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Abstract

The combination of high-resolution satellite imagery and ma-
chine learning have proven useful in many sustainability-
related tasks, including poverty prediction, infrastructure
measurement, and forest monitoring. However, the accu-
racy afforded by high-resolution imagery comes at a cost,
as such imagery is extremely expensive to purchase at scale.
This creates a substantial hurdle to the efficient scaling and
widespread adoption of high-resolution-based approaches.
To reduce acquisition costs while maintaining accuracy, we
propose a reinforcement learning approach in which free low-
resolution imagery is used to dynamically identify where to
acquire costly high-resolution images, prior to performing a
deep learning task on the high-resolution images. We apply
this approach to the task of poverty prediction in Uganda,
building on an earlier approach that used object detection
to count objects and use these counts to predict poverty.
Our approach exceeds previous performance benchmarks on
this task while using 80% fewer high-resolution images, and
could be useful in many domains that require high-resolution
imagery.

Introduction
When combined with machine learning, high-resolution
satellite imagery has proven broadly useful for a range of
sustainability-related tasks, from poverty prediction (Jean
et al. 2016; Ayush et al. 2020; Sheehan et al. 2019; Blumen-
stock, Cadamuro, and On 2015; Yeh et al. 2020) to infras-
tructure measurement (Cadamuro, Muhebwa, and Taneja
2018) to forest and water quality monitoring (Fisher et al.
2018) to the mapping of informal settlements (Mahabir et al.
2018). Compared to coarser (10-30m) publicly-available
imagery (Drusch et al. 2012), high-resolution (< 1m) im-
agery has proven particularly useful for these tasks because
it is often able to resolve specific objects or features that are
undetectable in coarser imagery.

When combined with machine learning, high-resolution
satellite imagery has proven broadly useful for object detec-
tion (Lam et al. 2018), object tracking (Uzkent, Rangnekar,
and Hoffman 2018, 2017), cloud removal (Sarukkai et al.
2020), and a range of sustainability-related tasks, from
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poverty prediction (Jean et al. 2016; Ayush et al. 2020; Shee-
han et al. 2019; Blumenstock, Cadamuro, and On 2015;
Yeh et al. 2020) to infrastructure measurement (Cadamuro,
Muhebwa, and Taneja 2018). Compared to coarser (10-
30m) publicly-available imagery (Drusch et al. 2012), high-
resolution (< 1m) imagery has proven particularly useful
for these tasks because it is often able to resolve specific ob-
jects or features that are undetectable in coarser imagery.

For example, recent work demonstrated an approach
for predicting local-level consumption expenditure using
object detection on high-resolution daytime satellite im-
agery (Ayush et al. 2020), showing how this approach can
yield interpretable predictions and also outperform previous
benchmarks that rely on lower-resolution, publicly-available
satellite imagery (Drusch et al. 2012). This additional in-
formation, however, typically comes at a cost, as high-
resolution satellite imagery must be purchased from private
providers. Additionally, processing high-resolution images
is computationally more expensive than the coarser reso-
lution ones (Uzkent et al. 2019; Zhu et al. 2016; Meng
et al. 2017; Lampert, Blaschko, and Hofmann 2008; Wojek
et al. 2008; Redmon and Farhadi 2017; Gao et al. 2018).
Given these costs, deploying these models at scale using
high-resolution imagery quickly becomes cost-prohibitive
for most organizations and research teams, inhibiting the
broader development and deployment of machine-learning
based tools and insights based on these data.

To address this problem, we propose a reinforcement
learning approach that uses coarse, freely-available public
imagery to dynamically identify where to acquire costly
high-resolution images, prior to conducting an object detec-
tion task. This concept leverages publicly available Sentinel-
2 (Drusch et al. 2012) images (10-30m) to sample smaller
amount of high-resolution images (<1m). Our framework is
inspired from the recent studies in computer vision literature
that perform conditional inference to reduce computational
complexity of convolutional networks in test time (Uzkent
and Ermon 2020; Wu et al. 2018).

We apply our approach to the domain of poverty predic-
tion, and show how our approach can substantially reduce
the cost of previous methods that used deep learning on
high-resolution images to predict poverty (Ayush et al. 2020)
while maintaining or even improving their accuracy. In our
study country of Uganda, we show how our approach can re-
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duce the number of high-resolution images needed by 80%,
in turn reducing the cost of making a country-wide poverty
map using this approach by an estimate $2.9 million.

Poverty Mapping from Remote Sensing
Imagery

Poverty is typically measured using consumption expendi-
ture, the value of all the goods and services consumed by
a household in a given period. A household or individual
is said to be poverty stricken if their measured consumption
expenditure falls below a defined threshold (currently $1.90
per capita per day). We focus on this consumption expen-
diture as our outcome of interest, using “poverty” as short-
hand for “consumption expenditure” throughout the paper.
While typical household surveys measure consumption ex-
penditure at the household level, publicly available data typ-
ically only release geo-coordinate information at the “clus-
ter” level – which is a village in rural areas and a neighbor-
hood in urban areas. Efforts to predict poverty have thus fo-
cused on predicting at the cluster level (or more aggregated
levels) (Ayush et al. 2020).

Ayush et al. (2020) demonstrated state-of-the-art results
for predicting village-level poverty using high-resolution
satellite imagery, and showed how such predictions could be
made with an interpretable model. In particular, they trained
an object detector to obtain classwise object counts (build-
ings, trucks, passenger vehicles, railway vehicles, etc.) in
high-resolution images, and then used these counts in a re-
gression model to predict poverty. Not only were these cat-
egorical features predictive of poverty, but their counts had
clear and intuitive relationships with the outcome of inter-
est. The cost of this accuracy and interpretability was the
high-resolution imagery, which typically must be purchased
for $10-20 per km2 from private providers.

Problem statement. Let {(Hi,Li, yi, ci)}Ni=1 be a set
of N villages surveyed, where ci = (clati , cloni ) is the lati-
tude and longitude coordinates for cluster i, and yi ∈ Ris
the corresponding average poverty index for a particular
year. For each cluster i, we can acquire both high-resolution
(at a cost) and low-resolution (free of charge) satellite im-
agery corresponding to the survey year, Hi ∈ RW×H×B , a
W ×H image with B channels, and Li ∈ RW/D×H/D×B ,
a W/D × H/D image with B channels. Here D repre-
sents a scalar to show the resolution difference between low-
resolution and high-resolution images. Our goal is to learn
(1) a regressor fr to predict the poverty index yi using Li
and parts of Hi (the informative regions) selected by (2) an
adaptive data acquisition scheme based on Li. This adap-
tive data acquisition scheme is optimized to minimize cost
(which depends on the number of selected regions) while
maximizing the accuracy of fr.

Dataset
Socio-economic Data. Our ground truth dataset consists
of data on consumption expenditure (poverty) from Living
Standards Measurement Study (LSMS) survey conducted
in Uganda by the Uganda Bureau of Statistics between
2011 and 2012 (UBOS 2012). The survey consists of data

from 2,716 households in Uganda, grouped into unique lo-
cations called clusters. The latitude and longitude, ci =

(clati , clongi ), of a cluster i = {1, 2, . . . , N} is given, with
noise of up to 5 km added in each direction by the sur-
veyers to protect respondent privacy. Individual household
locations in each cluster i are also withheld to preserve
anonymity. We have N=320 clusters in the survey which we
use to test the method performance in terms of predicting
the average poverty index, yi, for a group i. For each ci, the
survey measures the poverty level by the per capital daily
consumption in dollars which we refer to as the “LSMS
poverty score” for simplicity like (Ayush et al. 2020). Fig. 1
(bottom left corner) visualizes the surveyed locations on the
map along with their corresponding LSMS poverty scores,
revealing that a high percentage of surveyed locations have
relatively low consumption expenditure values.

Satellite Imagery. We acquire both high-resolution and
low-resolution satellite imagery for Uganda. The high-
resolution satellite imagery, Hi, corresponding to cluster
ci (roughly, a village or neighborhood) is represented by
T=34×34=1156 images of 1000×1000 pixels each with 3
channels, arranged in a 34×34 square grid. This corre-
sponds to a 10km×10km spatial neighborhood centered at
ci. A large neighborhood is considered to deal with up-to
5km of random noise in the cluster coordinates that has been
added by the survey organization to protect respondent pri-
vacy. These high-resolution images come from DigitalGlobe
satellites with 3 bands (RGB) and 30cm pixel resolution.
Formally, we represent all the high-resolution images cor-
responding to ci as a sequence of T tiles asHi = {Hj

i }Tj=1.
We acquire all the high-resolution tiles representing a cluster
for comparison with (Ayush et al. 2020). However, in real-
word scenario our method requires only a small fraction of
HR tiles in test time unlike (Ayush et al. 2020) that acquires
HR tiles exhaustively.

We also acquire low-resolution satellite imagery, Li, cor-
responding to cluster ci and represented by a single image
of 1014× 1014 pixels with 3 channels. These images come
from Sentinel-2 with 3 bands (RGB) and 10m pixel reso-
lution and are freely available to the public. Each image
corresponds to the same 10km×10km spatial neighborhood
centered at ci, however the resolution is much lower – each
Sentinel-2 pixel corresponds to roughly 1000 pixels from the
high-resolution imagery. Because of this low-resolution, it
is not possible to perform fine-grained object detection just
using these images. Fig. 1 illustrates an example cluster
from Uganda.

Fine-grained Object Detection on
High-Resolution Satellite Imagery

Similar to (Ayush et al. 2020), we use an intermediate ob-
ject detection phase to obtain categorical features (classwise
object counts) from high-resolution tiles of a cluster. Due to
lack of object annotations for satellite images from Uganda,
we use the same transfer learning strategy as in (Ayush
et al. 2020) by training an object detector (YOLOv3 (Red-
mon and Farhadi 2018)) on xView (Lam et al. 2018), one
of the largest and most diverse publicly available overhead
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Figure 1: Schematic overview of the proposed approach. The Policy Network uses cheaply available Sentinel-2 low-resolution
image representing a cluster to output a set of actions representing unique 1000×1000 px high-resolution tiles in the 34×34 grid.
Then object detection is performed on the sampled HR tiles (black regions represent dropped tiles) to obtain the corresponding
class-wise object counts (L-dimensional vectors). Finally, the classwise object counts vectors corresponding to the acquired
HR tiles are added element-wise to get the final feature vector representing the cluster. Our reinforcement learning approach
dynamically identifies where to acquire high-resolution images, conditioned on cheap, low-resolution data, before performing
object detection, whereas the previous work (Ayush et al. 2020) exhaustively uses all the HR tiles representing a cluster for
poverty mapping, making their method expensive and less practical.

imagery datasets for object detection with 10 parent-level
and 60 child-level classes. Earlier work (Ayush et al. 2020)
studied both parent-level and child-level detectors and em-
pirically find that not only the parent-level object detection
features are better for poverty regression but at the same time
are more suited for interpretability due to household level
descriptions. Thus, we train YOLOv3 detector using parent-
level classes (see x-axis labels of Fig. 3).

As described in previous section, each Hi representing
a cluster is a set of T high-resolution images, {Hj

i }Tj=1.
To obtain a baseline model that uses all the high-resolution
imagery available, we follow the protocol in (Ayush et al.
2020) and run the trained YOLOv3 object detector on each
1000×1000px tile (i.e. Hj

i ) to get the correspoding set of
object detections . Similar to (Ayush et al. 2020), we use
these object detections to generate a L-dimensional vec-
tor, vji ∈ RL (where L=10 is the number of object la-
bels/classes), by counting the number of detected objects in
each class. This class-wise object counts can be used in a
regression model for poverty estimation (Ayush et al. 2020).

Ayush et al. (2020) exhaustively uses all T=1156 HR tiles
of a cluster for poverty estimation. In contrast, we propose
to use a method that adaptively selects informative regions
for high-resolution acquisition conditioned on the publicly
available, low-resolution data. Thus, we reduce the depen-
dency on HR images that are expensive to acquire thereby
reducing the costs of poverty prediction models that use
HR images exhaustively (Ayush et al. 2020) making their
method costly and less practical. We describe our solution
in the next section.

Adaptive Tile Selection
Due to the large acquisition cost of HR images, it is non-
trivial and expensive to deploy models based on HR imagery
at scale. For this reason, we propose an efficient tile se-

lection framework to capture relevant fine level information
such as classwise object counts for downstream tasks. We
represent the HR image covering a spatial cluster i centered
at ci = (clati , cloni ) as Hi ∈ RW×H×B where W , H and B
represent height width and number of bands. Additionally,
we represent the LR image of the same spatial cluster i as
Li ∈ RW/D,H/D,B whereD represents a scalar for the num-
ber of pixels in width and height. For example, in the case
of Sentinel-2 (10 m GSD), we have D = 30 times smaller
number of pixels than the high-resolution DigitalGlobe im-
ages (0.3m GSD). With an adaptive approach, our task is to
acquire only small subset of Hi conditionally on Li while
not hurting the performance in our downstream tasks that
uses object counts from the cluster i. This adaptive method
is formulated as a two-step episodic Markov Decision Pro-
cess (MDP), similar to (Uzkent, Yeh, and Ermon 2020). In
the first step, we adaptively sample HR tiles and in the sec-
ond step, we run them through a pre-trained detector.

Task Definition. The first module of our framework finds
HR tiles to sample/acquire, conditioned on the low spatial
resolution image covering a cluster (which is always ac-
quired). However, a cluster is represented by 34000×34000
px HR images. Directly learning actions with reinforcement
learning on such a large area can be very challenging and
unstable. For this reason, we decompose our task to many
independent sub-tasks where each sub-task focuses on sam-
pling the important parts of the corresponding area with HR
images. Following this, we divide a cluster-level HR image
Hi = (H1

i , H
2
i , . . . ,H

T
i ) into equal-size non-overlapping

tiles, where T is the number of tiles. Similar to Hi, we de-
compose Li as Li = (l1i , l

2
i , . . . , l

T
i ) where lji represents the

lower spatial resolution version (from Sentinel-2) of Hj
i . In

this set up, we model Hi as a latent variable as it is not di-
rectly observed and it is inferred from the observation Li.
We associate each tile, Hj

i , of Hi with an L-dimensional
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classwise object counts feature represented as vji .
In a simple scenario, we can take a single binary action for

eachHj
i whether to acquire it or not conditioned on lji . How-

ever, we believe that choosing multiple actions representing
different disjoint subtiles of tile Hj

i can help us avoid sam-
pling areas of tile Hj

i where there are no objects of interest.
For this reason, we divide tile Hj

i into S number of disjoint
subtiles as Hj

i = (hj,1i , hj,2i , ..., hj,Si ). We then define our
task as learning a policy network conditioned on lji to only
choose HR sub-tiles from Hj

i where there is desirable num-
ber of objects characterized by a reward function. Once we
learn the policy network, in test time we run it on each lji
of a cluster i to sample HR images and run them through
detector to find out the cluster-level object counts.

1st Step of MDP. In the first step, the agent observes
lji and outputs a binary action array, aji ∈ {0, 1}S , where
aj,ki = 1 represents acquisition of the HR version of the k-th
subtile of Hj

i i.e. hj,ki . The subtile sampling policy, param-
eterized by θp, is formulated as π(aji |l

j
i ; θp) = p(aji |l

j
i ; θp)

where π(lji ; θp) is a function mapping the observed LR im-
age to a probability distribution over subtile sampling ac-
tions aji .

2nd Step of MDP. In the second step, the agent runs the
object detection on the selected HR subtiles. Conditioned
on aji , it observes HR subtiles if necessary and produces
v̂ji , a L-dimensional classwise object counts vector. We find
the object counts with our adaptive framework using a pre-
trained object detector fd (parameterized by θd) as:

v̂j,ki =

{
fd(h

j,k
i ) if aj,ki = 1

0 else
(1)

Then, we compute the tile level object counts as v̂ji =∑S
k=1 v̂

j,k
i . Finally, we define our overall cost function J

as:
max
θp

J(θp, θd) = Ep[R(aji , v̂
j
i ,v

j
i )], (2)

where the reward depends on aji , v̂
j
i , v

j
i . Our goal is to

learn the parameters θp given a pre-trained object detector
θd to maximize the objective being a function of the reward
function.

The Reward Function. The desired outcome from our
adaptive strategy is to reduce the image acquisition cost
drastically by sampling smaller subset of tiles. Taking this
into account, we design a dual reward function that encour-
ages dropping as many subtiles as possible while success-
fully approximating the classwise object counts. We define
R as follows:

R = Racc(v̂
j
i ,v

j
i ) +Rcost(a

j
i ) (3)

Racc = −||vji − v̂ji ||1 (4)

Rcost = λ(1− ||aji ||1/S) (5)
where Racc is object counts approximation accuracy and
Rcost represents the image acquisition cost with λ as its
coefficient. The Racc term encourages acquiring a subtile

when the counts difference between the object counts from
fixed HR subtile sampling policy and the adaptive policy is
positive. We increase the reward linearly with the smaller
number of acquired subtiles for the cost component.

Modeling and Optimization of the Policy
Network

In the previous section, in high level we formulated the task
of efficient HR subtile selection as a two step episodic MDP.
In this section, we model how to learn the policy distribution
for subtile sampling.

Modeling the Policy Network. In this study, we have
T = 1156 number of tiles as we have a 34×34 grid of im-
ages. In this case, each grid consists of 2000×2000 pixels.
As mentioned in the previous section, we divide each tile
into S=4 subtiles of 1000×1000 pixels each (higher values
of S led to unstable training with higher variance and less
sparse selections). In this study, similar to (Uzkent, Yeh,
and Ermon 2020) we model the action likelihood function
of the policy network, fp, using the product of bernoulli dis-
tributions as:

π(aji |l
j
i ; θp) =

S∏
k=1

(sj,ki )a
j,k
i (1− sj,ki )(1−a

j,k
i ) (6)

sji = fp(l
j
i ; θp) (7)

We use a sigmoid function to transform logits to probabilis-
tic values, sj,ki ∈ [0, 1].

Optimization of the Policy Network. The previously
defined objective function as shown in Eq. 2 is not differ-
entiable w.r.t the policy network parameters, θp, because ac-
quistion actions are discrete. To overcome this, we train us-
ing Policy Gradient (Sutton and Barto 2018). Our final ob-
jective function as shown below includes the reward func-
tion as well as action likelihood distribution which can be
differentiated w.r.t θp.

∇θpJ = E
[
R(aji , v̂

j
i ,v

j
i )∇θp log πθp(a

j
i |l
j
i )
]
, (8)

Our objective function relies on mini-batch Monte-Carlo
sampling to approximate the expectation. Especially, in sce-
narios where we can not afford large mini-batches, we can
have highly oscillating expectations which results in large
variance. As this can de-stabilize the optimization, we use
the self-critical baseline (Rennie et al. 2017), A, to reduce
the variance.

∇θpJ = E
[
A
∑S
k=1∇θp log(s

j,k
i aj,ki + (1− sj,ki )(1− aj,ki ))

]
(9)

A(aji ,a
′j
i ) = R(aji , v̂

j
i ,v

j
i )−R(a

′j
i , v̂

′j
i ,v

j
i ) (10)

where a′ji represents the baseline action vector. To get a′ji ,
we use the most likely action vector proposed by the policy
network: i.e., a′j,ki = 1 if sj,ki > 0.5 and a′j,ki = 0 other-
wise. Finally, in this study we use temperature scaling (Sut-
ton and Barto 2018) to adjust exploration/exploitation trade-
off during optimization time as

sj,ki = αsj,ki + (1− α)(1− sj,ki ). (11)
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Setting α to a large value results in sampling from the
learned policy whereas the small values lead to sampling
from random policy. See appendix for the pseudocode and
implementation details.

Experiments
Training and Testing the Policy Network on xView
Our goal is to learn policies to reduce the dependency on HR
images in approximating object counts in a geocluster while
successfully predicting the downstream index (poverty pre-
diction). Since our downstream dataset (Uganda) does not
contain object bounding boxes, it is not possible to assess
how well we approximate true object counts. To achieve
this, we train our policy network on the xView dataset where
our object detector is trained on. We use 2000 × 2000 px
images and their corresponding 224 × 224 px LR images
to train the policy network on each point. As proposed ear-
lier, the action space has 4 units representing the top left,
top right, bottom left, and bottom right part (1000 × 1000
px) of the full area. The detector is only run on the part cho-
sen by the policy network. We train the policy network on
1249 points and test it on 200 points and show the results in
Table 1.

Our policy network uses 42.3% HR images while ap-
proximating the fixed approach in mean Average Precision
(mAP) and mean Average Recall (mAR) metrics (Redmon
and Farhadi 2018). This results indicate that the policy net-
work learns to successfully choose regions where there are
objects of interest and eliminate the regions with no objects
of interest. See the Appendix for more details.

mAP mAR HR Run-time
No Dropping 24.3% 42.5% 100.0% 2890 ms
RL Method 26.3% 41.1% 42.3% 1510 ms

Table 1: Results on the xView test set.

Testing the Policy Network on Poverty Prediction
Previously, we trained and tested the policy network to quan-
tify how well we approximate the true object counts. In
this section, we train and test the policy network on Uganda
dataset where we have only cluster-level poverty labels.

Poverty Estimation. Previous work (Ayush et al. 2020)
exhaustively performed object detection on all the HR tiles
representing a cluster i to obtain T L-dimensional vectors,
vi = {vji }Tj=1, which are then aggregated into a single
L-dimensional categorical feature vector, mi, by summing
over the tiles i.e. mi =

∑T
j=1 v

j
i . This was subsequently

used in a regression model to predict poverty score for clus-
ter i. Using our adaptive method, we obtain m̂i =

∑T
j=1 v̂

j
i ,

which is an approximate classwise counts vector for clus-
ter i. Following (Ayush et al. 2020), we consider Gradient
Boosting Decision Trees as the regression model to estimate
the poverty index, yi, given the cluster level categorical fea-
ture vector (classwise object counts), mi or m̂i.

Training and Evaluation. We have N=320 clusters in
the survey. We divide the dataset into a 80%-20% train-test
split. We train a GBDT model using object counts features
(mi) based on all HR tiles of the clusters in the training set.
We use the clusters in the training set to train the policy net-
work for adaptive tile selection. The trained policy network
is then used to acquire informative HR tiles for each test
cluster i.e for a test cluster i, the policy network selects HR
tiles (subsequently used to obtain m̂i) conditioned on low-
resolution input representing the cluster. The obtained m̂i

is then passed through the trained GBDT model to get the
poverty score yi. See appendix for more details. To evalu-
ate the models, we use Pearson’s r2 to quantify the model
performance. Invariance under seperate changes in scale be-
tween two variables allows Pearson’s r2 to provide insights
into the ability of the model at distinguishing poverty levels.
We also report mean squared error (MSE) and Explained
Variance (Rosenthal and Rosenthal 2011). Explained vari-
ance measures the discrepancy between a model and actual
data. Higher explained variance indicates a stronger strength
of association thus meaning better predictions.

Baselines and State-of-the-Art Models. We compare
our method with the following: (a) No Patch Dropping,
where we simply use all the HR tiles in Hi to get the class-
wise object counts features (same as (Ayush et al. 2020)),
(b) Fixed Policy-X samples X% HR tiles from the center
of a cluster, (c) Random Policy-X samples X% HR tiles
randomly from a cluster, (d) Stochastic Policy-X samples
X% HR tiles where the survival likelihood of a tile decays
w.r.t the euclidean distance from the cluster center, (f) Green
Tiles, where we compute the average green channel value
for a low-res tile and select bottom K tiles for HR acquisi-
tion with least average green channel value, where K is the
number of tiles selected by the policy network for a partic-
ular cluster, (g) Counts Prediction, where we train a CNN
(Resnet-50 backbone) to regress object counts given low-res
tile as input. We find that the object counts in a tile vary from
0-500. Instead of regressing directly on raw object counts,
we create 100 bins such that a tile with counts between 5i-
(5i+1) has label 5i+2.5 (e.g. a tile with counts 0-5 has label
2.5, 5-10 has label 7.5 and so on). We use this network to
select top K HR tiles based on predicted object counts, (h)
Settlement Layer, where we select HR tiles based on their
population density. We used the HR settlement layer maps1

and selected topK tiles based on population density, and (e)
Nightlights, where we use Nightlight Images (48 × 48 px)
representing the clusters in Uganda and sample only those
HR tiles which have non-zero nighttime light intensities.

Additionally, since Sentinel-2 imagery is freely available,
we perform a comparative analysis of the effect of season on
the ability of the policy network at approximating classwise
object counts. We thus acquired two sets of low-resolution
imagery, one from dry-season (Dec - Feb) in Uganda and
other from wet season (March-May, Sept-Nov) correspond-
ing to the survey year. Seasonality is likely highly relevant in
our rural setting, where crops are grown during the wet sea-

1https://research.fb.com/downloads/high-resolution-
settlement-layer-hrsl/
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No Dropping Fixed-18 Random-25 Stochastic-25 Green Counts Pred. Sett. Layer Nightlights Ours (Dry sea.) Ours (Wet sea.)

r2 0.53 0.43 0.34 0.26 0.33 0.49 0.45 0.45 0.51 ± 0.01 0.61 ± 0.01
MSE 1.86 2.20 2.67 3.13 2.56 1.91 2.16 2.17 1.89 ± 0.02 1.46 ± 0.02
Explained Variance 0.54 0.43 0.33 0.27 0.36 0.48 0.46 0.45 0.50 ± 0.01 0.63 ± 0.02
HR Acquisition. 1.0 0.18 0.25 0.25 0.19 0.19 0.19 0.12 0.19 0.19

Table 2: LSMS poverty score prediction results in Pearson’s r2 (and two other metrics) for various methods. HR Acquisition
represents the fraction of HR tiles acquired. We report the mean and std of our RL model across 7 runs with different seeds.

(a) (b) (c) (d) (e)

Figure 2: (a) High-Resolution Satellite Imagery representing a cluster. (b) Sentinel-2 Imagery of the cluster from dry season.
(c) Corresponding HR acquisitions when dry-season imagery is input to the Policy Network. (d) Sentinel-2 Imagery of the
cluster from wet season. (e) Corresponding HR acquisitions when wet-season imagery is input to the Policy Network.

Figure 3: Number of objects missed on average across clusters for each class. Colored bars in each subplot from left-right are:
Ours (wet season), Ours (dry season), Counts Pred., Nightlight, Settlement, Fixed-18, Random-25, Green Tiles, Stochastic-25.

(a) No Dropping (b) Nightlights (c) Ours (Dry Season) (d) Ours (Wet Season)

Figure 4: LSMS poverty score regression results of GBDT.

son and much related market activity is highly seasonal. We
hypothesize that greenery in low-resolution imagery during
wet season will better indicate which patches might contain
useful economic information.

Quantitative Analysis. Fig. 3 compares the ability
of various methods at approximating the classwise object
counts. It shows the number of objects missed on an average
across clusters for each parent class, where we can see that
our method (using wet season imagery) can better approxi-
mate the “true object counts” (we use object detector predic-
tions on all the HR tiles as a proxy for true values) compared

to baselines and our method (using dry season imagery). Ta-
ble 2 shows the results of poverty prediction in Uganda. Our
model (wet season) achieves 0.61 r2 and substantially out-
performs the published state-of-the-art results (Ayush et al.
2020) (0.53 r2) while using around 80% fewer HR images.

It is interesting that we can outperform No Dropping
method when sampling only 20% of HR tiles. Qualitatively,
we observed that it is due to false positives proposed by the
object detector on the tiles with no true objects of interest in
it. Unfortunately, since we do not have ground truth bound-
ing boxes for Uganda, we can not quantify it. However,

17



(a) No Dropping (b) Ours (Dry Season) (c) Ours (Wet Season)

Figure 5: Summary of the effects of all features using SHAP, showing the distribution of the impacts each feature has on the
model output. Color represents the feature value (red high, blue low).

our experiments on xView (Table 1) show that our approach
achieves higher AP than the No Dropping approach, sug-
gesting our approach is able to remove false positives.

In comparison to the baselines relying on external data
layers such as settlement and nightlights, our method
achieves around 0.16 higher r2. This is because such maps
assume that objects are located in the tiles with large night-
light intensity or settlement index, however, some objects,
i.e trucks, passenger vehicles etc., do not necessarily exist
in these areas. Additionally, our approach outperforms the
counts prediction model by 0.12 in r2. This might be be-
cause the counts predictor is trained to directly regress very
noisy object counts thus making it a difficult task.

Next, a scatter plot of GBDT LSMS poverty score predic-
tions v.s. ground truth is shown in Fig. 4. It can be seen that
the GBDT model can maintain explainability of a large frac-
tion of the variance based on object counts identified from
the sampled HR tiles using our method, compared to (Ayush
et al. 2020) that exhaustively uses all HR tiles.

Performance/Sampling Trade-off. We analyze the
trade-off between accuracy (regression performance) and
HR sampling rate controlled by the hyperparameter λ in the
reward Eq. 5. We intentionally change λ to quantify the ef-
fect on the policy network. As seen in Fig. 6, the policy
network samples less HR tiles (a 0.09 fraction) when we in-
crease λ to 2.0 and the r2 goes down to 0.48. On the other
hand, when we set λ to 1.0, we get optimal results in terms
of r2, while acquiring only a 0.18 fraction of HR imagery.

Cost saving. Current pricing for high-resolution (30cm)
RGB imagery is 10-20$ per km2. Given that Uganda is 240k
km2 in land area, creating a poverty map using our method
would save roughly $2.9 million if imagery costs $15 per

Figure 6: Trade-off between Pearson’s r2 and coefficent of
image acquisition cost (λ). Text accompanying the points
represents HR acquisition fraction.

km2. This represents a potentially large cost saving if our
approach is scaled at country or continent scale.

Analysis based on Season. Presence of greenery during
wet season allows the policy network to better identify the
informative regions containing objects, compared to when
trained with dry season Sentinel-2 imagery as input. Fig. 2
presents an example cluster, where it is seen that training the
policy network using wet season imagery better assists the
network at sampling informative tiles (see Appendix).

Impact on Interpretability. An important contribution
of (Ayush et al. 2020) was to introduce model interpretabil-
ity allowing successful application of such methods in many
policy domains. They use Tree SHAP (Tree SHapley Addi-
tive exPlanations) (Lundberg and Lee 2017), a game theo-
retic approach to explain the output of tree-based models, to
explain the effect of individual features on poverty predic-
tions. Here, we show that in addition to closely approximat-
ing the classwise object counts, our method retains the same
findings for interpretability as that of (Ayush et al. 2020).
Fig. 5 shows the plots of SHAP values of every feature
for every cluster for three different methods. The features
are sorted by the sum of SHAP value magnitudes over all
samples. It can be seen that our method still maintains that
#Trucks tends to have a higher impact on the model’s output.
We also observe that ordering of features in terms of SHAP
values is fairly similar between the No Dropping approach
(Ayush et al. 2020) and our method.

Conclusion
In this study, we increase the efficiency of recent methods
of predicting consumption expenditure using object counts
from high-resolution satellite images. To achieve this, we
proposed a novel reinforcement learning setup to condition-
ally acquire high-resolution tiles. We designed a cost-aware
reward function to reflect real-world constraints – i.e. bud-
get and GPU availability – and then trained a policy net-
work to approximate object counts in a given location as
closely as possible given these constraints. We show that
our approach reduces the number of high-resolution images
needed by 80% while improving downstream poverty esti-
mation performance relative to multiple other approaches,
including a method that exhaustively uses all high-resolution
images from a location. Future work includes application of
our adaptive method to other sustainability-related computer
vision tasks using high-resolution images at large scale.
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A range of organizations, from governments to non-
governmental organizations to private sector enterprise, de-
pend on accurate local-level information of economic well-
being of populations for their decision-making. Such in-
formation is expensive to collect using traditional ground-
based survey operations, and as a result it rarely gets col-
lected: (Yeh et al. 2020) calculate that for most countries
in Africa, at least five years pass between nationally repre-
sentative household livelihood surveys, and the number of
villages covered in these surveys is incredibly small rela-
tive to the population size. The result is an environment of
data scarcity in which governments and NGOs have diffi-
culty identifying those most in need of assistance or mea-
suring the impact of the assistance they do deliver.

Our approach offers an accurate, inexpensive, and scal-
able method for plugging this data gap. It uses only anon-
myized public data in training, and these data are thought to
be a true random and unbiased sample of the population (this
is the explict goal of the LSMS survey team). Thus our ap-
proach should deliver unbiased estimates of local-level well-
being, and does so without having to use any individually-
identifying information.

One possible concern of our approach is that better in-
formation on where the poor are could lead to them being
denied certain services due to their (now-known) low in-
come levels. We believe that this is unlikely for multiple
reasons. First, the poor are already severely underserved by
private markets in much of the developing world, with (e.g.)
access to bank loans among the poor typically in the low
single digits (Suri and Jack 2016). For these populations,
better data on their location and livelihoods is expected to
improve rather than diminish access to private sector ser-
vices. Similarly, due to lack of data, governments have diffi-
culty targeting existing anti-poverty programs, meaning that
resources that should be going to poorer populations some-
times flow to wealthier populations; for governments that
do target, ground-based survey efforts regularly cost tens
of millions of dollars (Banerjee, Niehaus, and Suri 2019).
More accurate data on the location and poverty levels of
populations should increase rather than decrease resources
flowing to vulnerable populations.
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