versatile representation of the world, we
choose a generic graph structure, G = (N,E) with nodes
N and edges E, as the data structure to represent the belief
about the world state. Using this framework, nodes represent
discrete areas in space, and edges represent actions. More
precisely, we define an action as a motion control from the
current node ni ∈ N to a neighboring node nj ∈ N , con-
nected by an edge eij ∈ E.

For a detailed description of the Local and Global IRM
construction processes, see Algorithm 1. We now describe
the distinguishing features of each IRM:

1) Local IRM: As an instantiation of the local world be-
lief p(W `), we employ a rolling, fixed-sized grid struc-

ture G` = (N `, E`), which is centered at the robot’s
current position. We uniformly sample nodes n`i ∈ N `

from W `, and compute the risk and coverage probability
distribution over a discrete patch centered at each node,
i.e., p(n`i,r) and p(n`i,c), which are stored as node prop-
erties. For an edge e`ij , we compute and store the traver-
sal distance dij and risk ρij , which effectively encodes
p(W `

r ) between two connected nodes. In summary, the
Local IRM contains relatively high-fidelity information at
a high resolution, but locally.

2) Global IRM: As an instantiation of the global world belief
p(W g), we employ a sparse bidirectional graph structure
Gg = (Ng, Eg), which is fixed in the global reference
frame. Due to the space complexity concerns detailed in
Section 3.3, a densely-sampled grid structure, like G`, is
not a viable option for Gg , as it should span up to sev-
eral kilometers. Instead, we sparsely and non-uniformly
sample nodes ngi ∈ Ng from W g based on certain node-
classifying conditions. Specifically, Ng contains two mu-
tually exclusive subsets of nodes: breadcrumbs and fron-
tiers. Breadcrumb nodes are sampled directly from the
Pose Graph, and thus capture the covered traversable
space of W g . Alternatively, frontier nodes are sampled
from the border between covered and uncovered areas,
and thus capture the uncovered traversable space of W g .
Finally, in order for such a candidate node ngi to be added
to Gg , there must exist a traversable path to at least one
nearby node ngj ∈ Ng . If such a path exists, an edge egij ,
storing traversal distance dij and risk ρij , is added to Gg .
See Fig. 3 for identification of breadcrumb and frontier
nodes in Gg . In summary, the Global IRM captures the
free-space connectivity of W g with a notion of coverage,
and does not explicitly encode highly-likely untraversable
or uncertain areas in W g in order to achieve compact rep-
resentation of the large-scale environment.

4.3 Hierarchical Value Learning
Given Local and Global IRMs as the hierarchical belief
representation, we solve the cascaded hierarchical POMDP
problems, Eq. (5) and Eq. (6), for coverage in an unknown
environment.

Solver Formulation
We start by introducing some notations. We define value
function V (b;π) as the expected reward of following policy
π, starting from belief b:

V (b;π) = E
[∑

t

γtr(bt, π(bt))]
]
. (7)

From a recursive form of the value function, we can define
the value of taking action a in belief b under a policy π by
the action-value function:

Q(b, a;π) = r(b, a) +
∑
b′∈B

γ T (b, a, b′)V (b′;π), (8)

where T (b, a, b′) is the transition probability from b to b′ by
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action a, as follows:

T (b, a, b′) =
∑
z∈Z

p(b′|b, a, z) p(z|b, a). (9)

A POMDP solver tries to learn Q(b, a) and V (b) =
maxa∈AQ(b, a), and returns the policy π that speci-
fies the best action for a given belief b, i.e., π(b) =
argmaxa∈AQ(b, a).

Generalized Coverage Reward
Entropy provides a measure of uncertainty of a random vari-
able’s belief. Given an IRM G = (N,E) containing a
p(ni,c) value for each node ni ∈ N , the entropy of the world
coverage state is:

H(p(Wc)) = −
|N |∑
i

[
p(ni,c) log p(ni,c)

+ p(ni,¬c) log p(ni,¬c)
]
. (10)

If a ∈ A is a motion from node ni ∈ N to node nj ∈ N
along edge eij ∈ E, then the coverage information gain (i.e.,
coverage uncertainty reduction) in coverage belief p(Wc)
induced by a is defined as:

I(Wc | a) = H(p(Wc))︸ ︷︷ ︸
current entropy

−H(p(Wc | a))︸ ︷︷ ︸
future entropy

, (11)

where the second term represents the expected future en-
tropy of the world coverage state after execution of action
a.

Although the action cost function at each hierarchical
level is dependent upon the IRM’s particular action set E
(i.e., Local and Global IRMs have different action sets), it
can be generically formulated as:

C(Wr, q, a) = kddij + kρρij + kµµij(q), (12)

where dij and ρij are the traversal distance and risk along
edge eij , respectively. The cost µij(q) is associated with the
current motion primitive, and is a consequence of the robot’s
non-holonomic constraints, such as the heading direction.
Constants kd, kρ, and kµ weigh the importance of traversal
distance, risk, and motion primitive history on the total ac-
tion cost.

Then, finally the coverage reward function is defined as a
weighted sum of the information gain and action cost:

R(s, a) = kII(Wc, z)− kC C(Wr, q, a)), (13)

where kI and kC are constant weights.

Local-Global Coverage Planner Coordination
In our cascaded hierarchical optimization framework, we
first solve for the global policy in Eq. (6). The global pol-
icy solution then serves as an input parameter to the local
policy in Eq. (5). This means that Global Coverage Plan-
ner (GCP) provides global guidance to the Local Coverage
Planner (LCP).

The role of GCP is to construct a low-fidelity policy that
provides global guidance to uncovered areas, at which point,

Frontier Node

Breadcrumb
Node

Riskmap

Local IRM
Global IRM

Figure 3: QMDP policy (red arrows displayed above bread-
crumb nodes) for Global Coverage Planning (GCP). A red
sphere indicates the QMDP frontier goal.

LCP instructs a local coverage behavior. More concretely, a
target frontier node in the Global IRM, ngf ∈ Ng

f , can be
extracted from the global-level control ag ∈ Ag provided by
GCP. Since the environment can be very large (>1 km), GCP
must be capable of reasoning over hundreds of nodes on
the Global IRM. To alleviate this scalability challenge, we
assume that GCP’s policy terminates at frontier nodes. By
classifying frontier nodes as terminal in the belief space, we
can assume no changes occur to the world coverage state be-
fore termination. Therefore, we omitW from the state space
for GCP.

The role of LCP is to construct a high-fidelity policy
that provides local guidance based on information gathering,
traversal risk (e.g., proximity to obstacles, terrain roughness,
and slopes), and the robot’s mobility constraints (e.g., ac-
celeration limits and non-holonomic constraints of wheeled
robots). LCP has two phases: i) reach the target area based
on GCP’s guidance, and ii) construct a local coverage path
after reaching the target area. If the target frontier is outside
the Local IRM range, i.e., ngf /∈ W `, LCP simply instan-
tiates high-fidelity control based on the global-level control
ag in order to reach the target frontier. If the target frontier
ngf is within the Local IRM range, i.e., ngf ∈ W `, then LCP
performs the nominal information-gathering coverage opti-
mization, as described in Eq. (5).

Global Coverage Planner (GCP) Algorithm
In this work, we adopt the QMDP approach for the global
coverage planning problem (Littman, Cassandra, and Kael-
bling 1995). The key idea of QMDP is to assume the state
becomes fully observable after one action, so that the value
function for further actions can be evaluated efficiently in an
MDP (Markov Decision Process) setting. In our global cov-
erage planning domain, we define the first action to be the
robot’s relocation to a nearby node on the Global IRM. At
this point, the robot pose is assumed to be fully observable,
while the world risk and coverage states remain unchanged.

More formally, we solve for QgMDP(qg, ag) by ignoring
uncertainty in the robot pose qg and changes in the world
coverage state W g

c . In this MDP setting, QgMDP(qg, ag) can
be learned by Value Iteration very efficiently, even for long
discount horizons. Then, we evaluate the action-value func-
tion in Eq. (8) in a POMDP setting for the current belief and
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Figure 4: Illustrative example of coverage path planning on the Local IRM with Monte-Carlo Tree Search. The field-of-view
of the robot’s coverage sensor is represented by a blue circle. Macro actions (6 steps on Local IRM in this example) associated
with the two tree branches, paths A and B, are shown. Note that the final world coverage states in both branches are identical.
Path A is evaluated to be more rewarding than B since fewer actions were required to cover the same area.

the feasible one-step actions:

Q(bg, ag) =

∫
qg
b(qg)QgMDP(qg, ag)dqg. (14)

Finally, a POMDP policy can be obtained as follows:

πg(bg) = argmax
ag∈Ag

Q(bg, ag). (15)

An example of the GCP policy is depicted in Fig. 3.

Local Coverage Planner (LCP) Algorithm
In order to solve Eq. (5), we employ POMCP (Partially Ob-
servable Monte Carlo Planning) algorithm (Silver and Ve-
ness 2010). POMCP is a widely-adopted POMDP solver
that leverages the Monte Carlo sampling technique to alle-
viate both of the curse of dimensionality and history. Given
a generative model (or a black box simulator) for discrete
action and observation spaces, POMCP can learn the value
function of the reachable belief subspace with an adequate
exploration-exploitation trade-off.

More concretely, POMCP evaluates Q`(b`, a`) in Eq. (8)
by unrolling recursive value backpropagation through sam-
pled action-observation sequences. UCT algorithm for ac-
tion selection helps to balance between exploration and
exploitation in order to learn the action-value function.
Initially, it explores the search space (possible action-
observation sequences) with a random or a heuristically
guided rollout policy. While incrementally building the be-
lief tree, it gradually exploits the learned values for more
focused exploration. See illustration of local coverage plan-
ning in Fig. 4.

4.4 Receding-Horizon Policy Reconciliation
We extend the receding-horizon local coverage planning
problem to address the trade-off between policy consistency
and resiliency, as described in Section 3.3.

We define a policy reconciliation optimization problem by
introducing the previous planning episode policy into Eq. (3)

for the current planning episode. For notational brevity, let
us denote the time when the previous policy was generated
as t0 and the current time as t1 = t0 +∆t. In order to recon-
cile consecutive policies over receding horizons, we extend
Eq. (3) as follows, given the previous policy π−t0:t0+T con-
structed at time t0 for a finite horizon of T :

π∗t1:t1+T (b;π−t0:t0+T )

= argmax
π∈Πt1:t1+T

[
E
t1+T∑
t′=t1

γt
′−t1r(bt′ , π(bt′))

−λR(π−t0:t0+T , πt1:t1+T )
]
, (16)

where R(π−t0:t0+T , πt1:t1+T ) is a regularizing cost function
that penalizes inconsistency between the previous and cur-
rent policies in terms of kinodynamic constraints, and λ is
a regularization weight parameter. The first term in Eq. (16)
pursues policy resiliency based on the up-to-date world be-
lief, which may encode unexpected hazards, while the sec-
ond term promotes policy consistency.

Since the conflict between policy consistency and re-
siliency is most severe at the junction between two consecu-
tive policies, we decompose Eq. (16) into two time frames,
(t1 : t1 + τ) and (t1 + τ : t1 + T ) for τ ∈ [0, T − ∆t],
and formulate it as a simplified joint optimization problem
for τ∗ and π∗t1+τ∗:t1+T :

τ∗ = argmax
τ∈[0, T−∆t]

E
t1+τ∑
t′=t1

γt
′−t1r(bt′ , π

−
t0:t0+T (bt′)), (17)

π∗t1+τ∗:t1+T

= argmax
π∈Πt1+τ∗:t1+T

E
t1+T∑

t′=t1+τ∗

γt
′−t1r(bt′ , π(bt′)), (18)

π∗t1:t1+T = [π−t1:t1+τ∗ ; π
∗
t1+τ∗:t+T ]. (19)

Policy reconciliation is performed in Eq. (17) over a single
optimization variable τ . By re-evaluating the previous pol-
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icy π−t0:t0+T with updated robot-world belief bt′ , τ dictates
how much of the new π∗t1:t1+T should be in agreement with
the previous policy. Effectively, a larger τ promotes policy
consistency, while a smaller τ promotes policy resiliency.

Given τ∗ from Eq. (17), the optimization problem in
Eq. (18) becomes identical to Eq. (3), except the change of
start time, and can be solved by LCP, as described in Sec-
tion 4.3. The final receding-horizon policy π∗t1:t1+T is then
constructed by concatenating the previous policy and a new
partial policy, as in Eq. (18).

5 Experimental Results
In order to evaluate our proposed framework, we perform
high-fidelity simulation studies with a four-wheeled vehicle
(Husky robot) and real-world experiments with a quadruped
(Boston Dynamics Spot robot). Both robots are equipped
with custom sensing and computing systems, enabling high
levels of autonomy and communication capabilities (Otsu
et al. 2020; Agha-mohammadi and et al. 2021). The entire
autonomy stack runs in real-time on an Intel Core i7 proces-
sor with 32 GB of RAM. The stack relies on a multi-sensor
fusion framework. The core of this framework is 3D point
cloud data provided by LiDAR range sensors mounted on
the robots (Ebadi et al. 2020). We refer to our autonomy
stack-integrated Spot as Au-Spot (Bouman∗ et al. 2020).

5.1 Baseline Algorithms
We compare our PLGRIM framework against a local cover-
age planner baseline (next-best-view method) and a global
coverage planner baseline (frontier-based method).

1) Next-Best-View (NBV): NBV first samples viewpoints in
a neighborhood of the robot, and then plans a determinis-
tic path over a high-fidelity local world representation to
each viewpoint (Bircher et al. 2016). The set of viewpoint
paths serves as the policy search space. Each policy in the
space is evaluated, and NBV selects the policy with the
maximum reward, computed using action cost and infor-
mation gain from the world representation. While NBV is
able to leverage local high-fidelity information, it suffers
due to its spatially limited world belief and sparse policy
space.

2) Hierarchical Frontier-based Exploration (HFE): Frontier
based exploration methods construct a global, but low-
fidelity, representation of the world, where frontiers en-
code approximate local information gain. The set of fron-
tiers serves as the policy search space. Exploration in-
terleaves a one-step look-ahead frontier selection and the
creation of new frontiers, until all frontiers have been ex-
plored. Hierarchical approaches can enhance the perfor-
mance of frontier-based methods by modulating the spa-
tial scope of frontier selection (Umari and Mukhopadhyay
2017). However, while HFE is able to reason across the
global world belief, it suffers from downsampling arti-
facts and a sparse policy space composed of large action
steps.

Note that in order to achieve reasonable performance in the
complex simulated environments, we allow each baseline to
leverage our Local and Global IRM structures as the under-
lying search space.

(a) Simulated Subway 1x

(b) Simulated Maze

(c) Simulated Cave

10 m

50 m

40 m

Figure 5: PLGRIM’s performance was evaluated in various
simulated environments: (a) subway station, (b) maze (top-
down view), and (c) cave.

5.2 Simulation Evaluation
We demonstrate PLGRIM’s performance, as well as that of
the baseline algorithms, in a simulated subway, maze, and
cave environment. Fig. 5 visualizes these environments.

Simulated Subway Station
The subway station consists of large interconnected, polyg-
onal rooms with smooth floors, devoid of obstacles. There
are three varying sized subway environments, whose scales
are denoted by 1x, 2x, and 3x. Fig. 9(a)-(c) shows the scal-
able performance of PLGRIM against the baselines. In a rel-
atively small environment without complex features (Sub-
way 1x), NBV performance is competitive as it evaluates
high-resolution paths based on information gain. However,
as the environment scale grows, its myopic planning eas-
ily gets stuck and the robot’s coverage rate drops signifi-
cantly. HFE shows inconsistent performance in the subway
environments. The accumulation of locally suboptimal deci-
sions, due to its sparse environment representation, leads to
the construction of a globally inefficient IRM structure. As
a result, the robot must perform time-consuming detours in
order to pick up leftover frontiers.

Simulated Maze and Cave
The maze and cave are both unstructured environments
with complex terrain (rocks, steep slopes, etc.) and topol-
ogy (narrow passages, sharp bends, dead-ends, open-spaces,
etc.). The coverage rates for each algorithm are displayed
in Fig. 9(d)-(e). PLGRIM outperforms the baseline methods
in these environments. By constructing long-horizon cover-
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H
A-C

F-G

D

E

4 m

Figure 6: PLGRIM’s exploration trajectory in Valentine Cave, Lava Beds National Monument, Tulelake, CA. Exploration
started at the mouth of the cave (red circle), reached the end of the cave on the right, and returned back to visit uncovered areas.
Boxes indicate the portions of the trajectory associated with the alphabetized snapshots in Fig. 7 and Fig. 8.

A B C D

t=5:08 t=5:20 t=5:24 t=6:24

2 m 2 m

Figure 7: The Local IRM (yellow, brown, and white nodes represent uncovered, covered and unknown areas, respectively) is
shown overlaid on the Riskmap. A yellow arrow indicates the robot’s location. LCP plans a path (red) that fully covers the local
area (snapshot A). When p(W `) updates, the path is adjusted to extend towards the large uncovered swath while maintaining
smoothness with the previous path. Another p(W `) update reveals that the path has entered a hazardous area—wall of lava tube
(snapshot B). As a demonstration of LCP’s resiliency, the path shifts away from the hazardous area, and the robot is re-directed
towards the center of the tube (snapshot C). One minute later, the robot encounters a fork in the cave. The LCP path curves
slightly toward fork apex (for maximal information gain) before entering the wider, less-risky channel (snapshot D).

E F G H

t=09:11 t=10:36 t=12:26 t=14:16

Figure 8: Portions of the Global IRM constructed in the lava tube are visualized–yellow nodes represent frontiers, brown nodes
represent breadcrumbs. Gray arrows associate a frontier with a snapshot of the robot exploring that frontier. GCP plans a path
(blue) along the Global IRM to a target frontier after the local area is fully covered (snapshot E). The robot explores the area
around the frontier (snapshot F), and then explores a neighboring frontier at the opening of a narrow channel to its right. LCP
plans a path (green) into the channel (snapshot G). Later, after all local areas have been explored, the robot is guided back
towards the mouth of cave along the breadcrumb nodes (snapshot H).
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Figure 9: Exploration by PLGRIM and baseline methods in simulated subway environments of increasing size (a)-(c), and in
simulated and real-world cave environments (d)-(f). For (d) and (e), the covered area is the average of two runs. Red dashed
lines indicate 100% coverage of the environments, where applicable.

age paths over a high-resolution world belief representation,
PLGRIM enables the robot to safely explore through haz-
ardous terrain. Simultaneously, it maintains an understand-
ing of the global world, which is leveraged when deciding
where to explore next after exhausting all local information.
In the cave, NBV’s reliance on a deterministic path, with-
out consideration of probabilistic risk, causes the robot to
drive into a pile of rocks and become inoperable. NBV ex-
hibits similarly poor performance in the maze. However, in
this case, NBV’s myopic planning is particularly ineffectual
when faced with navigating a topologically-complex space,
and the robot ultimately gets stuck. As was the case in the
subway, HFE suffers in the topologically-complex maze due
to an accumulation of suboptimal local decisions. In partic-
ular, frontiers are sometimes not detected in the sharp bends
of the maze, leaving the robot with an empty local policy
space. As a result, the robot cannot progress and spends con-
siderable time backtracking along the IRM to distant fron-
tiers.

5.3 Real-World Evaluation
We extensively validated PLGRIM on physical robots in
real-world environments. In particular, PLGRIM was run on
Au-Spot in a lava tube, located in Lava Beds National Monu-
ment, Tulelake, CA. The cave consists of a main tube, which
branches into smaller, auxiliary tubes. The floor is charac-
terized by ropy masses of cooled lava. Large boulders, from
ceiling breakdown, are scattered throughout the tube. Fig. 6
shows the robot’s trajectory overlaid on the aggregated Li-
DAR point cloud. Fig. 7 and 8 discuss how PLGRIM is able
to overcome the challenges posed by large-scale environ-
ments with complex terrain and efficiently guide the robot’s
exploration. Fig. 9(f) shows the area covered over time.

6 Conclusion
In this work, we develop a hierarchical framework for ex-
ploring large-scale, unknown environments with complex
terrain in a POMDP setting. To obtain a tractable solution,

we introduce a hierarchical belief space representation that
effectively encodes a large-scale world state, while simul-
taneously capturing high-fidelity information local to the
robot. Then we propose cascaded POMDP solvers that rea-
son over long horizons within a suitable replanning time. We
demonstrate our framework in high-fidelity dynamic simu-
lation environments and in real-world environments, namely
a natural cave. Future work includes incorporating seman-
tic information gain, such as a science target signature, into
the IRMs, as well as extending the PLGRIM framework to
multi-robot coverage problems.
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