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Abstract

In finance, the momentum spillovers of listed firms is well
acknowledged. Only few studies predicted the trend of one
firm in terms of its relevant firms. A common strategy of the
pilot work is to adopt graph convolution networks (GCNs)
with some predefined firm relations. However, momentum
spillovers are propagated via a variety of firm relations, of
which the bridging importance varies with time. Restrict-
ing to several predefined relations inevitably makes noise
and thus misleads stock predictions. In addition, traditional
GCNs transfer and aggregate the peer influences without con-
sidering the states of both connected firms once a connec-
tion is built. Such non-attribute sensibility makes traditional
GCNs inappropriate to deal with the attribute-sensitive mo-
mentum spillovers of listed firms wherein the abnormal price
drop of one firm may not spill over if the trade volume of this
decreasing price is small or the prices of the linked firms are
undervalued. In this study, we propose an attribute-driven
graph attention network (AD-GAT) to address both prob-
lems in modeling momentum spillovers. This is achieved
by element-wisely multiplying the nonlinear transformation
of the attributes of the connected firms with the attributes of
the source firm to consider its attribute-sensitive momentum
spillovers, and applying the unmasked attention mechanism
to infer the general dynamic firm relation from observed mar-
ket signals fused by a novel tensor-based feature extractor.
Experiments on the three-year data of the S&P 500 demon-
strate the superiority of the proposed framework over state-
of-the-art algorithms, including GCN, eLSTM, and TGC.

Introduction
In stock markets, there are momentum spillovers among the
relevant firms, wherein the past returns of one firm can pre-
dict the returns of firms that are linked to it (Ali and Hir-
shleifer 2020). Unfortunately, most studies on stock pre-
dictions in machine learning ignored the interferences from
other firms with an assumption that the historical informa-
tion of a stock determines its future (Li et al. 2018). With the
advancement of graph neural networks (GNNs) (Scarselli
et al. 2009), few researchers have been exploring the mo-
mentum spillover effect on stock prediction with graph con-
volutional networks (GCNs) (Chen, Wei, and Huang 2018;
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Feng et al. 2019; Li et al. 2020b). In these studies, each firm
is treated as a node in the graph, and the edge between two
nodes is determined by a predefined firm relation. To cap-
ture the momentum spillovers of listed firms, each node is
represented by its relational embedding that is the aggrega-
tion of the attributes of its neighbors in the graph. However,
traditional GNNs transfer and aggregate the peer influences
without considering the states of both connected firms once
a connection is built. In real stock markets, the influence
propagation of linked firms is attribute-sensitive. For exam-
ple, the abnormal price drop of one firm may not spill over
if the trade volume of this decreasing price is small, or the
prices of the linked firms are undervalued.

In addition, these studies rely on a set of predefined rela-
tions, such as shareholders (Chen, Wei, and Huang 2018),
industry (Feng et al. 2019), or price comovement (Li et al.
2020b). However, the momentum spillover effect is led by
a variety of inter-firm linkages of which the bridging im-
portance varies with time. It is hard to assume one cer-
tain type of known firm relation is superior to others when
they are applied for studying the momentum spillover ef-
fect. An alternative approach is to combine various prede-
fined relations to form a dominant relation to study the mo-
mentum spillover effect. Even though many financial stud-
ies have been devoted to discovering the relations of listed
firms, there are still a number of important relations to be ex-
plored (Ali and Hirshleifer 2020). Apparently, studying the
momentum spillovers of listed firms with explicit relations
is limited by the undiscovered relations and the efficient way
to leverage the predefined relations. To solve both problems,
we model the attribute-sensitive momentum spillover effect
and estimate the latent relation of listed firms via a novel
attribute-driven graph attention network (AD-GAT). Three
unique contributions are proposed as follows:

• An attribute-mattered aggregator is proposed to cap-
ture the attribute-sensitive momentum spillovers of listed
firms. This is achieved by element-wisely multiplying
the nonlinear transformation of the connected firms’ at-
tributes with the attributes of the source firm.

• To discover the dominant relation for the momentum
spillovers of listed firms, an unmasked attention mecha-
nism is applied to infer the general dynamic firm relation
from observed market signals.
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• A novel tensor-based modeling is presented to capture
multimodal market signals with feature interactions to
provide solid ground truth for implicit inferring firm states
and relations.

Experiments performed on three-year data of the stocks
listed in the S&P 500 index demonstrate AD-GAT’s superi-
ority over state-of-the-art algorithms, including eLSTM (Li
et al. 2020a) and TGC (Feng et al. 2019). Relative to these
algorithms, the proposed approach achieves performance
enhancements of at least 6.4% and 10.7% in terms of di-
rectional accuracy (DA) and AUC, respectively.

Related Work
The stock market is a dynamic system in which stocks are
highly influenced by a variety of time-series market sig-
nals. Several RNN variants, including LSTM (Hochreiter
and Schmidhuber 1997) and GRU (Cho et al. 2014), have
been applied to generate the sequential embeddings for stock
predictions, which capture the time dependencies in histor-
ical market signals. A common strategy that mingles dif-
ferent types of market factors in previous studies is to con-
catenate the market signals of different sources into a com-
pound vector, which inevitably ignores their intrinsic asso-
ciation (Kolda and Bader 2009; Li et al. 2016). Some re-
searchers have taken a further step by fusing different mar-
ket factors along with their interactions. For instance, Ming
et al. (2014) constructed a unified matrix to characterize the
“co-movements” between stock prices and news articles. Li
et al. (2016) modeled market information with tensors and
proposed a support tensor machine to predict stock trends.
Zhang et al. (2018) further constructed two auxiliary matri-
ces, i.e., the stock quantitative feature matrix and the stock
correlation matrix, to assist the tensor decomposition pro-
cess. The way these works handling the interactions of dif-
ferent market factors is independent of stocks and down-
stream tasks (e.g., stock movement prediction). However,
such assumptions are too ideal to be accepted by real stock
markets. Here, we argue that the interactions of different
market factors vary with stocks and should be modeled with
a consideration of downstream tasks. In this study, we cap-
ture the interactions of market signals with tensors, which
are learned toward downstream tasks and personalized for
different stocks.

Essentially, the stock fluctuations of one firm are caused
by its own market signals along with the interferences from
its related firms. The momentum spillover effect is often ig-
nored by previous studies on stock predictions due to the
lack of an efficient way to incorporate the spillover rele-
vance. Only few works on stock predictions have explored
this effect (Chen, Wei, and Huang 2018; Feng et al. 2019;
Li et al. 2020b). These studies relied on traditional graph
convolutional networks (GCNs) in which each firm is repre-
sented as a node and each edge is built in terms of some
predefined firm relations. For instance, Chen, Wei, and
Huang (2018) constructed a graph in terms of firm invest-
ment and proposed a joint stock prediction model based on
GCN to consider the influences of related stocks. Feng
et al. (2019) applied two types of firm relation, i.e., industry

category or Wikipedia linkage, to build a graph for stock pre-
dictions. Li et al. (2020b) studied the momentum spillover
effect with GCNs built in terms of the co-movements of his-
torical prices. These studies treated firm links in a static way
by building a graph with the fixed predefined firm relations.
However, firms are dynamically linked via a variety of rela-
tions of which the importance varies with time. One of the
pilot studies on the dynamical linkage of listed firms is the
work of Feng et al. (2019) which adjusts the predefined rela-
tions in the learning process. However, restricting firm relat-
edness to a particular type of predefined relation inevitably
generates noise and thus misleads the predictive results.

In addition, the momentum spillovers of a firm attribute
rely on the states of other attributes of both connected firms.
For example, the abnormal price drop of one firm may not
spill over if the trade volume of this decreasing price is lim-
ited, or the prices of the linked firms are undervalued. GNNs
measure the momentum spillovers of one firm by the amount
of its attribute transmitting to its related firms in the graph.
Each node assigns each of its attributes a weight, which is
obtained in the learning process. All the received spillovers
of one firm are considered as its relational embedding to
represent the node or to update its state. Several aggrega-
tors have been explored to gather the information from the
neighbors to the target node in previous studies. However,
traditional GNNs transfer and aggregate the peer influences
without considering the states of the attributes of both con-
nected firms once a connection is built. Most GNNs, in-
cluding GCN (Scarselli et al. 2009) and GAT (Vaswani et al.
2017), generate relational embeddings via linear aggrega-
tors. Specifically, the attributes of the relevant firm nodes
are linearly transformed via a weight matrix that measures
the importance of each attribute, and are transported to the
target node. In such a way, the weight of each attribute is
fixed and shared across all firm nodes. Therefore, it can not
dynamically adjust the attribute proportion to be transported
in terms of the attribute states of the connected firm nodes as
explained in the previous example about the influence of the
abnormal price drop. Even though non-linear aggregators
are sensitive to the attribute states, they typically adjust the
amount of an attribute to be transferred in terms of the en-
tire states of this attribute among all of the connected nodes.
For example, in the max-pooling aggregator, only neighbor-
ing nodes hold the max value in certain attributes can gen-
erate spillovers and affect the target firm (Gao, Wang, and Ji
2018). In the LSTM-based aggregators, only the neighbors’
attributes are considered and sequentially fed into LSTMs in
a predefined order when modeling their spillovers (Hamil-
ton, Ying, and Leskovec 2017). Apparently, the momentum
spillovers of listed firms are attribute mattered and tradition
GNNs are unable to handle this situation. In this study,
an attribute-mattered aggregator is proposed to adjust the
spillovers of one attribute in terms of other attribute states
of two connected firm nodes.

Model Architecture
Figure 1 is an overview of the proposed framework for stock
prediction. The tensor fusion (TF) module is first applied
to merge technical indicators and textual media features into
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Figure 1: The proposed framework

one fused vector preserving their interactions. Second, the
time-series fused vectors are fed into the RNN module to
generate the sequential embedding of a listed firm which
preserves the time dependencies of its fused market informa-
tion. After that, the sequential embeddings of all listed firms,
along with the predefined relations, are further processed
by the proposed AD-GAT, which consists of the attribute-
mattered (AM) aggregator and the relation building (RB)
module, to generate the relational embeddings for all listed
firms that represent their received spillovers. At last, the
concatenations of sequential embeddings and relational em-
beddings are fed into the Output Mapping (OM) module to
predict stock movements.

In the following, we use x (lower-case letter) to denote in-
dex, X (upper-case letter) to denote a scalar, x (bold lower-
case letter) to denote a vector, X (script letter) to denote a
matrix, and θ to denote parameters that are learned during
the training process.

The Sequential Embeddings of Listed Firms
The stock market is a dynamic system, in which firms are
highly influenced by various types of time-series market sig-
nals. A variety of RNNs, including LSTM and GRU, has
been applied to capture the sequential dependencies of mar-
ket signals for stock predictions (Li et al. 2016; Chen, Wei,
and Huang 2018; Feng et al. 2019; Li et al. 2020a). In previ-
ous studies, technical indicators and textual media features
have been concatenated into a super vector as the input of
RNNs, which inevitably ignores the intrinsic associations
between them (Kolda and Bader 2009; Li et al. 2016). In
this study, we propose the TF module to capture the inter-
actions of different market signals, and combine it with the
RNN module to generate richer sequential embeddings for
further processing.

Tensor Fusion Module The TF module aims to extract
high-level features from numerical and textual data while
preserving their interactions for stock prediction. In this
study, for a given firm i, mt

i ∈ RL is the L-dimensional
feature vector representing the technical indicators on the
day t, and nt

i ∈ RL′
is the L′-dimensional feature vector

representing the relevant media articles released on the day
t.

The challenge lies in how to mingle mi and ni into one
vector xi while preserving their interactions for stock pre-
diction. Here, superscript t is omitted for simplicity. One of

alternatives to capture feature interactions is to reassemble
mi and ni into tensors, and apply global tensor decompo-
sition algorithms (Kolda and Bader 2009; Li et al. 2016).
However, it is independent of downstream tasks and stocks.

To learn the task- and firm-specific interactions be-
tween mi and ni, the proposed framework applies a
K-dimensional bilinear tensor product term, miT [1:K]

i ni,
to capture the intrinsic associations between mi and ni.
T [1:K]
i ∈ RL×L′×K is a third-order tensor of which

the parameters are tuned towards downstream tasks. The
k-th entry in the bilinear tensor product term is com-
puted by one slice of the tensor. That is, miT kni =∑

l∈L
∑

l′∈L′ T k
l,l′mi,lni,l′ .

To preserve their independent effects, mi and ni are
concatenated and linearly transformed by a weight matrix,
Wi ∈ R(L+L′)×K . The fused daily market signals of firm i,
xi ∈ RK , is represented by the sum of these two terms,

xi = tanh(miT [1:K]
i ni +Wi[mi||ni] + bi), (1)

where || denotes the concatenation, b ∈ RK is the bias
vector, and tanh is the activation function. The set of the
learned parameters is θ = [T [1:K]

i ,Wi,bi, ∀i ∈ N ], where
N represents the number of firms.

RNN Module For a given firm i, to generate its sequential
embedding,vt

i , on the day t, its fused market signal repre-
sentations in the past T days, X [t−T :t)

i , are fed into the RNN
module,

vt
i = RNNi(X [t−T :t)

i ), (2)

where vt
i ∈ RF , F is the hidden size of RNN, and

X [t−T :t)
i = [xt−T

i , . . . ,xt−1
i ] denotes the fused historical

representations of stock i in the past T days.
In this study, GRU (Cho et al. 2014) is selected as

our RNN module, since it is easier to train in practice
and achieves similar performance with other variants of
RNNs (Xu and Cohen 2018). More details can be referred
to the work of Cho et al. (2014).

The Relational Embeddings of Listed Firms
In real markets, the movement of one firm is affected by
its related firms which is well known as the momentum
spillover effect in finance. There are two challenges in pre-
dicting stock movements with momentum spillovers. The
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first is to deal with attribute-mattered momentum spillovers
with a proper network design and the second is to find a
dominant relation to bridge the relevant firms for momen-
tum spillovers.

Attribute-Mattered Aggregator To model the momen-
tum spillovers of listed firms, the stock market is treated as
a graph, in which V = [vt

1, . . . ,v
t
N ] ∈ RN×F is the repre-

sentation of N firms, and E ∈ RN×N reflects the predefined
relation of listed firms, whose indexes are listed firms and
entires are their connection strengths.

Previous works relied on GCNs to generate relational
embeddings of listed firms which represents the received
spillovers (Chen, Wei, and Huang 2018; Feng et al. 2019).
Here, we use S = [st1, . . . , s

t
N ] ∈ RN×F ′

to represent the
F ′-dimensional firm relational embeddings. For a given firm
i, its relational embedding at time t, sti, is calculated as the
weighted sum of its neighbors’ attributes via the linear ag-
gregator of GCNs,

sti = σ(

N∑
j,j 6=i

Ei,jWsv
t
j︸ ︷︷ ︸

spillovers from j to i

), (3)

where Ws ∈ RF ′×F is a weight matrix shared by all
firms, which linearly transforms the neighbors’ attributes
into higher-level features, Ei,j ∈ E is the normalized rela-
tion between firm i and j, and σ is sigmoid function. How-
ever, Eq. 3 fails to consider the interferences of connected
firms’ attributes on momentum spillovers, which are vital
for stock predictions. Figure 2 shows an example of such
attribute interference. Suppose firm i and j have three at-
tributes, i.e., “price”, “volume”, and “Price-to-Earning ratio
(P/E)”, which stands for the trading price, the quantity of
traded shares, and whether the stock price is overvalued or
not, respectively. In traditional GCNs, the abnormal “price”
drop of firm j spills to i in terms of the stock graph pre-
sented at the left top of Figure 2. However, in the real mar-
ket, the abnormal “price” drop of firm j should not affect
the price of firm i since the price drop of firm j is only ac-
companied by a small amount of trade volume, and firm i
has a low “P/E” indicating its undervalued trading price, as
shown in the attribute table at the left bottom of Figure 2. To
model the attribute-mattered momentum spillovers of listed
firms, the AM aggregator introduces into the linear aggrega-
tor (Eq. 3) a gate mechanism that is a non-linear transforma-
tion (c(·)) of the related firm attributes, and element-wisely
multiply (⊗) the gate with the attributes of the source firm to
discriminate the spillover of one attribute in terms of other
attributes. Therefore, the relational embedding of firm i at
time t is redefined as

sti = σ(
N∑

j,j 6=i

Ei,jWsv
t
j ⊗ c(vt

i ,v
t
j)︸ ︷︷ ︸

spillovers from j to i

). (4)

Here, a single layer feed-forward neural network with tanh
activation function is applied to obtain the information gate,
c(·), in terms of the current states of firm i and j which is
defined in Eq. 2,

c(vt
i ,v

t
j) = tanh(Wc[v

t
i ||vt

j ] + bc), (5)

Figure 2: Attribute-mattered momentum spillovers

whereWc ∈ RF ′×2F is the weight matrix, and bc ∈ RF ′
is

the bias vector. By adjusting the spillovers of one attribute
in terms of the states of other attributes of connected firms
using both Ws and c(vt

i ,v
t
j), the proposed AM aggregator

also partially releases the assumption that they are invariant
when propagating between different firm pairs in different
timestamps in Eq. 3, which only involvesWs.

Relation Building Module The momentum spillovers of
listed firms are essentially led by a fusion of various firm
relations that change over time (Ali and Hirshleifer 2020).
However, previous studies only leverage one or two types
of firm relations (Chen, Wei, and Huang 2018; Feng et al.
2019).

Rather than fusing a dominant firm relation with a variety
of predefined firm relations, we infer the latent firm relation,
Rt

i,j , between firm i and j from the observed market signals
at time t, that is,

Rt
i,j = r(vt

i ,v
t
j). (6)

Different from TGC (Feng et al. 2019), we perform an un-
masked attention mechanism that allows each firm to be at-
tended by every other firm, and ignores all predefined rela-
tions that inevitably generate noise in the long run. Here, a
single-layer feed-forward neural network with LeakyReLU
activations (Maas, Hannun, and Ng 2013) is adopted as the
shared attention mechanism to infer the latent firm relation,

Rt
i,j = LeakyReLU(a>r Wr[v

t
i ||vt

j ]), (7)

where vt
i and vt

j are concatenated and mapped into a F ′

dimensional vector using Wr ∈ RF ′×2F , and it is further
transformed into a scalar that represents their connection
strength via a vector ar ∈ RF ′

.
To make Rt

i,j comparable over all firms, Rt
i,j is further

normalized with a softmax function over all choices of j,

Ẽt
i,j = softmaxj(R

t
i,j) =

exp(Rt
i,j)∑

k∈N,k 6=i exp(R
t
i,k)

, (8)

where Ẽt
i,j is the normalized connection strength from j to

i at time t.
Therefore, the relational embedding of firm i can be fur-

ther redefined as

sti = σ(
N∑

j,j 6=i

Ẽt
i,jWsv

t
j ⊗ c(vt

i ,v
t
j)). (9)
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Here, we replace the predefined static relation Ei,j in Eq. 4
with a dynamic relation Ẽt

i,j .
To stabilize the learning process, we adopt the multi-

heads setting as suggested by Vaswani et al. (2017). Specifi-
cally, we execute Eq. 9 withM independent attention mech-
anisms, and concatenate the results as

sti =
Mn

m=1

σ(
N∑

j,j 6=i

Ẽ
t,[m]
i,j W

[m]
s vt

j ⊗ c[m](vt
i ,v

t
j)), (10)

where || represents concatenation, Ẽt,[m]
i,j ,W [m]

s , and c[m](·)
are the estimated dynamic firm relation, the input linear
transformation’s weight matrix, and the information gate in
the m-th attention head, respectively. Note that, by this def-
inition, the final relational embedding of firm i, sti, consists
of MF ′ features instead of F ′. Here, the learned parameter
set is θ = [W [m]

s ,W [m]
c ,W [m]

r ,b
[m]
c ,a

[m]
r , ∀m ∈M ].

Output Mapping Module
Finally, a single layer feed-forward neural network with the
softmax function is applied to generate the probability of
future stock trends, denoted as

ŷt
i = Oi(v

t
i ||sti) = softmax(W ′i[vt

i ||sti] + b′i), (11)

where W ′i ∈ R(MF ′+F )×C is the weight matrix, C is the
number of classes, and b′i ∈ RC is the bias vector. The set
of learned parameter is θ = [W ′i,b′i, ∀i ∈ N ]. The cross-
entropy loss between ŷt

i and yt
i is back-propagated to learn

the parameters of the proposed framework.

Market Signal Representation
Financial studies have attributed stock movements to three
types of market information, i.e., the numerical technical in-
dicators, the textual media features, and the relational data
about firm relevance. In this study, we adopted all three
types as described below.

Technical indicators Transactional data are the main
manifestation of firms’ intrinsic value and investor expec-
tations. Five technical indicator attributes are selected and
each attribute has been shown to have some degree of predic-
tive value (Li et al. 2020a). These attributes are the follow-
ing: highest/lowest price, opening/closing price, and trade
volume. Note that, to make stock prices and trade vol-
umes comparable over all firms, the stock price at day t,
P t, is transferred to the return ratio, Rt, which is denoted
as Rt = (P t − P t−1)/P t−1, and the trade volume is trans-
ferred to the turnover ratio by normalizing it with the total
stock share of the corresponding firm.

Textual media Modern behavioral finance believes that
investors are irrational, tending to be influenced by the opin-
ions expressed in the media. The media sentiment is proved
to be a leading signal for stock volatilities (Li et al. 2020a;
Sedinkina, Breitkopf, and Schütze 2019; Rekabsaz et al.
2017; Wang et al. 2013). Most previous studies relied on the
L&M financial sentiment dictionary published by Loughran
and McDonald (2011) to represent textual media for stock

predictions (Sedinkina, Breitkopf, and Schütze 2019; Wang
et al. 2013). In this study, six sentiment features defined
by the last version (2018) L&M dictionary are extracted to
represent the media factor mt

i. These are positive, negative,
uncertainty, litigious, constrain, strong, moderate, and weak.

Firm Relations One of the advantages of the proposed
framework is the ability to infer the latent relation of the
listed firms with observed market signals. However, to make
comparisons with the baselines, we collected five popular
firm relationships for this study. These are industry cate-
gory, supply chain, competition, customer, and strategic al-
liance. Here, each type of firm relation is represented by an
adjacency matrix, of which the column and row are indexed
with firms. If there is a link between two firms, the corre-
sponding element value in the matrix is 1, otherwise is 0.

Experimental Evaluation
To the best of our knowledge, the proposed framework is the
first one that fuses numerical, textual, and relational data to-
gether for stock predictions. Previous works focus on partial
of market information, which makes their experimental data
unsuitable for our study. Here, we constructed a dataset in-
corporating all three types of market data and shared it along
with our source code for peer researches1.

To gauge the effectiveness of the proposed framework for
predicting stock movements, we carried out a series of ex-
periments on the actual market data of S&P 500 firms from
February 8, 2011 to November 18, 2013. During this period,
there are 700 transaction days in total. The daily transac-
tion data were taken from Wharton Research Data Services2

(WRDS). The textual media was generously provided by
Duan et al. (2018), which are financial news articles pub-
lished by Reuters and Bloomberg during the same period.
198 stocks without missing transaction data and having at
least 100 related news articles during the selected period are
kept. Five types of firm relations are collected from S&P
Capital IQ3.

Evaluation Setting
Stock prediction is normally treated as a binary classifica-
tion problem. If the closing price is higher than the opening
price, the sample is labeled with “upward” (yti = 1), oth-
erwise labeled with “downward” (yti = −1). In predicting
whether we need to purchase stocks at the beginning of mar-
ket, we made strict control that only news articles that are
already released are considered. There are 51.2% “upward”
samples and 48.8% “downward” samples. We divided 700
transaction days into three periods. Specifically, the first 560
days are used for training, the following 70 days for valida-
tion, and the last 70 days for testing.

The directional accuracy (DA) and the area under the
precision-recall curve (AUC) score are adopted as evalua-
tion metrics in our experiments, which are widely adopted
in previous studies (Duan et al. 2018; Li et al. 2020a). The

1https://github.com/RuichengFIC/ADGAT
2https://wrds-www.wharton.upenn.edu
3https://www.capitaliq.com
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Figure 3: Comparing with baseline methods

evaluation is conducted in a rolling window fashion, as sug-
gested by Li et al. (2020a). That is, we applied the market
signals during the past T transaction days to predict stock
movements on the tth day.

Note that, to strengthen the robustness of our evaluation,
for each methods compared in our experiments, we trained
it 30 times with different initializations. We ranked these
30 runs and selected top-5 in terms of their performances
in the validation period. The average performance of the
selected runs in the testing period is reported to eliminate the
fluctuations caused by random initializations. Each training
procedure costs 2 hours in average with one NVIDIA Tesla
V100 GPU card.

Hyper Parameters and Training Settings
Here, the grid search is employed to select the optimal
hyper-parameters regarding DA. For the proposed frame-
work, the window size T is searched within {5, 10, . . . , 50}
the hidden size of tensor product (K) is searched within
{5, 10, 15, 20}, and the number of attention heads (M ) is
searched within {2, 4, 8, 16, 32}. Unless otherwise speci-
fied, the dimensions of all other parameters in this paper are
searched within {30, 60, 120, 150, 240, 300, 360}, including
the hidden size of the GRU (F ) and the attention layer
(F ′). All parameters are initialized using the Glorot initial-
ization (Glorot and Bengio 2010) and are trained using the
Adam optimizer (Kingma and Ba 2015) with an initial learn-
ing rate of 0.0005. In this study, the optimal window size T
is 30. the dimension of tensor product K is set to 5, the hid-
den size of GRU F is set to 360, The attention layer consists
of M = 6 attention heads and its hidden size F ′ is set to 60.

Comparison
To evaluate the overall performance of the proposed frame-
work, we compared it with several baselines including both
non-graph-based and graph-based methods. In particular,

Non-graph-based Methods
• LSTM: Long Short-Term Memory is one of the most

powerful deep learning models for time series forecast-
ing. The LSTM with 2 layers was implemented in our
evaluation.

• GRU: Compared to LSTM, GRU holds a simpler design,
which makes it easier to train and helps obtain consistent

results with deeper model architecture. The GRU with 2
layers was implemented in our evaluation.

• eLSTM: Li et al. (2020a) proposed the eLSTM to ef-
fectively utilize the historical market signals when mak-
ing predictions. The original settings of eLSTM were
adopted.

Graph-based Methods
• GCN: The neighbors’ attributes in GCN are linearly ag-

gregated to central nodes with normalized firm relations.
The GCN with 2 convolution layers was implemented.

• GAT: It specifies different weights to different nodes in
a neighborhood. The GAT with 2 masked self-attention
layers was implemented.

• TGC: Feng et al.(Feng et al. 2019) proposed the Temporal
Graph Convolution (TGC) model for stock predictions,
which dynamically adjusts the predefined firm relations
before feeding them into GCN. The original settings were
adopted.

All baselines considers technical indicators and textual me-
dia features. Specifically, the technical indicators and textual
media features of the past T days are concatenated sequen-
tially and fed into LSTM, GRU, eLSTM, and TGC. Since
both GCN and GAT are unable to handle sequential data,
for a given firm, its technical indicators and textual media
features of the past T day are concatenated into a super com-
pound vector to represent firm nodes. All graph-based base-
lines considered predefined firm relations, which are repre-
sented by an adjacency matrix. For a given element in the
matrix, it is set to 1 if its corresponding firm pair has any of
the five predefined firm relations.

Figure 3 shows the results of all baseline models and the
proposed method. LSTM, GRU, and eLSTM, which only
consider the sequential dependencies among market signals,
achieve similar performances with GAT and GCN, which
only consider the structural information of the stock mar-
ket. TGC achieves the second-best performance in terms of
DA and AUC. Compared to other methods, it considers both
the sequential dependencies among market signals and the
structural information of the stock market. The proposed ap-
proach achieves the best performances, with enhancements
of at least 6.4% and 10.7% in terms of the DA and AUC,
respectively. The p-values of the t-tests are all less than the
critical confidence value (0.05), indicating that the superior
performance of the proposed approach was statistically sig-
nificant. Comparing with TGC, our approach infers the ul-
timate firm relations responsible for propagating spillovers
from observed market signals without any help from the pre-
defined firm relations and achieves a promising result. This
indeed paves a way for the problem of capturing the influ-
ential power from peers even without any predefined peer
relation at hand.

Effectiveness of the Proposed Approach
Effectiveness of AD-GAT In finance, the momentum
spillovers of listed firms is well acknowledged. A common
strategy of the pilot work is to adopt graph convolution net-
works (GCNs) with some predefined firm relations. In this
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Firm Relation AM Linear

DA AUC DA AUC

Industry 0.5322 0.5351 0.5210 0.5298
Supplier 0.5288 0.5388 0.5172 0.5222
Customer 0.5302 0.5473 0.5203 0.5306
Competitor 0.5325 0.5505 0.5219 0.5425
Alliance 0.5346 0.5472 0.5232 0.5389
Combination of All 0.5501 0.5550 0.5355 0.5433

Inferred Relation 0.5647 0.5894 0.5436 0.5672

Table 1: Results of different relations and aggregators

study, we infer the latent firm relation from observed mar-
ket signals to avoid the bias generated by the predefined
relations. To judge whether incorporating with the prede-
fined relations can further boost the proposed implicit rela-
tion inference, the predefined firm relation is added to Rt

i,j
in Eq. 8 before normalization. We carried out a series of
experiments with all of these five predefined relations. Ta-
ble 1 shows the results of different aggregators (columns)
and firm relations (rows). It can be observed that inferring
the implicit relation is superior to any predefined firm rela-
tions, and achieves the best performance with enhancements
of at least 2.7% and 6.2% in terms of the DA and AUC, re-
spectively. This finding further proves that the momentum
spillovers of listed firms follows a variety of firm links, and
utilizing the predefined firm relations as the hidden spillover
channel inevitably causes bias and misleads stock predic-
tions.

In addition, traditional GNNs based on linear aggregators
transfer and aggregate the peer influences without consid-
ering the interferences of connected firms’ attributes once
a connection is built. Such non-attribute sensibility makes
traditional GCNs inappropriate to deal with the attribute-
sensitive momentum spillovers of listed firms. To judge
the effectiveness of the AM aggregator, which models the
attribute-mattered spillover effect in stock markets, we also
compared it with the linear aggregator (Eq. 3). In Table 1,
the proposed AM aggregator outperforms the linear aggre-
gator under all firm relations, with average enhancements of
2.4% and 2.3% in terms of DA and AUC, respectively.

Effectiveness of Tensor Fusion The tensor fusion module
is proposed to facilitate the RNN module to generate high-
level features that are used to represent firm states and infer
their relation. Different from previous methods in which the
interactions of market signals are simply ignored or consid-
ered identical of all firms, the tensor fusion module learns
the firm-specific interactions of market signals directly from
observed price fluctuations.

To judge whether it is necessary to consider firm-specific
interactions of market signals, we explored the proposed ap-
proaches with two variants:
• AD-GATC : Numerical and textual data, xti = [mt

i||nti],
are concatenated to represent the daily market signals
without considering their interactions.

• AD-GATS : Instead of using firm-specific tensor fusion
modules, a shared tensor fusion module is used to model

DA AUC

AD-GATC 0.5450 0.5604
AD-GATS 0.5542 0.5679

Our method 0.5647 0.5894

Table 2: Effectiveness of tensor fusion module

the interactions of market signals. This is achieved by
removing the subscripts i of all parameters in Eq. 1, which
assumes that all of these parameters are identical for all
listed firms.
In Table 2, AD-GATS shows a better performance than

AD-GATC , indicating that capturing the interactions of dif-
ferent market signals is critical to stock predictions. Com-
paring with AD-GATS , the proposed method further im-
proves the predictive performance with enhancements of
1.9% and 3.8% in terms of DA and AUC, respectively. This
finding indicates that feature interactions are firm-specific
and should be treated in term of each firm.

Conclusion
In stock markets, the past returns of one firm affect the re-
turns of firms that are linked to it. Only few studies in ma-
chine learning predicted the trend of one firm in terms of its
relevant firms. A common strategy in previous studies is to
adopt GCNs with predefined firm relations that have been
explored in financial studies. We argue that it is inappro-
priate to rely on predefined firm relations since the spillover
channel is dynamically changing over time. In this study,
we infer the implicit spillover channel via observed market
signals. In addition, to model market signals precisely, we
propose a tensor-based fusion module to capture the interac-
tions of different signals which is typically ignored in previ-
ous studies. Experiments on the listed firms of the S&P 500
shows that the estimated firm relation is more efficient than
the well-acknowledged firm relations to capture momentum
spillovers, and modeling market information space with fea-
ture interactions can further improve stock predictions.

More importantly, in real stock markets, the influence
propagation of linked firms is attribute-sensitive, wherein
the spillover of one attribute is affected by the other at-
tributes of two connected listed firms. However, traditional
GCNs transfer and aggregate the peer influence without con-
sidering the states of both connected firms once a connection
is built. In this study, we propose the attribute-driven graph
attention network that holds a novel aggregator to capture
the attribute-mattered momentum spillovers. Experiments
on the three-year data of the S&P 500 demonstrate the su-
periority of the proposed framework over state-of-the-art al-
gorithms, including GCN, eLSTM, and TGC with enhance-
ments of at least 6.4% and 10.7% in terms of the DA and
AUC, respectively. Indeed, the proposed attribute-driven
graph attention network can be generalized to other prob-
lems with implicit relations or attribute-mattered informa-
tion propagation, such as the estimation of option implied
volatilities and bulk futures. However, its power is yet to be
explored in the near future.
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