
TreeCaps: Tree-Based Capsule Networks for Source Code Processing

Nghi D. Q. Bui 1 3 Yijun Yu 1 2 Lingxiao Jiang 3

1 Trustworthy Open-Source Software Engineering Lab, Huawei Research Centre, Ireland
2 School of Computing & Communications, The Open University, UK

3 School of Computing & Information Systems, Singapore Management University
nghi.bui@huawei.com , y.yu@open.ac.uk, lxjiang@smu.edu.sg

Abstract

Recently program learning techniques have been proposed
to process source code based on syntactical structures (e.g.,
abstract syntax trees) and/or semantic information (e.g., de-
pendency graphs). While graphs may be better than trees
at capturing code semantics, constructing the graphs from
code inputs through the semantic analysis of multiple view-
points can lead to inaccurate noises for a specific software
engineering task. Compared to graphs, syntax trees are more
precisely defined on the grammar and easier to parse; un-
fortunately, previous tree-based learning techniques have not
been able to learn semantic information from trees to achieve
better accuracy than graph-based techniques. We have pro-
posed a new learning technique, named TreeCaps, by fus-
ing together capsule networks with tree-based convolutional
neural networks to achieve a learning accuracy higher than
some existing graph-based techniques while it is based only
on trees. TreeCaps introduces novel variable-to-static routing
algorithms into the capsule networks to compensate for the
loss of previous routing algorithms. Aside from accuracy, we
also find that TreeCaps is the most robust to withstand those
semantic-preserving program transformations that change
code syntax without modifying the semantics. Evaluated on
a large number of Java and C/C++ programs, TreeCaps mod-
els outperform prior deep learning models of program source
code, in terms of both accuracy and robustness for program
comprehension tasks such as code functionality classification
and function name prediction. Our implementation is publicly
available at: https://github.com/bdqnghi/treecaps.

Introduction
Software developers often spend the majority of their time
in navigating existing program code bases to understand the
functionality of existing source code before implementing
new features or fixing bugs (Xia et al. 2018; Britton et al.
2012). Learning a model of programs has been found useful
for their tasks such as classifying the functionality of pro-
grams (Nix and Zhang 2017; Dahl et al. 2013; Pascanu et al.
2015; Rastogi, Chen, and Jiang 2013), predicting bugs (Yang
et al. 2015; Li et al. 2017, 2018; Zhou et al. 2019), translat-
ing programs (Chen, Liu, and Song 2018; Gu et al. 2017;
Bui, Jiang, and Yu 2018; Bui, Yu, and Jiang 2019; Nghi, Yu,
and Jiang 2019), etc.

It is common that adding semantic descriptions (e.g., via
code comments, visualizing code control flow graphs, etc.)

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

may enhance human understanding of programs and ease
machine learning. With the help of static code dependency
analysis techniques (Nielson, Nielson, and Hankin 1999),
for example, Gated Graph Neural Networks (GGNN) (Li
et al. 2016; Fernandes, Allamanis, and Brockschmidt 2019;
Allamanis, Brockschmidt, and Khademi 2018) learn code
semantics via graphs where edges are added between the
code syntax tree nodes to indicate various kinds of depen-
dencies between the nodes. However, adding such edges re-
quires extra processing of ASTs and may introduce noise for
different learning tasks since there is no consensus on which
types of edges are needed for which tasks.

There also exist deep learning techniques that process
code syntax trees or abstract syntax trees (ASTs) (Mou
et al. 2016; Alon et al. 2019b; Zhang et al. 2019). How-
ever, they are limited in how they represent and learn ASTs
although ASTs entail all code semantics. Tree-Based Con-
volutional Neural Network (TBCNN) (Mou et al. 2016)
shares the same computational principle as GGNN, i.e.,
information is accumulated from nearby children to par-
ent nodes only, which limits the number of iterations for
a node to accumulate information from its distant descen-
dants. Code2vec (Alon et al. 2019b) decomposes trees into
a bag of path-contexts for learning; ASTNN (Zhang et al.
2019) splits big trees for programs and functions into smaller
subtrees for individual statements. They adapt recurrent neu-
ral network models to learn the path-contexts or flattened
subtrees, but still likely miss code dependency information
that is not represented in the decomposed paths and subtrees.

It is desirable to learn code models via ASTs because
trees can be more efficiently and precisely constructed from
code than graphs without the need of semantic analysis that
may be expensive or inaccurate. Towards this goal, this pa-
per proposes a novel architecture called TreeCaps by fus-
ing capsule networks (Sabour, Frosst, and Hinton 2017) with
TBCNN to build code models from trees, as a complement
to graph-based models. TreeCaps first adapts TBCNN to
take in trees and extract (local) node features with its convo-
lution capability and converts the node features into capsules
in its Primary Variable Capsule (PVC) layer where the num-
ber of capsules can change for different tree inputs. It then
adapts CapsNet by introducing two methods to route the dy-
namic number of capsules in PVC to a static number of cap-
sules in its Secondary Capsule (SC) layer. Our first method
inherits the dynamic routing algorithm (Sabour, Frosst, and
Hinton 2017) for static numbers of capsules; it shares a

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

30

global transformation matrix across every pair of capsules
between the layers (Yang et al. 2018; Zhang and Chen 2019).
Our second method is a novel Variable-to-Static (VTS) rout-
ing algorithm that selects the capsules with the most promi-
nent outputs in the PVC layer and squeezes them into a fixed
set of capsules. The method utilizes the common intuition
that code semantics can often be determined by considering
only a portion of code elements. Further, we apply a dy-
namic routing algorithm from the capsules in the SC layer
to the final Code Capsule (CC) layer whose number of cap-
sules is fixed according to a specific learning task, to get the
vector embeddings of the trees for the task. Compared to the
max-pooling method to combine node features in TBCNN,
the pipeline of our routing methods (PVC→ SC→ CC) can
learn more complex combinations of AST features.

Across codebases in C/C++ and Java with respect to com-
monly compared program comprehension tasks such as code
functionality classification and function name prediction,
our empirical evaluation shows that TreeCaps achieves bet-
ter classification accuracy and better F1 score in predic-
tion compared to other code learning techniques such as
Code2vec, Code2seq, ASTNN, TBCNN, GGNN, GREAT
and GNN-FiLM. We have also applied three types of
semantic-preserving transformations (Rabin et al. 2020;
Zhang et al. 2020; Wang and Su 2019) that transform pro-
grams into syntactically different but semantically equiva-
lent code to attack the models. Evaluations also show that
our TreeCaps models are the most robust, able to preserve its
predictions for transformed programs more than other learn-
ing techniques.

Related Work
There has been huge interest in applying deep learning
techniques for software engineering tasks such as program
functionality classification (Mou et al. 2016; Zhang et al.
2019), function name prediction (Fernandes, Allamanis,
and Brockschmidt 2019), bug localization (Pradel and Sen
2018; Gupta, Kanade, and Shevade 2019), code clone de-
tection (Zhang et al. 2019), program refactoring (Hu et al.
2018), program translation (Chen, Liu, and Song 2018),
and code synthesis (Brockschmidt et al. 2019). A model of
source code can often be learned in two steps: (1) convert
source code into suitable intermediate representations, and
(2) design learning networks to process the representations.

Mou et al. (2016) parse code into ASTs and design Tree-
Based Convolutional Neural Networks (TBCNNs) as the
learning networks. Allamanis, Brockschmidt, and Khademi
(2018) extend ASTs to graphs by adding a variety of code
dependencies as edges among tree nodes, intended to rep-
resent code semantics, and apply Gated Graph Neural Net-
works (GGNN) (Li et al. 2016) to learn the graphs, which
indeed enhances the performance of TBCNN (Mou et al.
2016) for certain tasks. GNN-FiLM (Brockschmidt 2019)
is also a graph-based model that explores by applying
feature-wise linear modulation (FiLM) on Graph Neural
Network (GNN). Hellendoorn et al. (2019) proposes a hy-
brid approach to combine sequence-based models (Recur-
rent Neural Networks, Transformer) and graph-based mod-
els (GNNs) into a model called Graph Relational Embed-

ding Attention Transformer (GREAT) to address the major
drawback of GGNN that can only capture local information
of the source code. While the graph-based model extracts lo-
cal features of source code, the sequence-based model cap-
tures global features, their combination improves the perfor-
mance of GREAT over GNNs.

Code2vec (Alon et al. 2019b), Code2seq (Alon et al.
2019a), and ASTNN (Zhang et al. 2019) are designed based
on splitting ASTs into smaller ones, either as a bag of
path-contexts or as flattened subtrees representing individ-
ual statements, and use various kinds of Recurrent Neural
Network (RNN) to learn such code representations. Inst2vec
(Ben-Nun, Jakobovits, and Hoefler 2018) uses the RNN to
model the Intermediate Representation of the binary code
that is independent of the source programming language.

Capsule networks (CapsNet) (Sabour, Frosst, and Hinton
2017; Hinton, Sabour, and Frosst 2018) use dynamic routing
to model spatial and hierarchical relations among objects in
an image. The techniques have been successfully applied to
image processing tasks such as image classification, char-
acter recognition, and text classification (Jayasundara et al.
2019; Rajasegaran et al. 2019; Yang et al. 2018; Li et al.
2019). However, none of the studies has considered complex
tree data as input, which is however natural for programs.
Capsule Graph Neural Networks (Zhang and Chen 2019)
proposed to classify biological and social network graphs
does not handle tree- or graph-based code syntax. To the best
of our knowledge, we are the first to adapt capsule networks
for program source code processing to learn code models on
syntax trees directly, without the need for extra static pro-
gram semantic analysis techniques that may be expensive or
introduce inaccuracies (Nielson, Nielson, and Hankin 1999).

Tree-based Capsule Networks
An overview of the TreeCaps architecture is shown in Fig. 1.
The steps of our technique are as follows:
• The code snippet in the training data is parsed into an AST

and vectorized. The node vectors are fed into the TBCNN
to extract node features.

• The node features will be used as the input for the Primary
Variable Capsule (PVC) layer to group the tensor outputs
of the TBCNN layers into a set of capsules. The number
of capsules in this layer is dynamic

• The capsules in the PVC layer are then routed and reduced
to a fixed number of capsules in the Secondary Capsule
(SC) layer. The SC layer is to combine the capsules in the
PVC layer into a new set of capsules, in which the number
of capsules in this layer is static.

• The outputs of the SC layer are routed to the final Code
Capsule (CC) layer where capsules can be seen as the vec-
tor representations for the input code, and can be trained
with respect to various code comprehension tasks, such as
code functionality classification and function name pre-
diction.

Tree-based Convolutional Neural Networks
We briefly introduce the Tree-based Convolutional Neural
Networks (TBCNN, (Mou et al. 2016)) for processing tree-

31

Figure 1: Source codes are parsed, vectorized and fed into the TBCNN to extract node features, then the node features are
combined through the TreeCaps network.

structured inputs used in TreeCaps.
A tree T = (V,E,X) consists of a set of nodes V , a

set of node features X , and a set of edges E. An edge in a
tree connects a node and its children. Each node in an AST
also contains its corresponding texts (or tokens) and its type
(e.g., operator types, statement types, function types, etc.)
from the underlying code. Initially, we annotate each node
v ∈ V with a D-dimensional real-valued vector xv ∈ RD

representing the features of the node. We associate every
node v with a hidden state vector hv , initialized from the fea-
ture embedding xv , which can be computed from a simple
concatenation of the embeddings of its texts and type (Alla-
manis, Brockschmidt, and Khademi 2018). The embedding
matrices for the texts and types can be learned in the whole
model training pipeline.

In TBCNN, a convolution window over an AST is em-
ulated via a binary tree, where the weight matrix for each
node is a weighted sum of three fixed matrices Wt, Wl,
Wr ∈ RD×D (for the “top”, “left”, and “right” node re-
spectively) and a bias term b ∈ RD. Hence, for a convo-
lution window of depth d in the original AST containing
K = 2d − 1 nodes (including the parent node) with vectors
[x1, ...,xK], where xi ∈ RD, the convolutional output y of
the window is defined as follows: y = tanh(

∑K
i=1[η

t
iW

t+
ηliW

l + ηriW
r]xi + b), where ηti , η

l
i, η

r
i are weights cal-

culated corresponding to the depth and the position of the
nodes.

One can see this as a way to learn the position of a node
inside a tree. A TBCNN model usually stacks m such con-
volutional layers together to generate the final node embed-
dings, where the output at layer m will be used as the input
for the next, i.e. the m + 1-th layer. Each layer has its own
Wt, Wl, Wr ∈ RD×D and the bias term b ∈ RD with
different initialization.

The Primary Variable Capsule Layer (PVC)
The PVC layer is to group the outputs of the convolutional
layers into the set of capsules for the routing purpose. Each
convolutional layer will output a tensor with shape |V | ×D,
where |V | is the number of nodes in the AST, D is the
dimension size of the node embedding. There are m such
TBCNN layers; then the outputs of such m layers will be a
tensor with shape |V | × D ×m. We set Npvc = |V | × D,
Dpvc = m so that the PVC layer will receive the input of the
shape (Npvc×Dpvc). It will go through a non-linear squash

function (Sabour, Frosst, and Hinton 2017) and get the out-
put with the same shape (Npvc×Dpvc). Each output capsule
ui from the squash function represents the probability of ex-
istence of an entity by the vector length, formally defined as:
ui =

||ci||2
||ci||2+1 ·

ci

||ci|| .. Hence, the output of the PVC layer is
Xpvc ∈ RNpvc×Dpvc .

The Secondary Capsule Layer (SC)
Because Npvc is dynamic as |V | is dynamic, one can not
route the output of the PVC layer directly into the final cap-
sule layer (similar to Sabour, Frosst, and Hinton (2017). To
address this, we propose 2 methods to combine the dynamic
number of capsules in PVC into static number of capsules in
an intermediate layer, called the Secondary Capsule layer.

Sharing Weights across Child Capsules with Dynamic
Routing (DRSW) To combine the capsules in layer l into
layer l + 1, the key is to define a set of transformation ma-
trices. Each matrix is multiplied with each of the capsule
in layer l (Sabour, Frosst, and Hinton (2017)). The matri-
ces will be learned as parameters through the end-to-end
learning process so the capsules in layer l will be combined
through matrices into the capsules in layer l + 1. Since the
number of capsules in the PVC is dynamic, a global trans-
formation matrix cannot be defined in practice with vari-
able dimensions. The solution for this problem is to defined
a shared transformation matrix Ws ∈ RNpvc×Dpvc×Dsc

across the child capsules, where Npvc is the number of cap-
sules in the PVC layer (Yang et al. 2018), Dsc is the dimen-
sion of the capsules in the SC layer, and a dynamic algorithm
routes the capsules (as summarized in Algo.1).

In Algo.1, for each capsule i in the l-th PVC layer and
each capsule j in the l+1-th SC layer, we multiply the output
of the PVC layer ui by the shared transformation matrix Ws

to produce the prediction vectors ûj|i = Wsui. The “pre-
diction vectors” are responsible for predicting the strength
of each capsule in the PVC layer, then a weighted sum over
all “prediction vectors” ûj|i will produce the capsule j in the
SC layer. The trainable shared transformation matrix learns
the part-whole relationships between the primary capsules
and secondary capsules, while effectively transforms ui’s
into the same dimensionality as vj where each vj denotes
the capsule output of the SC layer. The coupling coefficients
βij between capsule i and all the capsules in the SC layer
sum to 1 and are determined by a “routing softmax” whose

32

initial logits αij are the log prior probabilities that capsule i
in PVC layer should be coupled to capsule j in the SC layer.
Then we use r iterations to refine βij based on the agree-
ments between the prediction vectors ûj|i and the secondary
capsule outputs vj where vj = squash(

∑
i βijûj|i).

Algorithm 1 Dynamic Routing
1: procedure ROUTING(ûj|i, r, l)
2: Initialize ∀i ∈ [1, l], ∀j ∈ [1, l + 1], αij ← 0
3: for r iterations do
4: ∀i ∈ [1, l], βi ← softmax(αi)
5: ∀j ∈ [1, l + 1],vj ← squash(

∑
i βijûj|i)

6: ∀i ∈ [1, l], ∀j ∈ [1, l + 1], αij ← αij + ûj|i · vj

7: end for
8: return vj

9: end procedure

Variable-to-Static Routing (VTS) Sharing the transfor-
mation matrix reduces the ability to learn different features
because each pair of capsules is supposed to have its trans-
formation matrix. Due to this limitation, we offer the sec-
ond solution to route the variable number of capsules in the
PVC layer. It is based on an observation of source code that,
in practice, not every node of the AST contributes towards
a source code learning task. Often, source code consists of
non-essential entities, and only a portion of all entities deter-
mine the code class. Therefore, we propose a novel variable-
to-static capsule routing algorithm, summarized in Algo. 2.
The intuition of this algorithm is that we squeeze the vari-
able number of capsules in the PVC layer to a static number
of capsules by choosing only the most important capsules in
the PVC layer. The major difference between the VTS algo-
rithm and the DRSW algorithm is that the DRSW needs to
produce prediction vectors by multiplying the capsule out-
puts in PVC layer with the shared transformation matrix,
and then the prediction vectors will be combined to produce
the capsules for SC layer; whereas in the VTS, the capsule
outputs in the PVC layer are selected and the prominent ones
are used to initialize the capsules in SC layer directly.

We initialize the outputs of the SC layer with the outputs
of the a capsules with the highestL2 norms in the PVC layer.
Hence, the outputs of the PVC layer, [u1, ...,uNpvc], are first
ordered by their L2 norms to obtain Usorted, and then the
first a vectors of Usorted are assigned as vj , j ≤ a.

Since the probability of the existence of an entity is de-
noted by the length of the capsule output vector (L2 norm),
we only consider the entities with the highest existence prob-
abilities for initialization (in other words, highest activation)
following the aforementioned intuition. It should be noted
that the capsules with the a-highest norms are used only for
the initialization; the actual outputs of the static capsules in
the SC layer are determined by iterative runs of the variable-
to-static routing algorithm. It is the capsules with the most
prominent outputs along with the capsules of the highest
vector similarities to them that get routed to the next layer. In
this way, rare capsules, when they have prominent outputs,
are still preserved and routed to the next layer.

Next, we route all b capsules in the PVC layer based
on the similarity among them and the static capsule layer
outputs. We initialize the routing coefficients as αij = 0,

Algorithm 2 Variable-to-Static Capsule Routing
1: procedure ROUTING(ui, r, a, b)
2: Usorted ← sort([u1, ...,ub])
3: Initialize vj : ∀i, j ≤ a,vj ← Usorted[i]
4: Initialize αij : ∀j ∈ [1, a], ∀i ∈ [1, b], αij ← 0
5: for r iterations do
6: ∀j ∈ [1, a], ∀i ∈ [1, b], fij ← ui · vj

7: ∀j ∈ [1, a], ∀i ∈ [1, b], αij ← αij + fij
8: ∀i ∈ [1, b],βi ← Softmax(αi)
9: ∀j ∈ [1, a],vj ← Squash(

∑
iβijui)

10: end for
11: return vj

12: end procedure

equally to the b capsules in the PVC layer. Subsequently,
they are iteratively refined based on the agreement between
the current SC layer outputs vj and the PVC layer outputs
ui. The agreement, in this case, is measured by the dot prod-
uct, fij ← ui · vj , and the routing coefficients are adjusted
with fij accordingly. If a capsule u in the PVC layer has
a strong agreement with a capsule j in the SC layer, then
fij will be positively large; whereas if there is strong dis-
agreement, then fij will be negatively large. Subsequently,
the sum of vectors ui is weighted by the updated βij to cal-
culate sj , which is then squashed to update vj .

The Code Capsules Layer (CC)
The CC layer outputs the vector embeddings for the code
Xcc ∈ RNcc×Dcc , where Dcc is the dimensionality of each
code capsule and Ncc is fixed with respect to a specific code
learning task. Note in the outputs of the SC layer Xsc ∈
RNsc×Dsc , Nsc is also fixed,

The following subsections explain how we set Ncc and
train the TreeCaps models for different code learning tasks.

Code (Functionality) Classification This task is to, given
a piece of code, classify the functionality class it belongs
to. We want Ncc capsules in the CC layer, each of which
corresponds to a functionality class of code that appeared in
the training data. As such, we let Ncc = κ, where κ is the
number of functionality classes. We calculate the probabil-
ity of the existence of each class by obtaining L2 norm of
each capsule output vector. We use the margin loss (Sabour,
Frosst, and Hinton 2017) as the loss function during training.

Function (Method) Name Prediction This task is to,
given a piece of code (without its function header), predict a
meaningful name that reflects the functionality of the code.
For this task, following Alon et al. (2019b)’s prediction ap-
proach, we let Ncc of the CC layer be 1, and the output of
the only capsule represent the vector for the given piece of
code. In this case, the output capsules of the CC layer has
the shape of Xcc ∈ R1×Dcc , which is also the code vector
that represents for the code snippet C, denoted as vC . The
vector embeddings of the function are learn-able parameters,
formally defined as functions vocab ∈ R|L|×Dcc , where L
is the set of function names found in the training corpus.
The embedding of functioni is row i of functions vocab.
The predicted distribution of the model q (l) is computed as
the (softmax-normalized) dot product between the context

33

vector vC and each of the function embeddings: for li ∈ L :

q (li) =
exp(vT

C ·functions vocabi)∑
lj∈L exp(vT

C
·functions vocabj)

, where q (li) is the nor-

malized dot product between the vector of li and the code
vector vC , i.e., the probability that a function name li should
be assigned to the given code snippet C. We choose l that
gives the maximum probability for the snippet vC . For train-
ing the network, we use cross-entropy as the loss function.

Empirical Evaluation
General Settings. We use fAST, an efficient parser (Yu
2019) to parse code into ASTs in a binary format equiva-
lent to SrcML (Collard, Decker, and Maletic 2013);1 we also
use another parser PycParser2 used by TBCNN and ASTNN
for a fairer comparison and evaluate the effects of parser
choices. For the parameters in our TBCNN layer, we fol-
low Mou et al. (2016) to set the size of type embeddings to
128, the size of text embeddings to 128, and the number of
convolutional steps m to 8. For the capsule layers, we set
Nsc = 100, Dsc = 16, Dcc = 16 and routing iterations r
= 3. We use Tensorflow libraries to implement TreeCaps. To
train the models, we use the Rectified Adam (RAdam) opti-
mizer (Liu et al. 2019) with an initial learning rate of 0.001
subjected to decay on an Nvidia Tesla P100 GPU.

Baselines We choose a few recent code modeling tech-
niques to compare with TreeCaps: Code2vec (Alon et al.
2019b), Code2seq (Alon et al. 2019a), TBCNN (Mou et al.
2016), ASTNN (Zhang et al. 2019), GGNN (Allamanis,
Brockschmidt, and Khademi 2018), GREAT (Hellendoorn
et al. 2019). We also include a token-based baseline by treat-
ing source code as sequences of tokens and using a neu-
ral machine translation (NMT) baseline, which is a 2-layer
Bi-LSTM, to process the token sequences. A common set-
ting used among all these techniques is that they all utilize
both node type and token information to initialize a node in
ASTs. We set both the dimensionality of type embeddings
and text embeddings to 128. Note that we try our best to
make the baselines as strong as possible by choosing the
hyper-parameters above as the “optimal settings” according
to their papers or code.3

We use different baselines for the two tasks since
not all the models were designed for both tasks. For
the graph-based models (GGNN, GREAT), there is no
publicly available tool to generate the needed graph
representations of code by adding semantic edges into
the ASTs as presented in (Allamanis, Brockschmidt,
and Khademi 2018), so we have implemented a tool by
ourselves to represent the code as graphs with the assis-
tance of SrcSlice and SrcML. We include as many edges

1https://www.srcml.org/, 400+ node types for multiple pro-
gramming languages. We chose SrcML because (1) it pro-
vides unified AST representations for various languages such as
C/C++/Java, and (2) it has an extension SrcSlice (https://github.
com/srcML/srcSlice) to help identify dependencies and construct
the graphs needed for GGNN, which is an evaluation baseline.

2https://github.com/eliben/pycparser/, 50+ node types for C.
3The settings for each of the baselines and parameter analyses

can be looked up in the supplementary materials.

presented in (Allamanis, Brockschmidt, and Khademi
2018) as possible to ensure the graph-based baselines are
strong. The set of edges we used are: parent child,
next token, last lexical use, last write,
return to, compute from, guarded by,
guarded by negation. We also add the backward
edges for these edge types. For Code2vec, we follow the
settings suggested in their latest Code2seq paper as well
as the implementation in the official software artifacts to
reproduce their results.

Setups for Code Classification
Datasets, Metrics, and Models. We use datasets in two
different programming languages. The first Sorting Algo-
rithms (SA) dataset is from Nghi, Yu, and Jiang (2019),
which contains 10 algorithm classes of 1000 sorting pro-
grams written in Java. The second OJ dataset is from Mou
et al. (2016), which contains 52000 C programs of 104
classes. We split each dataset into training, testing, and vali-
dation sets by the ratios of 70/20/10. We use the same classi-
fication accuracy metric as Mou et al. (2016) for comparing
classification results.

We compare TreeCaps with other techniques that have
been applied to the code classification task, such as
TBCNN (Mou et al. 2016), ASTNN (Zhang et al.
2019), Code2vec (Alon et al. 2019b), GGNNs (Allamanis,
Brockschmidt, and Khademi 2018; Fernandes, Allamanis,
and Brockschmidt 2019). Since TBCNN (Mou et al. 2016)
and ASTNN (Zhang et al. 2019) use PycParser to parse code
into AST, we also compare TreeCaps with all the baselines
by using both PycParser and SrcML. We also include an ab-
lation study to measure the impact of different combinations
of node initialization and representation.

Code Classification Results. As shown in Table 1,
TreeCaps models, especially TreeCaps-VTS, have the high-
est classification accuracy when combining node type and
node token information, for both of the SA and OJ datasets.
When only node token information is used, the simpler 2-
layer Bi-LSTM models may achieve higher accuracy. The
OJ dataset also shows that the choice of a parser affects the
performance significantly. The models using PycParser all
achieve higher accuracy than the models using SrcML. This
is due to the reason that ASTs generated by PycPaser have
only around 50 node types, while SrcML has more than 400
node types, which makes it harder for the networks to learn.
Across the datasets, The TreeCaps-VTS performs consis-
tently the best in terms of the F1 measure among the base-
lines under different settings.

Setups for Function Name Prediction
Datasets, Metrics, and Models. We use the datasets from
Code2seq(Alon et al. 2019a) containing three sets of Java
programs: Java-Small (700k samples), Java-Med (4M sam-
ples), and Java-Large(16M samples). These datasets have
been split into training/testing/validation by projects. We
measure prediction performance using precision (P), recall
(R), and F1 scores over the sub-words in generated names,

34

Model SA Dataset (1000 samples) OJ Dataset (52000 samples)
Parser SrcML PycParser SrcML

Initial Info Type Token Combine Type Token Combine Type Token Combine
2-layer Bi-LSTM - 81.83 - - 83.51 - - 83.51 -

Code2vec - - 80.44 - - 86.21 - - 80.15
TBCNN 78.09 71.23 82.02 92.64 87.97 95.21 81.15 71.15 83.90
ASTNN - - 84.32 - - 98.2 - - 85.32
GGNN 82.12 74.25 83.81 - - - 85.23 72.23 85.89

Treecaps-DRSW 83.15 74.56 84.57 94.75 89.42 96.74 83.59 77.59 87.77
Treecaps-VTS 84.60 78.15 85.43 95.88 90.21 98.32 83.40 79.56 88.40

Table 1: Performance in Code Functionality Classification compared. A ‘-’ means that the model is not suited to use the relevant
node representation or the parser and thus not evaluated.

following the metrics used by Alon et al. (2019b); Fernan-
des, Allamanis, and Brockschmidt (2019). For example, a
predicted name result compute is considered to be an
exact match of the actual name computeResult; pre-
dicted compute has full precision but only 50% recall;
and predicted compute model result has full recall
but only 67% precision.

We use these baselines for the function name prediction
task: Code2vec, TBCNN, Code2seq, GGNN, the 2-layer Bi-
LSTM, and and GREAT (Hellendoorn et al. 2019), a hybrid
model mixing sequence-based and graph-based techniques.
The inputs for GREAT is graph representations of code, sim-
ilar to GGNN, and we have adapted this baseline into the
function name prediction task. We train each of the models
for 50 epochs for each of the three datasets. We also measure
the training time for each of the models.

Function Name Prediction Results. As shown in Ta-
ble 2, TreeCaps-VTS outperforms all other baselines for
most of the settings. TreeCaps-DRSW also performs well
but still worse than TreeCaps-VTS. Both TreeCaps-VTS
and TreeCaps-DRSW are better than the graph-based mod-
els (GGNN, GREAT) and path-based models (Code2seq,
Code2vec) without the need for additional code depen-
dency analysis for constructing graphs. Regarding the train-
ing time, GGNN is the longest. The training time of both
TreeCaps models is comparable to GREAT, the state-of-
the-art graph-based technique to model source code, while
TreeCaps-VTS is slightly faster.

Model Analysis
To better understand the importance of different components
of our approach, we evaluate the effect of various aspects of
the TreeCaps models. This subsection provides a robustness
analysis and a comparison between DRSW algorithm and
VTS algorithm.

Robustness of Models We measure the robustness of each
model by applying the semantically-preserving program
transformations to the Java-larges test set for the function
name prediction task. We follow Wang and Su (2019); Rabin
et al. (2020) to transform programs in three ways that change
code syntax but preserve code functionality: (1) Variable Re-
naming (VN), a refactoring transformation that renames a
variable in code, where the new name of the variable is taken
randomly from a set of variable vocabulary in the training
set; (2) Unused Statement (US), inserting an unused string
declaration to a randomly selected basic block in the code;

and (3) Permute Statement (PS), swapping two independent
statements (i.e., with no dependence) in a basic block in the
code.

The Java-large test set is thus transformed into a new test
set. We then examine if the models make the same predic-
tions for the programs after transformation as the prior pre-
dictions for the original programs. We use percentage of
predictions changed (PPC) as the metric used by (Rabin
et al. 2020; Zhang et al. 2020; Wang and Su 2019) to mea-
sure the robustness of the code models. Formally, suppose
P denotes a set of test programs, a semantic-preserving pro-
gram transformation T that transforms P into a set of trans-
formed programs P ′ = {p′ = T (p)|p ∈ P}, and a source
code model M that can make predictions for any program
p: M(p) = l, where l ∈ L denotes a predicted label for p
according to a set of labels L learned by M , we compute the
percentage of predictions changed as:

PPC =
|{p′ ∈ P ′|M(p) 6=M(p′)}

|{p′ ∈ P ′}|
∗ 100 (1)

Lower PPC values forM suggest higher robustness as they
can maintain more of correct predictions with respect to the
transformation. As shown in Table 3, TreeCaps-VTS is the
most robust model against the program transformations. Al-
though more kinds of program transformations could be ap-
plied to evaluate model robustness in our future work, the
current analysis gives us the confidence that TreeCaps can
be more robust against attacks via adversarial examples (Ra-
makrishnan et al. 2020; Bielik and Vechev 2020).

Comparison between the Two Routing Algorithms Fig-
ure 2 shows the comparisons between the Dynamic Routing
algorithm with Shared Weights (DRSW) and Variable-to-
Static Routing algorithm (VTS) for the code classification
task on the OJ Dataset. There are two main observations: (1)
when DRSW is used, the loss decreases slower than when
VTS is used (in the right plot); and (2) VTS improves valida-
tion accuracy faster than DRSW (in the left chart). A reason
is that DRSW has to learn an additional shared transforma-
tion matrix Ws, resulting in slower convergence due to a
larger number of parameters to be learned.

Discussion
Choice of Node Feature Extractor For the step to ex-
tract the node features, we chose TBCNN because it was
designed to process ASTs that usually contain deeper and
larger numbers of nodes per code snippet than natural lan-
guage parse trees per sentence, and it has been shown to

35

Model java-small (700k Samples) java-med (4M Samples) java-large (16M Samples)
Metric P R F1 Time P R F1 Time P R F1 Time

2-layer Bi-LSTM 40.02 31.84 35.46 26.3h 49.73 40.12 44.82 65.2h 56.56 49.27 52.63 150h
TBCNN 40.89 27.67 32.24 20.6h 45.23 41.41 43.23 58.7h 58.15 40.91 49.40 165h

Code2vec 23.35 22.01 21.36 47.9h 36.43 27.93 31.89 91.6h 44.24 38.25 41.56 222h
Code2seq 50.42 35.43 42.56 56.3h 62.56 46.83 53.66 100h 63.25 54.03 58.96 235h

GGNN 40.25 35.25 36.86 75.8h 50.14 41.25 45.31 142h 50.18 44.25 46.23 280h
GREAT 47.25 39.97 43.56 55.5h 57.15 44.12 51.42 110h 61.35 55.86 58.25 205h

TreeCaps-DRSW 45.19 39.49 42.89 61.5h 60.19 41.15 52.56 125h 59.41 52.93 57.82 153h
TreeCaps-VTS 52.62 41.36 46.78 45.1h 64.38 48.87 55.67 105h 66.85 56.32 61.34 180h

Table 2: Performance of TreeCaps and the baselines for Function (Method) Name Prediction.

Figure 2: Comparisons between the Two Routing Algorithms.
Model VR US PS Average

Code2vec 22.45% 19.42% 26.56% 22.81%
Code2seq 16.84% 21.82% 20.12% 19.59%
TBCNN 11.16% 19.36% 21.67% 17.39%
GGNN 15.34% 18.89% 16.42% 16.88%
GREAT 13.48% 17.75% 16.51% 15.90%

TreeCaps-DRSW 11.23% 15.76% 16.54% 14.51%
TreeCaps-VTS 9.53% 14.08% 13.87% 12.49%

Table 3: Model robustness, measured as percentage of pre-
dictions changed wrt. semantic-preserving program trans-
formations. The lower the more robust.

outperform TreeLSTM in software engineering tasks such
as code classification (Mou et al. 2016) and NLP tasks such
as natural language inference (Mou et al. 2015).

Relationship with Global Model of Source Code
GREAT (Hellendoorn et al. 2019) is a hybrid approach to
combine sequence-based and graph-based model to better
capture both local and global features of code. TreeCaps
shares the same synergy but with a different approach. The
feature extraction step is to extract local features of the
source code and the routing mechanism of the capsules is
to combine the global features of the source code. We have
shown in our evaluation that our capsule-based method per-
forms better than GREAT, both in terms of F1 score and
training time. Further research is needed to explore how dif-
ferent types of features are captured inside the capsules.

Conclusion
We propose TreeCaps, a novel neural network architecture
that incorporates tree-based convolutional neural networks
(TBCNN) into capsule networks for better learning of code
on abstract syntax trees. To handle dynamic numbers of
capsules produced from TBCNN, we propose two meth-
ods to route the capsules in the Primary Variable Capsule

layer to a fixed number of capsules in the Secondary Cap-
sule layer. We are the first to re-purpose capsule networks
over syntax trees to learn code without the need for explicit
semantics analysis. Our empirical evaluations have shown
that TreeCaps can outperform existing code learning models
(e.g., Code2vec, TBCNN, ASTNN, GGNN, GREAT, GNN-
FiLM) for two different program comprehension tasks (e.g.,
code functionality classification and function name predic-
tion) on C/C++/Java programs. It is our belief that the new
method can be applied to other software engineering tasks
such as bug localization and clone detection.

A limitation of TreeCaps is similar to the original capsule
networks and many other neural networks: it still lacks ex-
plainability. Software developers may require additional ev-
idence before accepting the predication results, which sug-
gests future work that relating TreeCaps outputs to certain
visible patterns in code could help explain the predictions.

Acknowledgments

This research is supported by the Singapore Min-
istry of Education (MOE) Academic Research Fund
(AcRF) Tier 2 Award No. MOE2019-T2-1-193 and
RISE Lab Operational Fund from SCIS at SMU,
Royal Society International Collaboration projects (Big
Code Forensic Analytics in Secure SE IES/R1/191138,
IES/R3/193175), EU H2020 EngageKTN project on Safer
Drone Flights (https://droneidentity.eu), EPSRC STRIDE
(Socio-technical resilience in software development) project
(EP/T017465/1), Huawei Trustworthy Lab, Ireland Re-
search Centre. We also thank the anonymous reviewers for
their insightful comments and suggestions, and thank the au-
thors of related work for sharing data.

36

References
Allamanis, M.; Brockschmidt, M.; and Khademi, M. 2018.
Learning to Represent Programs with Graphs. In Interna-
tional Conference on Learning Representations.
Alon, U.; Brody, S.; Levy, O.; and Yahav, E. 2019a.
code2seq: Generating Sequences from Structured Represen-
tations of Code. In International Conference on Learn-
ing Representations. URL https://openreview.net/forum?id=
H1gKYo09tX.
Alon, U.; Zilberstein, M.; Levy, O.; and Yahav, E. 2019b.
Code2Vec: Learning Distributed Representations of Code.
Proc. ACM Programming Languages 3(POPL): 40:1–40:29.
Ben-Nun, T.; Jakobovits, A. S.; and Hoefler, T. 2018. Neu-
ral code comprehension: A learnable representation of code
semantics. In Advances in Neural Information Processing
Systems, 3585–3597.
Bielik, P.; and Vechev, M. 2020. Adversarial Robustness for
Code. arXiv preprint arXiv:2002.04694 .
Britton, T.; Jeng, L.; Carver, G.; and Cheak, P. 2012. Quan-
tify the time and cost saved using reversible debuggers.
Technical report, Cambridge Judge Business School.
Brockschmidt, M. 2019. Gnn-film: Graph neural net-
works with feature-wise linear modulation. arXiv preprint
arXiv:1906.12192 .
Brockschmidt, M.; Allamanis, M.; Gaunt, A. L.; and Polo-
zov, O. 2019. Generative Code Modeling with Graphs.
In 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net. URL https://openreview.net/forum?id=
Bke4KsA5FX.
Bui, N. D. Q.; Jiang, L.; and Yu, Y. 2018. Cross-Language
Learning for Program Classification Using Bilateral Tree-
Based Convolutional Neural Networks. In The Workshops
of the The Thirty-Second AAAI Conference on Artificial
Intelligence, New Orleans, Louisiana, USA, February 2-7,
2018, volume WS-18 of AAAI Workshops, 758–761. AAAI
Press. URL https://aaai.org/ocs/index.php/WS/AAAIW18/
paper/view/17338.
Bui, N. D. Q.; Yu, Y.; and Jiang, L. 2019. SAR: learn-
ing cross-language API mappings with little knowledge. In
Dumas, M.; Pfahl, D.; Apel, S.; and Russo, A., eds., Pro-
ceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019, 796–806. ACM. doi:
10.1145/3338906.3338924. URL https://doi.org/10.1145/
3338906.3338924.
Chen, X.; Liu, C.; and Song, D. 2018. Tree-to-tree neural
networks for program translation. In Advances in Neural
Information Processing Systems, 2547–2557.
Collard, M. L.; Decker, M. J.; and Maletic, J. I. 2013. sr-
cML: An Infrastructure for the Exploration, Analysis, and
Manipulation of Source Code: A Tool Demonstration. In
2013 IEEE International Conference on Software Main-
tenance, Eindhoven, The Netherlands, September 22-28,

2013, 516–519. IEEE Computer Society. doi:10.1109/
ICSM.2013.85. URL https://doi.org/10.1109/ICSM.2013.
85.
Dahl, G. E.; Stokes, J. W.; Deng, L.; and Yu, D. 2013.
Large-scale malware classification using random projections
and neural networks. In IEEE International Conference on
Acoustics, Speech and Signal Processing, 3422–3426. IEEE.
Fernandes, P.; Allamanis, M.; and Brockschmidt, M. 2019.
Structured Neural Summarization. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net. URL
https://openreview.net/forum?id=H1ersoRqtm.
Gu, X.; Zhang, H.; Zhang, D.; and Kim, S. 2017. DeepAM:
Migrate APIs with Multi-modal Sequence to Sequence
Learning. In International Joint Conference on Artificial In-
telligence, 3675–3681.
Gupta, R.; Kanade, A.; and Shevade, S. 2019. Neural
Attribution for Semantic Bug-Localization in Student Pro-
grams. In Advances in Neural Information Processing Sys-
tems, 11861–11871.
Hellendoorn, V. J.; Sutton, C.; Singh, R.; Maniatis, P.; and
Bieber, D. 2019. Global relational models of source code.
In International Conference on Learning Representations.
Hinton, G. E.; Sabour, S.; and Frosst, N. 2018. Matrix
capsules with EM routing. In International Conference on
Learning Representations.
Hu, X.; Li, G.; Xia, X.; Lo, D.; and Jin, Z. 2018. Deep
code comment generation. In International Conference on
Program Comprehension, 200–210. ACM.
Jayasundara, V.; Jayasekara, S.; Jayasekara, H.; Ra-
jasegaran, J.; Seneviratne, S.; and Rodrigo, R. 2019.
TextCaps: Handwritten Character Recognition With Very
Small Datasets. In IEEE Winter Conference on Applications
of Computer Vision, 254–262.
Li, C.; Quan, C.; Peng, L.; Qi, Y.; Deng, Y.; and Wu, L.
2019. A capsule network for recommendation and explain-
ing what you like and dislike. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, 275–284.
Li, J.; He, P.; Zhu, J.; and Lyu, M. R. 2017. Software defect
prediction via convolutional neural network. In IEEE In-
ternational Conference on Software Quality, Reliability and
Security, 318–328. IEEE.
Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. 2016.
Gated Graph Sequence Neural Networks. In International
Conference on Learning Representations.
Li, Z.; Zou, D.; Xu, S.; Ou, X.; Jin, H.; Wang, S.; Deng,
Z.; and Zhong, Y. 2018. VulDeePecker: A deep learning-
based system for vulnerability detection. arXiv preprint
arXiv:1801.01681 .
Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; and
Han, J. 2019. On the variance of the adaptive learning rate
and beyond. arXiv preprint arXiv:1908.03265 .

37

Mou, L.; Li, G.; Zhang, L.; Wang, T.; and Jin, Z. 2016. Con-
volutional neural networks over tree structures for program-
ming language processing. In AAAI Conference on Artificial
Intelligence.
Mou, L.; Peng, H.; Li, G.; Xu, Y.; Zhang, L.; and Jin, Z.
2015. Discriminative Neural Sentence Modeling by Tree-
Based Convolution. In Màrquez, L.; Callison-Burch, C.;
Su, J.; Pighin, D.; and Marton, Y., eds., Proceedings of the
2015 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portugal, Septem-
ber 17-21, 2015, 2315–2325. The Association for Com-
putational Linguistics. doi:10.18653/v1/d15-1279. URL
https://doi.org/10.18653/v1/d15-1279.
Nghi, B. D. Q.; Yu, Y.; and Jiang, L. 2019. Bilateral De-
pendency Neural Networks for Cross-Language Algorithm
Classification. In Wang, X.; Lo, D.; and Shihab, E., eds.,
26th IEEE International Conference on Software Analy-
sis, Evolution and Reengineering, SANER 2019, Hangzhou,
China, February 24-27, 2019, 422–433. IEEE. doi:10.
1109/SANER.2019.8667995. URL https://doi.org/10.1109/
SANER.2019.8667995.
Nielson, F.; Nielson, H. R.; and Hankin, C. 1999. Principles
of Program Analysis. Berlin, Heidelberg: Springer-Verlag.
ISBN 3540654100.
Nix, R.; and Zhang, J. 2017. Classification of Android apps
and malware using deep neural networks. In International
Joint Conference on Neural Networks, 1871–1878.
Pascanu, R.; Stokes, J. W.; Sanossian, H.; Marinescu, M.;
and Thomas, A. 2015. Malware classification with recurrent
networks. In IEEE International Conference on Acoustics,
Speech and Signal Processing, 1916–1920. IEEE.
Pradel, M.; and Sen, K. 2018. DeepBugs: A learning ap-
proach to name-based bug detection. Proceedings of the
ACM on Programming Languages 2(OOPSLA): 147.
Rabin, M.; Islam, R.; Bui, N. D.; Yu, Y.; Jiang, L.; and
Alipour, M. A. 2020. On the Generalizability of Neural Pro-
gram Analyzers with respect to Semantic-Preserving Pro-
gram Transformations. arXiv preprint arXiv:2008.01566 .
Rajasegaran, J.; Jayasundara, V.; Jayasekara, S.; Jayasekara,
H.; Seneviratne, S.; and Rodrigo, R. 2019. DeepCaps: Going
Deeper with Capsule Networks. In Computer Vision and
Pattern Recognition.
Ramakrishnan, G.; Henkel, J.; Wang, Z.; Albarghouthi, A.;
Jha, S.; and Reps, T. 2020. Semantic Robustness of Models
of Source Code. arXiv preprint arXiv:2002.03043 .
Rastogi, V.; Chen, Y.; and Jiang, X. 2013. Catch me if you
can: Evaluating android anti-malware against transforma-
tion attacks. IEEE Transactions on Information Forensics
and Security 9(1): 99–108.
Sabour, S.; Frosst, N.; and Hinton, G. E. 2017. Dynamic
routing between capsules. In Conference on Neural Infor-
mation Processing Systems, 3856–3866. Long Beach, CA.

Wang, K.; and Su, Z. 2019. Learning blended, precise se-
mantic program embeddings. ArXiv, vol. abs/1907.02136 .
Xia, X.; Bao, L.; Lo, D.; Xing, Z.; Hassan, A. E.; and Li, S.
2018. Measuring Program Comprehension: A Large-Scale
Field Study with Professionals. IEEE Transactions on Soft-
ware Engineering 44(10): 951–976.
Yang, M.; Zhao, W.; Ye, J.; Lei, Z.; Zhao, Z.; and Zhang, S.
2018. Investigating Capsule Networks with Dynamic Rout-
ing for Text Classification. In Riloff, E.; Chiang, D.; Hock-
enmaier, J.; and Tsujii, J., eds., Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, October 31 - November 4,
2018, 3110–3119. Association for Computational Linguis-
tics. doi:10.18653/v1/d18-1350. URL https://doi.org/10.
18653/v1/d18-1350.
Yang, X.; Lo, D.; Xia, X.; Zhang, Y.; and Sun, J. 2015. Deep
Learning for Just-in-Time Defect Prediction. In IEEE In-
ternational Conference on Software Quality, Reliability and
Security, 17–26.
Yu, Y. 2019. fAST: flattening abstract syntax trees for ef-
ficiency. In Atlee, J. M.; Bultan, T.; and Whittle, J., eds.,
Proceedings of the 41st International Conference on Soft-
ware Engineering: Companion Proceedings, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, 278–279. IEEE
/ ACM. doi:10.1109/ICSE-Companion.2019.00113. URL
https://doi.org/10.1109/ICSE-Companion.2019.00113.
Zhang, H.; Li, Z.; Li, G.; Ma, L.; Liu, Y.; and Jin, Z. 2020.
Generating Adversarial Examples for Holding Robustness
of Source Code Processing Models. In 34th AAAI Confer-
ence on Artificial Intelligence.
Zhang, J.; Wang, X.; Zhang, H.; Sun, H.; Wang, K.; and Liu,
X. 2019. A novel neural source code representation based
on abstract syntax tree. In International Conference on Soft-
ware Engineering, 783–794.
Zhang, X.; and Chen, L. 2019. Capsule Graph Neural Net-
work. In International Conference on Learning Representa-
tions.
Zhou, Y.; Liu, S.; Siow, J. K.; Du, X.; and Liu, Y.
2019. Devign: Effective Vulnerability Identification by
Learning Comprehensive Program Semantics via Graph
Neural Networks. In Wallach, H. M.; Larochelle, H.;
Beygelzimer, A.; d’Alché-Buc, F.; Fox, E. B.; and Garnett,
R., eds., Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8-14 De-
cember 2019, Vancouver, BC, Canada, 10197–10207.
URL http://papers.nips.cc/paper/9209-devign-effective-
vulnerability-identification-by-learning-comprehensive-
program-semantics-via-graph-neural-networks.

38

