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Abstract

Performance-Level Profiles (PLPs) were introduced as a type
of action representation language suitable for capturing the
behavior of functional code for robotics. This paper consid-
ers two issues that PLPs raise: (1) Their formal semantics.
(2) How to verify a script or plans that schedule the use of
components that have been documented by PLPs. We dis-
cuss formal semantics for PLPs that maps them to proba-
bilistic timed automata (PTAs). We also show how, given a
script that refers to components specified using PLPs, we de-
rive a PTA specification of the entire system. Using a model
checker, we can now verify various properties of the system
and answers queries about its behavior. Finally, we empiri-
cally evaluate an implemented system based on these ideas
that use the UPPAAL-SMC model checker and demonstrate
its scalability. The result is a pragmatic approach for verifying
various properties of component-based robotic systems.

Introduction
Most robotic systems are built by assembling software com-
ponents, locally written, or imported, each of which handles
a particular capability. A more sophisticated behavior is then
obtained by combining these behaviors in various ways. Un-
fortunately, as noted in Abdellatif et al. (2012): “Systems
built by assembling together, independently developed and
delivered components often exhibit pathological behavior.
Part of the problem is that developers of these systems do
not have a precise way of expressing the behavior of com-
ponents...” Addressing this issue is crucial to our ability to
deploy autonomous robots in open environments.

Brafman, Bar-Sinai, and Ashkenazi (2016) advocated the
use of an intuitive machine readable descriptive (rather than
normative, or prescriptive) behavior specifications. Such
specifications make more precise what must be said and
how, and they enable the development of tools that can uti-
lize them to automatically support monitoring, validation,
and planning. To that effect, they introduced Performance
Level Profiles (PLPs), a language for specifying the expected
behavior of functional components. PLPs describe a num-
ber of key aspects of the performance of functional mod-
ules. They combine ideas from planning languages (PDDL
2.1 (Fox and Long 2003), probabilistic PDDL (Younes and
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Littman 2004), RDDL (Sanner 2010)), achievement and
maintenance goals (Ingrand et al. 1996; Kaminka et al.
2007), and new notions such as progress measures and a re-
peat construct that makes explicit the frequency by which
input and output parameters are read and published. Unlike
action languages that limit their expressiveness to meet the
requirements imposed by state-of-the-art planning technol-
ogy, PLPs seek to provide expressiveness that can be used
for other tasks. Thanks to their structured, machine readable
syntax, PLPs can be manipulated automatically for the pur-
pose of online monitoring (Brafman, Bar-Sinai, and Ashke-
nazi 2016), validation, and planning (Ashkenazi, Bar-Sinai,
and Brafman 2016). In this paper, we describe their use in
support of verifying component-based systems.

Code for complex tasks uses complex control structures
to schedule code fragments that implement diverse behav-
iors. Verifying and understanding the properties of the re-
sulting system is crucial if we are to address our original
concerns. This paper describes an approach for perform-
ing such validation when these code fragments have been
documented using PLPs. First, we provide formal semantics
for PLPs by mapping them to probabilistic timed automata
(PTAs) (Beauquier 2003), a model much used in program
verification. The full mapping is quite technical, and can be
found in (Kovalchuk 2018). Here we present a short intro-
duction to it. Our second step is to describe a rich language
for specifying complex scripts, which we refer to as control
graphs, and a mapping that takes as input a control graph and
the PLPs of the components it uses, and outputs a large PTA.
We leverage the well known UPPAAL-SMC probabilistic
model-checker (David et al. 2015) to verify this PTA, and
hence, the original script. We empirically demonstrate the
scalability of this approach by experimenting with a soft-
ware system (freely available) that implements these ideas.

Background
We briefly describe PLPs and PTA. See: Brafman, Bar-Sinai,
and Ashkenazi (2016); Beauquier (2003) for more details.

PLPs
The objective of a PLP is to clarify the role and ex-
pected/normal behavior of a module. The four PLP types
correspond to four module types: Achieve modules attempt
to achieve a new state of the world or generate a new object.
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A simple example is code for changing the orientation of the
robot to some goal orientation. Maintain modules attempt
to maintain some property. A simple example is code for
ensuring that the robot remains within some confined area.
Observe modules attempt to recognize some property of the
current state of the world, such as the robot’s location, or
whether there is a cup on the table. Detect modules monitor
the state of the world until some condition holds.

Each PLP document must conform to an XML Schema
Definition (XSD) that defines its syntax, with one XSD for
every PLP type. The schema and an example of a PLP of
each type be found in https://github.com/PLPbgu/PLP-repo.
Below we provide an informal description of the informa-
tion contained in the respective XML/XSD documents. We
expect programmers or users to provide this documentation
but realize that they are unlikely to precisely capture quan-
titative aspects such as success probabilities. Given recent
advancements in reinforcement learning, we expect that a
more realistic approach will start with some initial specifica-
tion by the programmer that is then improved automatically
using learning algorithms.

PLPs have two abstract components. One component
specifies the code’s expected behavior – its “guarantees”:
what success means, possible failure modes and their prob-
abilities, a distribution over running times, progress rates,
and various statistical invariants. The other component pro-
vides the conditions under which the “guarantees” are valid:
properties of the world before and during execution and con-
straints on available resources. These properties are not nec-
essarily observable by the robot. For example, a sensor may
guarantee a normal operation under some temperature range,
independent of whether the robot has a thermostat.

Common Elements All modules specify the following el-
ements: Parameters (values supplied to the module as in-
put or provided by the module as its output), local variables
and their ranges, and the following set of conditions spec-
ifying the contexts in which the PLP is valid: required re-
sources, optional bounds on the maximal rate of change for
resources, concurrency conditions that must hold at execu-
tion time, invariants, other code modules that must or must-
not be executed concurrently, and the frequency by which
each parameter must be read or written (optional).

Each module has an intended effect or role. However, it
may also have side-effects that are a result of executing this
module but are not a measure of its success or failure. Re-
source consumption is a primary example. In addition, mod-
ules that perform continuous work to achieve or maintain
their goals may specify a minimal rate of change per time
unit. For example, the rate of change of a position while nav-
igating. Making these expectations explicit makes it easier to
recognize problematic behaviour while the module executes.

PLP Types Achieve modules attempt to make some desir-
able property true or generate some virtual object. For exam-
ple, fuel tank is full, robot is standing, generate a map, com-
pute a path. Beyond the common elements, Achieve PLPs
contain an the achievement goal, failure modes, probabili-
ties associated with success and each failure mode, and the
running-time distribution given success and given failure.

Figure 1: Example PTA for connection protocol

Maintain modules attempt to maintain the value of a vari-
able or property. e.g., maintain speed or maintain perime-
ter clean. The condition need not be true initially, and so
the module may need to initially attain the condition. It may
also become false during execution and regained, as in the
case of a cleaning robot. This is reminiscent of a closed-loop
controller that always attempts to decrease some distance to
the desired goal condition. The Maintain PLP contains: the
condition to be maintained, whether it is initially true, termi-
nation conditions, one for successful termination (optional)
and one for failure, failure modes, the probability of success-
ful termination and different failure modes, and the runtime
distribution given success and failure.

Observe modules attempt to identify the value of some
variable(s), e.g., distance to wall or whether an object is
being held. Observe PLPs contain additional fields for the
observation goal, the probability of failure to observe, the
probability the observation is correct or some form of error
specification, such as confidence interval, and the running-
time distribution given success and given failure.

Detect modules attempt to identify some condition that is
either not true now, or that is not immediately observable.
For example, detect intruder or detect temperature change.
Their PLPs contain additional fields for the condition being
detected, and the probability the condition will be detected
given that it holds and given that it does not hold.

PTAs
Probabilistic timed automata (PTAs) (Beauquier 2003)
model systems with probabilistic and real-time characteris-
tics. They can be viewed as a combining Markov Decision
Processes (MDPs) with a timed-automata. A PTA contains:
1. Integer-valued variables. 2. Clocks – non-negative real-
valued variables, which all increase at the same rate. 3. Con-
straints – boolean combinations of (in)equalities consisting
of sums of clock variables and constants. 4. Locations (the
PTA’s nodes) – a finite set of locations, with a distinguished
initial location. 5. Actions (the PTA’s edges) – a finite set of
transitions between locations. 6. Invariant conditions – con-
straints on locations. 7. Enabling conditions – constraints on
actions. 8. Probabilities – transition probabilities of enabled
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actions. The automaton state consists of the current node and
the values of its clocks and variables.

The transition function allows two types of transitions be-
tween states: 1. Time transition – all clocks advance by a
certain time interval, while the invariant of the current node
is preserved. 2. Action transition – transition on an enabled
edge chosen according to the probability. As part of the tran-
sition, the values of variables and clocks can be updated, too.
The automaton starts at the initial node and advances along
edges according to invariants and enabling conditions. The
state of the PTA describes the current location and the clock
values. And a run is legal if each next state is reached by a
legal transition: either a change in clock value that is permit-
ted by the invariants, or an action transition in which an edge
between locations whose guards are satisfied is traversed and
clocks are possibly updated in line with the constraints. The
edge probability can be used to associate the likelihood of
the transition/run given the action/s.

We use a stronger PTA variant supported by UPPAAL.
1. We support urgent nodes – nodes without time transition
such that clocks cannot advance while in them. 2. In basic
PTAs, one can only reset clock values to 0. We allow vari-
able values to be updated to any function of other variable
values, as well as to a value obtained by sampling some dis-
tribution. 3. We use multiple concurrent PTAs. This serves
as syntactic sugar, as they can be encoded as a single product
PTA. 4. We allow channels. Channels are used to synchro-
nize the transitions of different PTAs. A channel is tied to an
edge and can be used either to send or receive a signal. The
action of passing a signal on a channel is immediate. Transi-
tion on an edge with the sending end of the channel does not
delay the transition on that edge, but transition on an edge
with a receiving end of a channel may delay the transition
until the signal on the channel is received. In addition, we
use real-valued variables for convenience, but model them
with finite precision as fractions.

Figure 1 describes in graphical form a PTA for a connec-
tion protocol with up to three retries. There are two clocks:
x and y. Node “connect try” is the initial node, with in-
variant: x ≤ 2 ∧ y ≤ 9. At anytime in the interval

[
0, 1

)
,

it is impossible to transition along edges because of the
guards (enabling conditions). Up until two time units, the
PTA can stay at “connect try”, but then it must transition on
an edge to “connect done” (with probability 0.9) or “con-
nect retry delay” (with probability 0.1). If it transitioned to
“connect done”, it sends a signal on “chan connect” chan-
nel and remains at “connect done” state. If it transitioned
to “connect retry delay”, it waits for x to become 3, then
updates x to 0, and transition to “connect try” for another
connection attempt. If all three attempts to connect fail,
the automaton will transition from “connect try” to “con-
nect failed”, send a signal on “chan connection failed”
channel, and will remain in “connect failed” state.

Related Work
Our semantics for PLPs is obtained by mapping them to a
PTA. This type of semantics is sometimes called translation
semantics and semantic anchoring. PTAs were used for this

purpose in a number of earlier systems: mapping AADL to
UPPAAL (Johnsen et al. 2012) and mapping RT-DEVS to
UPPAAL (Furfaro and Nigro 2008). Neither of these sys-
tems uses the probabilistic aspects of PTAs, and both are
part of systems that strive to provide a complete bottom-up
approach to robot software design. Our use of PLPs attempts
to address systems that use existing, imported, or locally de-
veloped components. More recent work (Foughali, Ingrand,
and Seceleanu 2019) translates the code written using the
Genom3 platform (Mallet et al. 2010) to timed automata.
Like the above systems, Genom3 is a complete platform for
designing robot software. Unlike the above, and similar to
our work, this work also introduces the option of using a
probabilistic model of the environment, by essentially learn-
ing the frequency of different outcomes within an originally
non-deterministic model. They then use UPPAAL-SMC to
do probabilistic model checking on the resulting PTA. Fi-
nally, probably closest to our work is (Lesire, Doose, and
Grand 2020). It describes a language for describing skills
that are quite similar to PLPs, although it does not have prob-
abilistic components. From this description, they can gener-
ate PDDL descriptions and use planning to compose skills,
much like (Ashkenazi, Bar-Sinai, and Brafman 2016) as well
as finite-state machines, which are then used for verification
using the NuSMV model-checker (Cimatti et al. 2002).

The composition of simple components to obtain more
complex ones is a basic technique in automata theory, sup-
ported by operations such as Cartesian product and automata
sequencing (Hopcroft, Motwani, and Ullman 2003). Tree
structures specifically, are often used to describe hierarchi-
cal compositions and branching computation. Our work uses
these ideas, but supports general graphs with loops.

The idea of verifying systems viewed as trees or graphs
of processes or components is not new in robotics. In Sim-
mons, Pecheur, and Srinivasan (2000) the authors develop
an approach for verifying elements of the Task Descrip-
tion Language (TDL) (Simmons and Apfelbaum 1998) re-
lated to decomposition and synchronisation. This is done by
providing a translation into the SMV model-checking lan-
guage. In Armbrust et al. (2013) behavior networks are ver-
ified by using model-checking. In Heinsemann and Lange
(2018), TSL, a domain specific language for robotics, which
makes use of task trees and hierarchical decomposition,
like TDL, is verified by translating its specifications into a
Promela model used by the Spin model checker. More re-
cently, ASPiC (Lesire and Pommereau 2018) is a system
that allows the composition of simple petri-nets to obtain
complex control structures/plans. Combining the ability to
verify petri-nets with the semantics of the composition op-
erators used, the system is able to verify a certain form of
soundness. The basic elements scheduled by these languages
differ significantly from PLPs. First, none of these methods
model stochastic elements, while PLPs make use of prob-
abilistic information, and control graphs allow for proba-
bilistic choice, modeling stochastic environments and, con-
sequently, require the use of probabilistic model checking.
Second, PLPs offer more information about run-time behav-
ior (e.g., progress measure, run-time distributions), are di-
vided into four categories based on the component’s role, yet
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Figure 2: Template for PTAPLP achieve

are not rich enough to actually allow for code generation, as
in these methods.

Formal Semantics for PLPs
Compared to PLPs, PTAs are a much more detailed,
program-like description of behavior. As such, they can be
used for code specifications or programming controllers.
PLPs, on the other hand, aim to provide a more abstract,
intuitive description of implemented code. Given this, it is
natural to use PTAs as a semantic model for PLPs. Here, we
outline a translation semantics for PLPs by mapping them
into PTAs. Due to space limitations, we provide an overview
of the semantics of Achieve. The complete specification ap-
pears in Kovalchuk (2018).1

(1) For every PLP type, a distinctive PTA scheme exists,
but all share a common structure that we describe here.

The successful execution path of each PTA contains the
following sequence of nodes: 1. “wait” – waits for the
scheduling PTA to let the current PTA command run (i.e.,
the relevant code modeled by the PLP is starting to exe-
cute).2 2. “start” – the scheduling PTA allowed the current
PTA command to run. 3. “choose” – the PLP’s precondi-
tions hold. 4. “main” – run-time path for a successful exe-
cution. 5. “main done” – PLP’s code terminated. 6. “end”
– completed current execution cycle of PTAPLP.

Node transitions are as follows: 1. “wait→start” is

1Available at https://github.com/a-l-e-x-d-s-
9/Thesis2017/blob/master/ThesisToLatex/Thesis.pdf

2The scheduling PTA captures the controller that selects when
to execute a module. Later, we define an explicit scheduler model.
Here, we simply treat it as an external entity that decides when to
activate a PLP.

taken when a signal from the scheduling PTA is re-
ceived. 2. “start→choose” is taken only if the precondi-
tions are fulfilled. 3. “choose→main” is taken when the
PTA selects (probabilistically) to take the success path. 4.
“main→main done” is taken when run time is up, and the
concurrent and resource related constraints are fulfilled. 5.
“main done→end” updates side effects and goal conditions.
However, if the probabilistic choice in the choose node leads
to a failure path, a PTAPLP may end up in one of the PLP’s
failure states.

(2) For a given set of PLPs representing a certain system,
we list all variables, parameters, constants, and resources.
Then, we match a PTAPLP variable for each and initialized
them based on the initial values specified in the PLPs. We
also create one status variable for each PLP. It is used to
indicate whether the PTAPLP is currently running or not.

(3) In PLPs the concept of a condition is used in two dis-
tinctive ways: 1. A logical expression such as a = b that
must be satisfied by the external world; for example, a pre-
condition. 2. A logical expression that is made true by the
code module modeled by the PLP – which is essentially an
assignment, such as in the case of goal conditions.

Logical conditions are transformed to negation normal
form, and are then translated to a PTA guard condition of an
appropriate edge in the PTAPLP. Assignments are translated
to a PTA update of an edge in the representative PTAPLP ac-
cording to its role and place in the PLP.3 Unfortunately, our
translation does not support existential and universal quan-
tifications, at present.

For a given achieve PLP, we create PTAPLP achieve, de-
scribed in Figure 2. PTAPLP starts at the initial node, wait and

3Recall that action transitions perform such updates.
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waits for a start signal from the scheduling PTA. When a sig-
nal arrives on channel “can start”, it transitions to “start”.
First, we check the PLP’s preconditions by a transition to
“choose” with guard condition “precondition”. Then, the
PTA samples a successful execution or one of the possible
failure modes based on the associated probabilities. If a fail-
ure path is chosen, it waits for “run time” time according
to run-time distribution “Df i3()” in “failure i3” node and
then stays in “trap failure i3” state. If a successful execu-
tion is chosen, it transitions from “choose” node to “main”.
Time can pass in the “main” node according to the run time
distribution “Ds()” stored in the “run time” variable.

Even if the current path represents a successful internal
execution, external constraints may still force the PLP to fail.
This is captured by “main”’s invariant condition “concur-
rent constraints && resources constraints”. In case of fail-
ure caused by a concurrent condition, concurrent module,
or resource, the PTA transitions to “trap concurrent i1” or
“trap resource i2” respectively. If the external constraints
are fulfilled while in “main”, the transition to “main done”
is possible. Finally, the transition to “end” node updates the
goal conditions and side effects.

PLP logical conditions are converted to PTA guard con-
ditions as follows: 1. Preconditions to “preconditions”. 2.
Concurrency conditions and concurrent modules constraints
are transformed into m1 statements that are conjoined to
form “concurrent constraints”. For each statement i1 ∈[
1,m1

]
there is a path to “trap concurrent i1” from “main”

with a guard “!concurrent constraint i1”. 3. Required re-
sources are gathered into m2 statements and conjoined to
form the “resources constraints”. For each statement i2 ∈[
1,m2

]
, there is a path to “trap resource i2” from “main”

with a guard “!resource constraint i2”. 4. The Repeat state
of a PLP is represented by a boolean variable “repeat”.

Assignment conditions in the PLP are converted to as-
signments in the PTA as follows: 1. The transition between
“main done” to “end” updates the PLP’s goal condition to
true. (This is the “goal” statement there.) 2. The definition
of side effects in PLPs does not specify the time in which
the side effect occurs, and we therefore decided to make this
change immediately before the PTA completes the transition
between “main done” and “end”.

Constraints between concurrent modules are enforced by
using the “running” status variable. This is a flag that in-
dicates, for each PTAPLP, whether its underlying module is
currently being executed. Every PTA can include guard con-
ditions that refer to the running state of another PTA, and
thus either restrict or require its concurrent execution.

Verifying Complex Controllers
Given a controller that calls different code modules, for each
of which we have a PLP, we generate a set of interacting
PTAs that represent the entire program. These PTAs can be
fed into UPPAAL-SMC (David et al. 2015), a PTA verifica-
tion tool, which can be queried to verify various conditions.
Below we describe our formalization of such controllers and
the main ideas behind their mapping to PTAs.

concurrent

Launch PLPs:
Observe PLP

Launch PLPs:
Observe PLP

Launch PLPs:
Achieve PLP

Launch PLPs:
Achieve PLP

Condition
var==false

var==true

Figure 3: Second Part of First Control Graph

Control Graphs
We use control graphs to describe algorithms controlling
execution of robotic modules specified by PLPs. A control
graph is a directed graph with a single root node in which
execution starts. Each node represents a call to some code
modules. Transitions between nodes depend on the system
state obtained when the parent node(s) terminates execution.
They can be stochastic or conditional on the current state.

There are four types of control nodes: 1. PTAPLP launcher
nodes launch a sequence of PTAPLP that executes one at a
time. 2. Probabilistic nodes choose a single edge to proceed
with based on the edge’s probability. This allows implement-
ing methods that require some randomization, e.g., to escape
from cycles. 3. Conditional nodes choose a single edge to
proceed with. Only an edge whose condition is satisfied can
be selected. If more than one edge condition is satisfied, one
is selected non-deterministically. (If no condition is satis-
fied, then this is viewed as a failure.) 4. Concurrent nodes
execute all nodes reached by their outdoing edges concur-
rently. Finally, each node type comes in two variations: 1.
Starts only when all of its immediate parents terminated. 2.
Starts whenever at least one of its parents terminated. Nodes
in the control graph can update the value of variables that are
used both by PTAPLP and other nodes in the control graph.

An important aspect of control graphs is the ability to ex-
press loops by allowing backward edges. This allows us to
specify a much larger class of algorithms. Circular execution
can be ended by a probability node or a conditional node.

The Control Graph Verifier
To verify control graphs with PLPs, we produce a set of
PTAs representing this system. We then use UPPAAL-SMC
to answer queries about the system. UPPAAL is a software
package for modeling, validation, and verification of real-
time systems modeled as networks of timed automata, ex-
tended with data types (Behrmann et al. 2006). UPPAAL-
SMC is its extension for stochastic model checking.
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Figure 4: Average Time for ∃ Query

UPPAAL allows us to query temporal properties of the
whole system such as: 1. Possible reachability: Is there an
execution path in which p will be eventually true? 2. Guar-
anteed reachability: Will p be eventually true in all execution
path? 3. Safety: Will p be true at all times in all execution
path? 4. Possible safety: Is there an execution path in which
p will always hold? 5. Conditional versions of 1-4. 6. Prob-
ability of reachability: What is the probability that p will
eventually be true? 7. Probability of an invariant: What is
the probability that p will always be true?

Queries of the form 6 and 7 are the most interesting from
the robotics perspective. Queries of type 6 allow us to ask
what is the probability that we will reach a certain goal state
with the given controller. For example, what is the probabil-
ity that coffee will be served eventually? They also allow us
to quantify the probability of a particular risk. For example,
what is the probability that we will run out of gas? Queries of
type 7 allow us to ask safety queries: what is the probability
that some invariant will be maintained throughout execution,
e.g., what is the probability that our autonomous car will not
take part in an automobile accident?

To convert control graphs to a network of PTAs, we
associate a PTA with each node of the graph (PTANode).
PTAsNode exist alongside PTAsPLP and can influence each
other through shared variables and channels. This (quite
technical) mapping appears in (Kovalchuk 2018).

Empirical Evaluation
To evaluate our implemented system’s performance and
scalability, we run a scalability study and a use-case study.

We evaluate resource demands of the system in two
phases: The first phase evaluates the scalability of the com-
pilation to UPPAAL of the PTAs associated with the control
graph and its PLPs. The second phase evaluates the scalabil-
ity of verification queries on the compiled system.

To evaluate both phases we use two independent test
cases. The first test case is a comprehensive control graph
with most of our functional elements, all types of control

nodes and all PLPs types except detect PLP. The control
graph consists of a full binary tree of probabilistic nodes,
such that each of its leaf nodes is associated with the inde-
pendent control sub-graph shown in Figure 3. By controlling
the binary tree’s height, we change the graph’s size.

The root node of the sub-graph associated with each leaf
node allows concurrent execution of two paths: the first path
contains a maintain PLP that maintains a certain condition
needed by the other execution path. The other execution
path executes an observe PLP, which is followed by a con-
ditional node whose choice depends on the previously ob-
served variable. This conditional node leads to the execution
of an achieve PLP that achieves a certain goal, but it also re-
quires the concurrent maintain PLP to run at the same time.

The second test case is a simple control graph with a
single node that launches a sequence of PLPs. All PLPs
are functionally identical but recognized by the system as
unique. It is an extreme form of a PTAs tree, with all PTAs
concentrated along a single path, contrary to the first test
case with a full and balanced tree of PTAs. The first test
case can be more challenging to compile due to an abun-
dance of elements and connections. The second test can be
more challenging for query evaluation.

The results presented below were obtained on a system
running an Intel Core i7-4700MQ CPU, 2.40GHz × 8 with
16 GB RAM, SSD, Java 1.8.0 171, and Ubuntu 17.10 64bit.
We used “verifyta” – terminal based query verifier of UP-
PAAL for Linux – 4.1.19. Results are averaged over ten runs.

Generally, every PLP and control node in the system are
converted to a single PTA in UPPAAL. In the first test case,
this number increases exponentially with height. To make
the two test cases comparable, in the second test case we use
a total number of PTAs similar to the first.

We tested the compilation process with up to 90,000
PTAs, although we cannot envision, in the near future, a sys-
tem with more than a few dozen components. For 90,000
PTAs, compilation large number of 1000 PTAs compilation
required 7.2MB and 4MB of RAM for cases 1 and 2, re-
spectively. Figure 5 describes the run-time of the compila-

678



Figure 5: Average Compilation Time

Figure 6: Average Time for Probability Query

tion process. The results clearly indicate that compilation, a
one-time process, is quick and scales to very large problems.

Once the system is compiled, we can test its properties
using UPPAAL queries. The time and memory needed by
UPPAAL depends on the query and on the properties of
the PTAs graph affecting the length of paths and number
of paths needed to evaluate the query. Therefore, results for
specific query types may vary even in the same system.

First, we evaluate a path existence query (“E <>”). For
both test cases, we test whether the system can reach the
most distant PTAPLP from the initial state. Run time is shown
in Figure 4. Query cost does not scale up as well as compila-
tion cost, and systems with over 700 PTAs cause UPPAAL to
crash due to stack overflow. Yet, for moderate system sizes,
it is relatively efficient, and multiple queries can be carried
out in reasonable time. In fact, in systems with ≤ 200 PTAs,
online queries for evaluating plans can be supported. Recall

that the number of PTAs roughly corresponds to the number
of PLPs, i.e., to the number of basic robotic capabilities used
in the code.

The second query we tested was a probability (“Pr <>”)
query of successfully reaching the most distant PTAPLP from
the initial state. We defined each PLP with one failure and
one success path, both with certain probabilities. UPPAAL
calculates probability by multiple evaluations (i.e., by sam-
pling runs), which may take a long time. The results are
show in Figure 6. Again, we see that query time for smaller
models is reasonable. Certainly, verifying controller proper-
ties off-line is realistic, and on, e.g., a service robot operat-
ing in the home environment without severe time pressure,
online evaluation is possible, too.
Service Robot Case Study. Next, we evaluated our system
on a simulated real-world scenario. ARMadillo – a service
robot at our lab, is to serve coffee to a person in the audi-
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Figure 7: Run time distribution of the system for Query 1.

move(init, 
corridor)

sense(coffee)?

Any? pick(coffee)

move(corridor, 
auditorium)

move(corridor, 
corner-area)

move(corner-
area, outside-

lab211)
pick(coffee)

move(outside-
lab211, corner-

area)

move(corner-
area, 

auditorium)
place(coffee)

goal

coffee at corridor cac

(cac)!(cac)

Figure 8: The control graph for the service robot example.

torium. The robot’s possible actions are observe coffee cup,
navigate to different locations at our office floor, and pick
and place. The robot starts near the elevator and the coffee
is either at corridor area or outside lab211. Its control graph
is shown in Figure 8. The robot executes an achieve PLP,
followed by an observe PLP, followed by a conditional node
that branches into two sequences of achieve PLPs.

We compiled the control graph and the PLPs for the
demo’s code into an UPPAAL input file. We assumed all
the actions eventually succeed, except for the place action
that fails with probability 0.1. Query 1 asks for the proba-
bility that the person will get the coffee before it gets cold,
where we used 25 minutes as the time limit. The output gen-
erated is a probability range [0.895, 0.90] with confidence
of 99.5%. Figure 7 describes the PDF over this time steps,
showing two peaks – one for each path of the control graph.
The query took 15.15 seconds and 56.2 Mb of memory. If

we reduce the time limit to 20 minutes, then the probability
range drops to [0.67, 0.68] with confidence of 99.5%. This
query took 34.36 seconds and 56.7 Mb of memory. Query 2
asked what is the probability that the coffee will ultimately
be served? UPPAAL took 11.72 seconds and 47.1 Mb of
memory to return the probability range [0.896, 0.905] with
a confidence of 95% within 100 thousands time units (i.e.,
Pr[≤ 100000](<> ...)).

Summary
We gave an overview of formal semantics for Performance
Level Profiles (PLPs) that maps PLPs to probabilistic timed
automata. Because PLPs have a formal syntax, they are
machine-readable and processable, allowing us to leverage
these semantics to map actual PLPs to PTA specifications.
We extended this mapping to cover compositions of PLPs
within complex control structures and used UPPAAL-SMC
to answer queries about plan properties. Our empirical eval-
uation shows the potential of our approach, although online
query evaluation is probably too slow without additional op-
timizations. For example, we can perform verification in par-
allel with plan execution.

We firmly believe that the vision of associating machine-
readable documentation with code, in addition, or instead of
standard natural-language documentation is realizable, espe-
cially given recent advancements in RL and natural language
processing algorithms. This paper demonstrates just one of
the advantages of such documentation, which we believe can
lead to far greater support for safe autonomous robots, with-
out requiring drastic changes in the practice of writing code.
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