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Abstract
As a fundamental problem in algorithmic trading, order exe-
cution aims at fulfilling a specific trading order, either liqui-
dation or acquirement, for a given instrument. Towards effec-
tive execution strategy, recent years have witnessed the shift
from the analytical view with model-based market assump-
tions to model-free perspective, i.e., reinforcement learning,
due to its nature of sequential decision optimization. How-
ever, the noisy and yet imperfect market information that can
be leveraged by the policy has made it quite challenging to
build up sample efficient reinforcement learning methods to
achieve effective order execution. In this paper, we propose
a novel universal trading policy optimization framework to
bridge the gap between the noisy yet imperfect market states
and the optimal action sequences for order execution. Partic-
ularly, this framework leverages a policy distillation method
that can better guide the learning of the common policy to-
wards practically optimal execution by an oracle teacher with
perfect information to approximate the optimal trading strat-
egy. The extensive experiments have shown significant im-
provements of our method over various strong baselines, with
reasonable trading actions.

Introduction
Financial investment, aiming to pursue long-term maxi-
mized profits, is usually behaved in the form of a sequential
process of continuously adjusting the asset portfolio. One in-
dispensable link of this process is order execution, consist-
ing of the actions to adjust the portfolio. Take stock invest-
ment as an example, the investors in this market construct
their portfolios of a variety of instruments. As illustrated in
Figure 1, to adjust the position of the held instruments, the
investor needs to sell (or buy) a number of shares through ex-
ecuting an order of liquidation (or acquirement) for different
instruments. Essentially, the goal of order execution is two-
fold: it does not only requires to fulfill the whole order but
also targets a more economical execution with maximizing
profit gain (or minimizing capital loss).

As discussed in (Cartea, Jaimungal, and Penalva 2015),
the main challenge of order execution lies in a trade-off be-
tween avoiding harmful “market impact” caused by large
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Figure 1: An example of portfolio adjustment which requires
order execution.

transactions in a short period and restraining “price risk”,
i.e., missing good trading opportunities, due to slow ex-
ecution. Previously, traditional analytical solutions often
adopt some stringent assumptions of market liquidity, i.e.,
price movements and volume variance, then derive some
closed-form trading strategies based on stochastic control
theory with dynamic programming principle (Bertsimas and
Lo 1998; Almgren and Chriss 2001; Cartea and Jaimun-
gal 2015, 2016; Cartea, Jaimungal, and Penalva 2015).
Nonetheless, these model-based1 methods are not likely to
be practically effective because of the inconsistency between
market assumption and reality.

According to the order execution’s trait of sequential
decision making, reinforcement learning (RL) solutions
(Nevmyvaka, Feng, and Kearns 2006; Ning, Ling, and
Jaimungal 2018; Lin and Beling 2020) have been proposed
from a model-free perspective and been increasingly lever-
aged to optimize execution strategy through interacting with
the market environment purely based on the market data. As
data-driven methods, RL solutions are not necessarily con-
fined by unpractical assumptions and are more capable of
capturing the market’s microstructure for better execution.

Nevertheless, RL solutions may suffer from a vital issue,
i.e., the noisy and imperfect information. For one thing, the
noisy data (Wu, Gattami, and Flierl 2020) could lead to a
quite low sample efficiency of RL methods and thus results
in poor effectiveness of the learned order execution policy.

More importantly, the only information that can be uti-
lized when taking actions is the historical market informa-
tion, without any obvious clues or accurate forecasts of the

1Here ‘model’ corresponds to some market price assumptions,
to distinguish the environment model in reinforcement learning.
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Figure 2: Brief illustration of the oracle policy distillation.

future trends of the market price2 or trading activities. Such
issues indeed place a massive barrier for obtaining a policy
to achieve the optimal trading strategy with profitable and
reasonable trading actions.

To break this barrier, in this paper, we propose a universal
policy optimization framework for order execution. Specif-
ically, this framework introduces a novel policy distillation
approach in order for bridging the gap between the noisy
yet imperfect market information and the optimal order ex-
ecution policy. More concretely, as shown in Figure 2, this
approach is essentially a teacher-student learning paradigm,
in which the teacher, with access to perfect information, is
trained to be an oracle to figure out the optimal trading strat-
egy, and the student is learned by imitating the teacher’s op-
timal behavior patterns. For practical usage, only the com-
mon student policy with imperfect information, would be
utilized without teacher or any future information leakage.
Also note that, since our RL-based model can be learned
using all the data from various instruments, it can largely
alleviate the problem of model over-fitting.

The main contributions of our paper include:

• We show the power of learning-based yet model-free
method for optimal execution, which not only surpasses
the traditional methods, but also illustrates reasonable and
profitable trading actions.

• The teacher-student learning paradigm for policy distilla-
tion may beneficially motivate the community, to alleviate
the problem between imperfect information and the opti-
mal decision making.

• To the best of our knowledge, it is the first paper exploring
to learn from the data of various instruments, and derive a
universal trading strategy for optimal execution.

Related Works
Order Execution
Optimal order execution is originally proposed in (Bertsi-
mas and Lo 1998) and the main stream of the solutions are
model-based. (Bertsimas and Lo 1998) assumed a market
model where the market price follows an arithmetic ran-
dom walk in the presence of linear price impact function of
the trading behavior. Later in a seminal work (Almgren and
Chriss 2001), the Almgren-Chriss model has been proposed
which extended the above solution and incorporated both

2We define ‘market price’ as the averaged transaction price of
the whole market at one time which has been widely used in litera-
ture (Nevmyvaka, Feng, and Kearns 2006; Ning, Ling, and Jaimun-
gal 2018).

temporary and permanent price impact functions with mar-
ket price following a Brownian motion process. Both of the
above methods tackled order execution as a financial model
and solve it through stochastic control theory with dynamic
programming principle.

Several extensions to these pioneering works have been
proposed in the past decades (Cartea and Jaimungal 2016;
Guéant and Lehalle 2015; Guéant 2016; Casgrain and
Jaimungal 2019) with modeling of a variety of market fea-
tures. From the mentioned literature, several closed-form so-
lutions have been derived based on stringent market assump-
tions. However, they might not be practical in real-world sit-
uations thus it appeals to non-parametric solutions (Ning,
Ling, and Jaimungal 2018).

Reinforcement Learning
RL attempts to optimize an accumulative numerical reward
signal by directly interacting with the environment (Sut-
ton and Barto 2018) under few model assumptions such as
Markov Decision Process (MDP). RL methods have already
shown superhuman abilities in many applications, such as
game playing (Mnih et al. 2015; Li et al. 2020; Silver et al.
2016), resource dispatching (Li et al. 2019; Tang et al. 2019),
financial trading (Moody and Wu 1997; Moody et al. 1998;
Moody and Saffell 2001) and portfolio management (Jiang
and Liang 2017; Ye et al. 2020).

Besides the analytical methods mentioned above, RL
gives another view for sequential decision optimization in
order execution problem. Some RL solutions (Hendricks
and Wilcox 2014; Hu 2016; Dabérius, Granat, and Karls-
son 2019) solely extend the model-based assumptions men-
tioned above to either evaluate how RL algorithm might im-
prove over the analytical solutions (Dabérius, Granat, and
Karlsson 2019; Hendricks and Wilcox 2014), or test whether
the MDP is still viable under the imposed market assump-
tions (Hu 2016). However, these RL-based methods still rely
on financial model assumption of the market dynamics thus
lack of practical value.

Another stream of RL methods abandon these assump-
tions and utilize model-free RL to optimize execution strat-
egy (Nevmyvaka, Feng, and Kearns 2006; Ning, Ling, and
Jaimungal 2018; Lin and Beling 2020). Nevertheless, these
works faces challenges of utilizing imperfect and noisy mar-
ket information. And they even train separate strategies for
each of several manually chosen instruments, which is not
efficient and may result in over-fitting. We propose to han-
dle the issue of market information utilization for optimal
policy optimization, while training a universal strategy for
all instruments with general pattern mining.

Policy Distillation
This work is also related to policy distillation (Rusu et al.
2015), which incorporates knowledge distillation (Hinton,
Vinyals, and Dean 2015) in RL policy training and has at-
tracted many researches studying this problem (Parisotto,
Ba, and Salakhutdinov 2015; Teh et al. 2017; Yin and Pan
2017; Green, Vineyard, and Koç 2019; Lai et al. 2020).
However, these works mainly focus on multi-task learn-
ing or model compression, which aims at deriving a com-
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prehensive or tiny policy to behave normally in different
game environments. Our work dedicates to bridge the gap
between the imperfect environment states and the optimal
action sequences through policy distillation, which has not
been properly studied before.

Methodology
In this section, we first formulate the problem and present
the assumptions of our method including MDP settings and
market impact. Then we introduce our policy distillation
framework and the corresponding policy optimization algo-
rithm in details. Without loss of generality, we take liquida-
tion, i.e., to sell a specific number of shares, as an on-the-fly
example in the paper, and the solution to acquirement can be
derived in the same way.

Formulation of Order Execution
Generally, order execution is formulated under the sce-
nario of trading within a predefined time horizon, e.g., one
day. We follow a widely applied simplification to the real-
ity (Cartea, Jaimungal, and Penalva 2015; Ning, Ling, and
Jaimungal 2018) by which trading is based on discrete time.

Under this configuration, we assume there are T timesteps
{0, 1, . . . , T − 1}, each of which is associated with a
price for trading {p0, p1, . . . , pT−1}. At each timestep t ∈
{0, 1, . . . , T − 1}, the trader will propose to trade a volume
of qt+1 ≥ 0 shares, the trading order of which will then be
actually executed with the execution price pt+1. With the
goal of maximizing the revenue with completed liquidation,
the objective of optimal order execution, assuming totally Q
shares to be liquidated during the whole time horizon, can
be formulated as

arg max
q1,q2,...,qT

T−1∑
t=0

(qt+1 · pt+1), s.t.
T−1∑
t=0

qt+1 = Q . (1)

The average execution price (AEP) is calculated as P̄ =∑T−1
t=0 (qt+1·pt+1)∑T−1

t=0 qt+1
=
∑T−1
t=0

qt+1

Q · pt+1 . The equations above
expressed that, for liquidation, the trader needs to maximize
the average execution price P̄ so that to gain as more revenue
as possible and for acquirement, the objective is reversed.

Order Execution as a Markov Decision Process
Given the trait of sequential decision-making, order execu-
tion can be defined as a Markov Decision Process. To solve
this problem, RL solutions are used to learn a policy π ∈ Π
to trade through proposing an action a ∈ A given an ob-
served state s ∈ S , while maximizing the total expected
rewards based on the reward function R(s, a).

State. The observed state st at the timestep t describes the
status information of the whole system including both the
trader and the market variables. Two types of widely-used
information (Nevmyvaka, Feng, and Kearns 2006; Lin and
Beling 2020) for the trading agent are private variable of
the trader and public variable of the market. Private variable
includes the elapsed time t and the remained inventory (Q−∑t
i=1 qi) to be executed. As for the public variable, it is a

bit tricky since the trader only observes imperfect market
information. Specifically, one can only take the past market
history, which have been observed at or before the time t,
into consideration to make the trading decision for the next
timestep. The market information includes price and volume
information of each timestep.

Action. Given the observed state st, the agent proposes the
decision at = π(st) according to its trading policy π, where
at is discrete and corresponds to the proportion of the target
order Q. Thus, the trading volume to be executed at the next
time can be easily derived as qt+1 = at ·Q, and each action
at is the standardized trading volume for the trader.

According to Eq. (1), we follow the prior works (Ning,
Ling, and Jaimungal 2018; Lin and Beling 2020) and as-
sume that the summation of all the agent actions during the
whole time horizon satisfies the constraint of order fulfill-
ment that

∑T−1
t=0 at = 100%. So that the agent will have

to propose aT−1 = max{1 −
∑T−2
i=0 ai, π(sT−1)} to fulfill

the order target, at the last decision making time of (T − 1).
However, leaving too much volume to trade at the last trad-
ing timestep is of high price risk, which requires the trading
agent to consider future market dynamics at each time for
better execution performance.

Reward. The reward of order execution in fact consists of
two practically conflicting aspects, trading profitability and
market impact penalty. As shown in Eq. (1), we can parti-
tion and define an immediate reward after decision making
at each time.

To reflect the trading profitability caused by the action, we
formulate a positive part of the reward as volume weighted
price advantage:

R̂+
t (st, at) =

qt+1

Q
·

price normalization︷ ︸︸ ︷(
pt+1 − p̃

p̃

)
= at

(
pt+1

p̃
− 1

)
,

(2)
where p̃ = 1

T

∑T−1
i=0 pi+1 is the averaged original market

price of the whole time horizon. Here we apply normaliza-
tion onto the absolute revenue gain in Eq. (1) to eliminate the
variance of different instrument prices and order volume, to
optimize a universal trading strategy for all instruments.

Note that although we utilize the future price of the in-
strument to calculate R̂+, the reward is not included in the
state thus would not influence the actions of our agent or
cause any information leakage. It would only take effect in
back-propagation during training. As p̃ varies within differ-
ent episodes, this MDP might be non-stationary. There are
some works on solving this problem (Gaon and Brafman
2020), however this is not the main focus of this paper and
would not influence the conclusion.

To account for the potential that the trading activity may
have some impacts onto the current market status, following
(Ning, Ling, and Jaimungal 2018; Lin and Beling 2020), we
also incorporate a quadratic penalty

R̂−t = −α(at)
2 (3)

on the number of shares, i.e., proportion at of the target or-
der to trade at each decision time. α controls the impact de-
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Figure 3: The framework of oracle policy distillation. All
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gree of the trading activities. Such that the final reward is

Rt(st, at) = R̂+
t (st, at) + R̂−t (st, at)

=

(
pt+1

p̃
− 1

)
at − α (at)

2
.

(4)

The overall value, i.e., expected cumulative discounted
rewards of execution for each order following policy π, is
Eπ[
∑T−1
t=0 γtRt] and the final goal of reinforcement learn-

ing is to solve the optimization problem as

arg max
π

Eπ
[ T−1∑
t=0

γtRt(st, at)
]
. (5)

As for the numerical details of the market variable and the
corresponding MDP settings, please refer to the supplemen-
tary including the released code.

Assumptions Note that there are two main assumptions
adopted in this paper. Similar to (Lin and Beling 2020), (i)
the temporary market impact has been adopted as a reward
penalty and we assume that the market is resilient and will
bounce back to the equilibrium at the next timestep. (ii) We
either ignore the commissions and exchange fees as the these
expense is relatively small fractions for the institutional in-
vestors that we are mainly aimed at.

Policy Distillation and Optimization
In this section, we explain the underlying intuition behind
our policy distillation and illustrate the detailed optimization
framework.

Policy Distillation As aforementioned, our goal is to
bridge the gap between the imperfect information and the
optimal trading action sequences. An end-to-end trained RL
policy may not effectively capture the representative patterns
from the imperfect yet noisy market information. Thus it
may result in much lower sample efficiency, especially for
RL algorithms. To tackle with this, we propose a two stage
learning paradigm with teacher-student policy distillation.

We first explain the imperfect and perfect information. In
additional to the private variable including left time and the
unexecuted order volume, at time t of one episode, the agent
will also receive the state of the public variable, i.e., the
market information of the specific instrument price and the
overall transaction volume within the whole market. How-
ever, the actual trader only has the history market informa-
tion which is collected before the decision making time t.
We define the history market information as imperfect infor-
mation and the state with that as the common state st. On the
contrary, assuming that one oracle has the clue of the future
market trends, she may derive the optimal decision sequence
with this perfect information, as notated as s̃t.

As illustrated in Figure 3, we incorporate a teacher-
student learning paradigm.

• Teacher plays a role as an oracle whose goal is to achieve
the optimal trading policy π̃φ(·|s̃t) through interacting
with the environment given the perfect information s̃t,
where φ is the parameter of the teacher policy.

• Student itself learns by interacting with the environment
to optimize a common policy πθ(·|st) with the parameter
θ given the imperfect information st.

To build a connection between the imperfect information
to the optimal trading strategy, we implement a policy distil-
lation loss Ld for the student. A proper form is the negative
log-likelihood loss measuring how well the student’s deci-
sion matching teacher’s action as

Ld = −Et [log Pr(at = ãt|πθ, st;πφ, s̃t)] , (6)

where at and ãt are the actions taken from the policy
πθ(·|st) of student and πφ(·|s̃t) of teacher, respectively. Et
denotes the empirical expectation over timesteps.

Note that, the teacher is utilized to achieve the optimal
action sequences which will then be used to guide the learn-
ing of the common policy (student). Although, with per-
fect information, it is possible to find the optimal action se-
quence using a searching-based method, this may require
human knowledge and is quite inefficient with extremely
high computational complexity as analyzed in our supple-
mentary. Moreover, another key advantage of the learning-
based teacher lies in the universality, enabling to transfer this
method to the other tasks, especially when it is very difficult
to either build experts or leverage human knowledge.

Policy Optimization Now we move to the learning algo-
rithm of both teacher and student. Each policy of teacher and
student is optimized separately using the same algorithm,
thus we describe the optimization algorithm with the stu-
dent notations, and that of teacher can be similarly derived
by exchanging the state and policy notations.

With the MDP formulation described above, we utilize
Proximal Policy Optimization (PPO) algorithm (Schulman
et al. 2017) in actor-critic style to optimize a policy for
directly maximizing the expected reward achieved in an
episode. PPO is an on-policy RL algorithm which seeks to-
wards the optimal policy within the trust region by minimiz-

110



𝜋(⋅ |𝒔 ) 𝑉(𝒔 )

Public variable Private variable

Recurrent 
layer

Inference
layer

Actor
layer

Critic
layer

Recurrent 
layer

Figure 4: The overall structure of the policy network.

ing the objective function of policy as

Lp(θ) =− Et
[
πθ(at|st)
πθold(at|st)

Â(st, at)

]
+ Et [βKL [πθold(·|st), πθ(·|st)]] .

(7)

Here θ is the current parameter of the policy network,
θold is the previous parameter before the update operation.
Â(st, at) is the estimated advantage calculated as

Â(st, at) = Rt(st, at) + γVθ(st+1)− Vθ(st) . (8)

It is a little different to that in (Schulman et al. 2017) which
utilizes generalized advantage estimator (GAE) for advan-
tage estimation as our time horizon is relatively short and
GAE does not bring better performance in our experiments.
Vθ(·) is the value function approximated by the critic net-
work, which is optimized through a value function loss

Lv(θ) = Et [‖Vθ(st)− Vt‖2] . (9)

Vt is the empirical value of cumulative future rewards

Vt =
T−1∑
t′=t

E
[
γT−t

′−1Rt′(st′ , at′)
]
. (10)

The penalty term of KL-divergence in Eq. (7) controls the
change within an update iteration, whose goal is to stabilize
the parameter update. And the adaptive penalty parameter β
is tuned according to the result of KL-divergence term fol-
lowing (Schulman et al. 2017).

As a result, the overall objective function of the student
includes the policy loss Lp, the value function loss Lv and
the policy distillation loss Ld as

L(θ) =

policy optimization︷ ︸︸ ︷
Lp + λLv +

policy distillation︷︸︸︷
µLd ,

(11)

where λ and µ are the weights of value function loss and
the distillation loss. The policy network is optimized to min-
imize the overall loss with the gradient descent method.
Please also be noted that the overall loss function of the
teacher L(φ) does not have the policy distillation loss.

Policy Network Structure As is shown in Figure 4, there
are several components in the policy network where the pa-
rameter θ is shared by both actor and critic. Two recurrent

neural networks (RNNs) have been used to conduct high-
level representations from the public and private variables,
separately. The reason to use RNN is to capture the temporal
patterns for the sequential evolving states within an episode.
Then the two obtained representations are combined and fed
into an inference layer to calculate a comprehensive repre-
sentation for the actor layer and and the critic layer. The
actor layer will propose the final action distribution under
the current state. For training, following the original work
of PPO (Schulman et al. 2017), the final action are sam-
pled w.r.t. the produced action distribution π(·|st). As for
evaluation and testing, on the contrary, the policy migrates
to fully exploitation thus the actions are directly taken by
at = arg maxa π(·|st) without exploration. The detailed
implementations are described in supplemental materials.

Discussion Compared to previous related studies (Ning,
Ling, and Jaimungal 2018; Lin and Beling 2020), the main
novelty of our method lies in that we incorporate a novel
policy distillation paradigm to help common policy to ap-
proximate the optimal trading strategy more effectively. In
addition, other than using a different policy network archi-
tecture, we also proposed a normalized reward function for
universal trading for all instruments which is more efficient
than training over single instrument separately. Moreover,
we find that the general patterns learned from the other in-
strument data can improve trading performance and we put
the experiment and discussions in the supplementary.

Experiments
In this section, we present the details of the experiments.
The open-source code and the supplementary are presented
in this link3.

We first raise three research questions (RQs) to lead our
discussion in this section. RQ1: Does our method succeed
in finding a proper order execution strategy which applies
universally on all instruments? RQ2: Does the oracle pol-
icy distillation method help our agent to improve the overall
trading performance? RQ3: What typical execution patterns
does each compared method illustrate?

Experiment Settings
Compared methods We compare our method and its vari-
ants with the following baseline order execution methods.
TWAP (Time-weighted Average Price) is a model-based

strategy which equally splits the order into T pieces
and evenly execute the same amount of shares at each
timestep. It has been proven to be the optimal strategy
under the assumption that the market price follows Brow-
nian motion (Bertsimas and Lo 1998).

AC (Almgren-Chriss) is a model-based method (Almgren
and Chriss 2001), which analytically finds the efficient
frontier of optimal execution. We only consider the tem-
porary price impact for fair comparison.

VWAP (Volume-weighted Average Price) is another
model-based strategy which distributes orders in pro-
portion to the (empirically estimated) market transaction
3https://seqml.github.io/opd/
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volume in order to keep the execution price closely
tracking the market average price ground truth (Kakade
et al. 2004; Białkowski, Darolles, and Le Fol 2008).

DDQN (Double Deep Q-network) is a value-based RL
method (Ning, Ling, and Jaimungal 2018) and adopts
state engineering optimizing for individual instruments.

PPO is a policy-based RL method (Lin and Beling 2020)
which utilizes PPO algorithm with a sparse reward to train
an agent with a recurrent neural network for state feature
extraction. The reward function and the network architec-
ture are different to our method.

OPD is our proposed method described above, which has
two other variants for ablation study: OPDS is the pure
student trained without oracle guidance and OPDT is the
teacher trained with perfect market information.
Note that, for fair comparison, all the learning-based

methods, i.e., DDQN, PPO and OPD, have been trained over
all the instrument data, rather than that training over the
data of individual instrument as shown in the related works
(Ning, Ling, and Jaimungal 2018; Lin and Beling 2020).

Datasets All the compared methods are trained and eval-
uated with the historical transaction data of the stocks in the
China A-shares market. The dataset contains (i) minute-level
price-volume market information and (ii) the order amount
of every trading day for each instrument from Jan. 1, 2017 to
June 30, 2019. Without loss of generality, we focus on intra-
day order execution, while our method can be easily adapted
to a more high-frequency trading scenario. The detailed de-
scription of the market information including data process-
ing can be referred to the supplementary.

The dataset is divided into training, validation and test
datasets according to the trading time. The detailed statis-
tics are listed in Table 1. We keep only the instruments of
CSI 800 in validation and test datasets due to the limit of our
computing power. Note that as CSI 800 Index is designed to
reflect the overall performance of A-shares (China Securi-
ties Index Co. 2020), this is a fair setting for evaluating all
the compared methods.

For all the model-based methods, the parameters are set
based on the training dataset and the performances are di-
rectly evaluated on the test dataset. For all the learning-based
RL methods, the policies are trained on the training dataset
and the hyper-parameters are tuned on the validation dataset.
All these setting values are listed in the supplementary. The
final performances of RL policiesd are calculated over the
test dataset averaging the results from six policies trained
with the same hyper-parameter but different random seeds.

Training Validation Test
instruments 3,566 855 855

order 1,654,385 35,543 33,176
Time 201701 - 201902 201903 - 201904 201905 - 201906

Table 1: The dataset statistics.

Evaluation Workflow
Every trading strategy has been evaluated following the pro-
cedure in Figure 5. Given the trading strategy, we need to go

through the evaluation data to assess the performance of or-
der execution. After (1) the evaluation starts, if (2) there still
exists unexecuted orders, (3) the next order record would be
used for intraday order execution evaluation. Otherwise, (4)
the evaluation is over. The execution of one order would end
once the time horizon ends or the order has been fulfilled.
More details are shown in the supplementary.

t = t+1

1. start

4. end

3. get the next 
order

b. generate 
state from 

market data

c. trading 
strategy

d. order 
execution

Yes No

State

Action

Yes a. order 
fulfilled

t = 0

No

2. all order 
executed

Figure 5: Evaluation workflow.

Evaluation Metrics.
We use the obtained reward as the first metric for all

the compared methods. Although some methods are model-
based (i.e., TWAP, AC, VWAP) or utilize a different reward
function (i.e., PPO), the reward of their trading trajecto-
ries would all be calculated as 1

|D|
∑|D|
k=1

∑T−1
t=0 Rkt (skt , a

k
t ),

whereRkt is the reward of the k-th order at timestep t defined
in Eq. (4) and |D| is the size of the dataset. The second is the

price advantage (PA) = 104

|D|
∑|D|
k=1(

P̄k
strategy

p̃k
− 1) , P̄ kstrategy is

the corresponding AEP that our strategy has achieved on or-
der k. This measures the relative gained revenue of a trading
strategy compared to that from a baseline price p̃k. Gener-
ally, p̃k is the averaged market price of the instrument on the
specific trading day, which is constant for all the compared
methods. PA is measured in basis points (BPs), where one
basis point is equal to 0.01%. We conduct significance test
(Mason and Graham 2002) on PA and reward to verify the
statistical significance of the performance improvement. We
also report gain-loss ratio (GLR) = −E[PA|PA>0]

E[PA|PA<0] result.

Experiment Results
We analyze the experimental results from three aspects.

Overall Performance The overall results are reported in
Table 2 (* indicates p-value < 0.01 in significance test)
and we have the following findings. (i) OPD has the best
performance among all the compared methods including
OPDS without teacher guidance, which illustrates the ef-
fectiveness of oracle policy distillation (RQ2). (ii) All the
model-based methods perform worse than the learning-
based methods as their adopted market assumptions might
not be practical in the real world. Also, they fail to capture
the microstructure of the market and can not adjust their
strategy accordingly. As TWAP equally distribute the or-
der to every timestep, the AEP of TWAP is always p̃. Thus
the PA and GLR results of TWAP are all zero. (iii) Our
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Figure 6: An illustration of execution details of different methods.
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Figure 7: Learning curves (mean±std over 6 random seeds).
Every step means one interaction with the environment.

Category Strategy Reward(×10−2) PA GLR
financial
model-
based

TWAP -0.42 0 0
AC -1.45 2.33 0.89

VWAP -0.30 0.32 0.88

learning-
based

DDQN 2.91 4.13 1.07
PPO 1.32 2.52 0.62

OPDS 3.24 5.19 1.19
OPD 3.36* 6.17* 1.35

Table 2: Performance comparison; the higher, the better.

proposed method outperforms other learning-based methods
(RQ1). Speaking of DDQN, we may conclude that it is hard
for the value-based method to learn a universal Q-function
for all instruments. When comparing OPDS with PPO, we
conclude that the normalized instant reward function may
largely contribute to the performance improvement.

We also conduct our experiments on three datasets for
a comprehensive comparison with a rolling window along
time. The results are shown in the supplementary.

Learning Analysis We show learning curves over training
and validation datasets in Figure 7. We have the following
findings that (i) all these methods reach stable convergence
after about 8 million steps of training. (ii) Among all the
learning-based methods, our OPD method steadily achieve
the highest PA and reward results on validation set after
convergence, which shows the effectiveness of oracle pol-
icy distillation. (iii) Though the performance gap between
OPDS and OPD is relatively small in the training dataset,
OPD evidently outperforms OPDS on validation dataset,

which shows that oracle guidance can help to learn a more
general and effective trading strategy.

Case Study We further investigate the action patterns of
different strategies (RQ3). In Figure 6, we present the exe-
cution details of all the learning-based methods. The colored
lines exhibit the volume of shares traded by these agents at
every minute and the grey line shows the trend of the market
price pt of the underlying trading asset on that day.

We can see that in all cases, the teacher OPDT always cap-
tures the optimal trading opportunity. It is reasonable since
OPDT can fully observe the perfect information, including
future trends. The execution situation of DDQN in all cases
are exactly the same, which indicates that DDQN fails to
adjust its execution strategy dynamically according to the
market, thus not performing well. For PPO and OPDS, ei-
ther do they miss the best price for execution or waste their
inventory at a bad market opportunity.

Our proposed OPD method outperforms all other meth-
ods in all three cases except the teacher OPDT. Specifically,
in Case 1, OPD captures the best opportunity and manages
to find the optimal action sequence. Although OPD fails to
capture the optimal trading time in Case 2, it still manages to
find a relatively good opportunity and achieve a reasonable
and profitable action sequence. However, as a result of ob-
serving no information at the beginning of the trading day,
our method tends to miss some opportunities at the begin-
ning of one day, as shown in Case 3. Though that, in such
cases, OPD still manages to find a sub-optimal trading op-
portunity and illustrates some advantages to other methods.

Conclusion
In this paper, we presented a model-free reinforcement
learning framework for optimal order execution. We incor-
porate a universal policy optimization method that learns
and transfers knowledge data from various instruments for
order execution over all the instruments. Also, we conducted
an oracle policy distillation paradigm to improve the sample
efficiency of RL methods and help derive a more reasonable
trading strategy. It has been done through letting a student
imitate and distillate the optimal behavior patterns from the
optimal trading strategy derived by a teacher with perfect
information. The experiment results over real-world instru-
ment data have reflected the efficiency and effectiveness of
the proposed learning algorithm.

In the future, we plan to incorporate policy distillation to
learn a general trading strategy from the oracles conducted
for each single asset.
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