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Abstract

Intelligent transportation management requires not only
statistical information on users’ mobility patterns, but
also knowledge of their corresponding transportation
modes. While GPS trajectories can be readily obtained
from GPS sensors found in modern smartphones and
vehicles, these massive geospatial data are neither au-
tomatically annotated nor segmented by transportation
mode, subsequently complicating transportation mode
identification. In addition, predictive uncertainty caused
by the learned model parameters or variable noise in
GPS sensor readings typically remains unaccounted
for. To jointly address the above issues, we propose
a Bayesian deep learning framework for unsupervised
GPS trajectory segmentation. After unlabeled GPS tra-
jectories are preprocessed into sequences of motion
features, they are used in unsupervised training of a
channel-calibrated temporal convolutional neural net-
work for timestep-level transportation mode identifi-
cation. At test time, we approximate variational infer-
ence via Monte Carlo dropout sampling, leveraging the
mean and variance of the predicted distributions to clas-
sify each input timestep and estimate its predictive un-
certainty, respectively. The proposed approach outper-
forms both its non-Bayesian variant and established
GPS trajectory segmentation baselines on Microsoft’s
Geolife dataset without using any labels.

Introduction
Citywide knowledge of users’ mobility patterns and asso-
ciated transportation modes is crucial for intelligent trans-
portation management and infrastructure design. How to in-
fer transportation modes from segments of Global Position-
ing System (GPS) trajectories has been studied extensively
in recent years (Zheng et al. 2008b; Stenneth et al. 2011;
Xiao, Juan, and Zhang 2015; Zhang et al. 2019; Dabiri
et al. 2020; Yu 2020). Yet the real-world applicability of
most such methods is limited by their simplifying assump-
tion that single-transportation-mode segments would some-
how be available to begin with. The challenging problem
of trajectory segmentation (Fig. 1), or how to split GPS
trajectories into segments involving exactly one transporta-
tion mode, is often avoided by leveraging the transportation
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Figure 1: GPS trajectory segmentation aims to extract
single-transportation-mode segments from sequences of
GPS points.

mode labels available during data preprocessing. In reality,
however, the tremendous amounts of GPS data that are gen-
erated daily are not automatically segmented or even anno-
tated by transportation mode.

Following a naive approach to trajectory segmentation,
one could simply extract consecutive nonoverlapping trajec-
tory segments of uniform length (Dabiri and Heaslip 2018).
In doing so, however, there could be multiple transportation
modes in many of the obtained segments. Even by map-
ping these segments to their dominant transportation mode,
one would be introducing unnecessary noise to the data, po-
tentially impacting the performance of transportation mode
classifiers. In this direction, the literature has sought to de-
tect transportation mode change points within GPS trajec-
tories by leveraging sliding window approaches (Stenneth
et al. 2011; Bolbol et al. 2012), mobility-based heuristics
(Zheng et al. 2008b; Xiao, Juan, and Zhang 2015), and
more recently, optimization-based algorithms (Dabiri et al.
2020). However, such approaches often exhibit poor scala-
bility, require extensive feature engineering or transportation
domain knowledge, and assume independent and identically
distributed samples, respectively.

In this work, we argue that a truly comprehensive ap-
proach to GPS trajectory segmentation would need to ad-
dress the following issues tied to the transportation domain:

1. Semantic trajectory segmentation. Given the limita-
tions of existing methods, as mentioned above, we con-
sider deep semantic segmentation as a promising alter-
native. Commonly encountered in computer vision appli-
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cations (Long, Shelhamer, and Darrell 2015; Chen et al.
2018; Fu et al. 2019), semantic segmentation methods
train deep Convolutional Neural Networks (CNNs) to de-
tect refined object boundaries within images or videos by
performing pixel- rather than image-level classification.

2. Learning from unlabeled GPS data. Due to privacy
concerns or simply lack of motivation, users cannot be
expected to label their voluminous GPS data consis-
tently and accurately. Given that traditional clustering al-
gorithms often produce suboptimal results when applied
to high-dimensional data (Li, Qiao, and Zhang 2018),
we turn to the emerging research area of deep cluster-
ing, which trains deep neural networks to cluster un-
labeled data via unsupervised learning (Xie, Girshick,
and Farhadi 2016; Caron et al. 2018; Ji, Henriques, and
Vedaldi 2019).

3. Capturing predictive uncertainty. While standard deep
learning classifiers produce discrete probability distribu-
tions via the softmax function, this does not sufficiently
capture model uncertainty (Kendall and Gal 2017). In
GPS-based applications, we posit that uncertainty could
also be tied to inconsistent sensor sampling rates among
different observations, as well as erroneous or missing
measurements due to signal loss. Bayesian deep learn-
ing can be viewed as a probabilistic extension to standard
deep learning that enables quantification of both model
and input uncertainty (Ribeiro et al. 2019).

Drawing inspiration from recent developments in seman-
tic segmentation, deep clustering, and Bayesian deep learn-
ing, this work proposes to reframe GPS trajectory segmen-
tation as timestep-level transportation mode identification.
As such, a channel-calibrated Bayesian Temporal Convo-
lutional Network (BTCN) is introduced for unsupervised,
uncertainty-aware GPS trajectory segmentation. BTCN ex-
tends standard TCNs, recently proposed as a sequence mod-
eling alternative to recurrent neural networks (Bai, Kolter,
and Koltun 2018), with (1) Squeeze-and-Excitation (SE)
blocks (Hu, Shen, and Sun 2018) to encourage learning
interdependencies between channels, and (2) Monte Carlo
(MC) dropout sampling as an approximation of variational
inference (Kendall and Gal 2017) to not only capture pre-
dictive uncertainty but also use it to refine predictions. In
our experiments on Microsoft’s Geolife dataset (Zheng et al.
2008a,b), BTCN achieved 65.8% timestep-level accuracy
without using any labels, outperforming established base-
lines as well as its non-Bayesian variant.

Related Work
Semantic Segmentation In this study, we tackle trajectory
segmentation from a novel perspective, drawing inspiration
from recent deep semantic segmentation methods success-
fully applied to computer vision applications.

Semantic image segmentation classifies each pixel in an
input image, allowing for fine-grained detection of object
boundaries. Earlier work (Chen et al. 2014) repurposes con-
tracting image-level CNN classifiers for semantic segmenta-
tion via bilinear upsampling and fully connected conditional

random fields, while (Long, Shelhamer, and Darrell 2015)
converts them to Fully Convolutional Networks (FCNs) by
replacing their fully connected layers with convolutions, in-
troducing in-network upsampling, and adding skip connec-
tions from shallow to deep layers.

Since then, FCNs have served as the foundation for
several semantic segmentation frameworks. To improve
the recovery of downsampled spatial information, archi-
tectural adaptations include adding a symmetric decoder
(Badrinarayanan, Kendall, and Cipolla 2017) with encoder-
decoder skip connections (Ronneberger, Fischer, and Brox
2015) or dilated convolutions at the encoder side (Chen
et al. 2018). Some works reduce the amount of downsam-
pling operations in FCNs by developing context aggrega-
tion modules, often including dilated convolutions in cas-
cades (Yu and Koltun 2016) or in parallel (Chen et al. 2017;
Fu et al. 2019). Instead, (Sun et al. 2019) avoids the need
to recover downsampled spatial information by maintaining
high-resolution latent representations throughout the encod-
ing process.

Deep Clustering Combining unsupervised deep learning
with traditional or custom clustering methods, deep clus-
tering is viewed as a promising technique towards labeled
data independence for the proposed trajectory segmentation
framework.

Some approaches optimize image-to-image distance in
a lower-dimensional space typically learned via unsuper-
vised autoencoder pretraining, by applying K-means (Yang,
Parikh, and Batra 2016) or attaching custom clustering lay-
ers (Xie, Girshick, and Farhadi 2016; Li, Qiao, and Zhang
2018) and minimizing a clustering loss. (Caron et al. 2018)
instead leverages CNNs pretrained on different datasets, it-
eratively clustering their output using K-means and setting
the resulting cluster assignments as pseudo-ground-truth la-
bels to update the model parameters. It is also possible to
leverage denoising (Ghasedi Dizaji et al. 2017) or variational
(Jiang et al. 2017) autoencoders, as well as GANs (Mukher-
jee et al. 2019). However, while only optimizing a cluster-
ing loss offers simplicity of implementation, it also risks ir-
reversibly corrupting the learned representations (Ji, Hen-
riques, and Vedaldi 2019).

Another body of research instead clusters data based on
mutual information between pairs of samples typically gen-
erated via data augmentation, or between samples and their
latent representations. For instance, (Hu et al. 2017) trains
neural networks to produce similar outputs for input samples
and their augmented versions, while also maximizing the
mutual information between the original samples and their
learned representations. (Hjelm et al. 2018) instead max-
imizes the information between latent representations and
local regions of the input samples, while also attempting to
match these representations to a prior distribution. Finally,
(Ji, Henriques, and Vedaldi 2019) maximizes the mutual in-
formation between a neural network’s outputs for pairs of
samples, additionally improving performance by simultane-
ously training an auxiliary overclustering component.
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Preliminaries
This section clarifies our working definitions of key
transportation-related terms, before formalizing the problem
to be addressed in this work and finally introducing Bayesian
deep learning.

Segmenting GPS Trajectories by Transportation
Mode
Definition 1 (GPS Point) A GPS point is denoted by pj =
〈tj , latj , lonj〉 ∈ R3, where tj measures the number of days
since a reference date, and −90 ≤ latj ≤ 90, −180 ≤
lonj ≤ 180 are latitude and longitude coordinates given in
decimal degrees.

Definition 2 (GPS Trajectory) A GPS trajectory Ti com-
prises a sequence of GPS points. Since the backbone of
this work is a deep convolutional neural network operat-
ing on fixed-size inputs, we assume Ti to be a sequence
Ti = {pj}M1 truncated to fixed length M .

Definition 3 (Motion Feature Sequence) Directly train-
ing a deep learning model on raw GPS data could be prob-
lematic. Intuitively, it might generalize poorly whenever
users visit locations inadequately represented in the training
set. Therefore, following established transportation mode
identification literature (Zheng et al. 2008b; Dabiri et al.
2020; Yu 2020), we preprocess each Ti into a sequence of
motion features Fi = {fj}M1 by transforming each pj ∈ Ti
into a vector fj ∈ RN of N motion features.

Problem (Trajectory Segmentation) Given a GPS trajec-
tory Ti ∈ RM×3 preprocessed into a sequence of motion
features Fi ∈ RM×N and K target transportation mode
classes, predict the transportation modes Yi ∈ {0, . . . ,K −
1}M for each timestep m, where 0 < m ≤M .

Bayesian Deep Learning
Let D = {(xi, yi)}ni=1 be a dataset of observations X
and targets Y . For a standard fully connected neural net-
work with L stacked hidden layers and parameters θ =
{(W l, bl)}L+1

l=0 , the ReLU-activated output of the l-th hid-
den layer can be written as:

hl = ReLU(W l · hl−1 + bl). (1)
ForK-class classification, the softmax activation function is
typically applied to the neural network’s output logits. The
model likelihood is then given by:

p(y = j|x, θ) =
exp(WL+1

j · hL + bL+1)∑
k∈K exp(WL+1

k · hL + bL+1)
. (2)

In contrast, Bayesian neural networks place a prior dis-
tribution p(θ) on their weights and biases, resulting in the
posterior distribution:

p(θ|D) =
p(D|θ)p(θ)
p(D)

=

∏n
i=1 p(yi|xi, θ)p(θ)

p(D)
, (3)

and the following predictive distribution for new inputs x′,
y′:

p(y′|x′,D) =

∫
Θ

p(y′|x′, θ)p(θ,D) dθ. (4)

Temporal	Residual	Block

SE	Block

BTCN

GPS	Trajectory

MC	Dropout	Sampling

Motion	Feature	Extraction

0 0 0 0 2 2 2 2 3 3 3 3

Temporal	Residual	Block

SE	Block

Temporal	Residual	Block

SE	Block

Figure 2: Overview of the proposed trajectory segmentation
framework. At test time, GPS trajectories are preprocessed
into sequences of motion features and repeatedly fed to the
proposed BTCN while dropout remains activated. The mean
of these aggregated softmax probabilities is taken as the final
predictions, while their variance is used to quantify predic-
tive uncertainty.

However, analytical estimation of the posterior is typically
intractable, as it requires integration with respect to Θ,
i.e., the space of all parameters, for which a closed form
often does not exist. One way to approximate the poste-
rior is through variational inference, which minimizes the
Kullback-Leibler divergence between the posterior p(θ|D)
and a variational distribution qω(θ) with parameters ω
(Kwon et al. 2020). Another approach is to approximate
variational inference itself by applying stochastic regular-
ization techniques like dropout to non-Bayesian neural net-
works. As will be detailed in the following section, in this
work we approximate variational inference via MC dropout
sampling (Kendall and Gal 2017).

Proposed Framework
This section first introduces the Bayesian temporal convo-
lutional network proposed for GPS trajectory segmentation.
Next, it explains how we approximate variational inference
and capture uncertainty to refine model predictions. Finally,
it presents the objective function that is optimized to learn
the unsupervised segmentation task.

A high-level architectural view of BTCN is given in Fig.
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2. BTCN fuses TCNs with SE blocks (Hu, Shen, and Sun
2018) to enrich the learned temporal trajectory representa-
tions with knowledge of feature map interdependencies. At
inference time, a sequence of motion features is extracted
from each GPS trajectory and sampled from BTCN multiple
times while dropout is activated. Variational inference is ap-
proximated by the mean of these aggregated softmax proba-
bilities constituting the final predictions, while their variance
is used to estimate aleatoric and epistemic uncertainties.

Bayesian Temporal Convolutional Network
Given GPS trajectories T converted into sequences of mo-
tion features F , one could approach trajectory segmentation
via standard sequence modeling practice, i.e., using recur-
rent neural networks. However, recurrent architectures can
be cumbersome to train, owing to reduced parallelism, van-
ishing or exploding gradients, as well as high memory re-
quirements (Bai, Kolter, and Koltun 2018). On the other
hand, recent work has shown that TCNs can effectively ad-
dress the above issues and even outperform recurrent archi-
tectures in established sequence modeling tasks (Bai, Kolter,
and Koltun 2018).

Architecture Similarly to TCNs, the basic component of
BTCN is the temporal residual block. As shown in Fig. 3(a),
the residual path first performs an optional 1D convolution
with unit kernel size to ensure that the number of input fea-
tures matches the desired number of output channels. Cru-
cially, the latter is set equal to the length of the input se-
quence, allowing TCNs to produce sequences of the same
length as their input. Next, the block applies two consecu-
tive dilated 1D convolutions, each followed by a ReLU ac-
tivation, a batch normalization layer, and finally a dropout
layer. Contrary to standard convolutions, dilated ones apply
filters over a larger area than their own by skipping input
values with step d, otherwise known as dilation rate. As a
result, dilation allows convolution layers to expand their re-
ceptive fields as the network depth grows, preserving input
resolution without need for downsampling.

While stacking temporal residual blocks allows TCNs to
uncover temporal dependencies among timesteps, we posit
that it may not sufficiently account for dependencies within
the channels themselves. Consequently, we follow recent
work in this direction (Hu, Shen, and Sun 2018) and in-
corporate SE blocks after each temporal residual block. As
shown in Fig. 3(b), the SE block first embeds channel in-
formation in F̂i ∈ RM×N across the temporal dimension
using global average pooling. A vector z ∈ RM is built for
channels ci ∈ RM , where:

zi =
1

M

M∑
m=1

ui(m). (5)

Then, the SE block scales down the resulting feature maps
by a factor of r ∈ Z+, before rescaling them and applying
a self-gating mechanism. This is achieved using two fully-
connected (or dense) layers with weights W1 ∈ RM/r and
W2 ∈ RM ; the operations can be formally described as fol-
lows:

ẑ = σ(W1(ReLU(W2z))), (6)

Global	Avg
Pooling	1D

Dense

Dense

Dilated
Conv1D

BatchNorm

Dropout

		(or																								)

(a)	Temporal	Residual	Block (b)	SE	Block

Conv1D

Figure 3: The main components of the proposed BTCN.
Temporal residual blocks leverage dilated 1D convolutions
to capture high-resolution temporal information without
need for downsampling. Always-on dropout layers are in-
serted to approximate variational inference via MC dropout
sampling. The feature maps produced by each temporal
residual block are subsequently recalibrated via an SE block.

where σ(·) denotes the sigmoid activation function. The
gated output ẑ is finally multiplied with the block’s input
to construct the final output F̃i ∈ RM×N , effectively pro-
moting the most useful channels.

Dropout Variational Inference BTCN approximates
variational inference via dropout. This corresponds to in-
jecting each deterministic Wl ∈ θ with noise following
a Bernoulli distribution to create its stochastic counterpart
W ′l . In practice, dropout is applied after each convolution
layer (except for the output layer) with probability of drop-
ping connections pdrop. Importantly, dropout is enabled not
only during training but also at inference time; we per-
form S stochastic forward passes to obtain class probabil-
ities Pi ∈ RM×K×S , which are averaged to produce the
posterior distribution P̂i ∈ RM×K . This process is known
as MC dropout sampling (Kendall and Gal 2017).

Predictive Uncertainty Quantification Given S MC
dropout samples with class probabilities Pi ∈ RM×K×S

reshaped into Pi ∈ RS×M×K , the total predictive uncer-
tainty can be approximated by the variance of Pi, defined as
follows (Ribeiro et al. 2019):

σ[Pi]
2 ≈ tr(E[diag(Pi)−PiP

T
i ]︸ ︷︷ ︸

aleatoric

+E[P2
i ]− E[Pi]

2︸ ︷︷ ︸
epistemic

)

= tr(σa[Pi]
2) + tr(σe[Pi]

2), (7)
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where matrices σa[Pi]
2 and σe[Pi]

2 correspond to aleatoric
and epistemic uncertainties, respectively. Their traces are
then taken to produce a single aleatoric and epistemic un-
certainty value per timestep.

Segmentation Objective Function
For unsupervised trajectory segmentation, we leverage the
mutual-information-based deep clustering method in (Ji,
Henriques, and Vedaldi 2019) for its demonstrated effective-
ness in semantic image segmentation over centroid-based
clustering approaches. It takes the K-dimensional softmax
predictions for each timestep in the input sequence and at-
tempts to maximize the mutual information between neigh-
boring pairs of timestep patches.

We note that the original image-based work obtained pairs
of neighboring patches not only within each image in the
dataset, but also from synthetic images generated via multi-
ple data augmentations; however, time series data augmen-
tation is non-trivial, especially for the problem at hand. In-
tuitively, it would be hard to verify whether perturbed mo-
tion features would still realistically correspond to the same
transportation mode. Therefore, considering only adjacent
pairs of timestep patches centered at u and u + t, where
t ∈ T ⊂ Z is a small displacement, the original clustering
objective can be written as:

max
Φ

1

|T |
∑
t∈T

I(Pt), (8a)

Pt =
1

n|Ω|

n∑
i=1

∑
u∈Ω

Φu(Fi) · [Φ(Fi)]
T
u+t, (8b)

where Φ is a neural network, in this case BTCN, and Φu(Fi)
is its output for patch u ∈ Ω = {1, . . . ,M} centered at
timestep u within the input motion feature sequence Fi.

Experiments
Simulation Setup
All experiments were conducted on a server with an In-
tel Xeon Silver 4210 CPU clocked at 2.20GHz and nVidia
GeForce RTX 2080Ti GPUs with 11 GB of GDDR6 mem-
ory. Each baseline was implemented as per the description in
its cited study. The reported values for all evaluation metrics
were averaged over five executions.

Dataset This study is evaluated on the Geolife dataset by
Microsoft Asia Research (Zheng et al. 2008a,b), which has
been widely used for GPS-based trajectory research. It con-
tains 18,670 GPS trajectories obtained from 182 users over
five years, totaling nearly 25 million GPS points and 1.3 mil-
lion kilometers. Most trajectories were collected in Beijing,
China at a sampling rate of 1−5 seconds. Only 69 users have
labeled parts of their trajectories by transportation mode;
these include walking, bike, bus, car, taxi, train, subway,
and airplane. Following the dataset authors’ recommenda-
tions, cars and taxis are treated as a single class, “car”, and
trains and subways as “train”. As typically done in the lit-
erature (Zheng et al. 2008a,b; Dabiri et al. 2020), we only
retain the five classes for which there are sufficient samples,

namely “walk”, “bike”, “bus”, “car”, and “train”. For evalu-
ation purposes, we only use labeled trajectories; no ground-
truth labels are involved in model training. All trajectories
are split into chunks of length M and divided into training
and test sets using a 90/10 ratio.

Preprocessing For each trajectory, we first discard any
GPS point whose timestamp is greater than that of the
next point, or whose geographic coordinates do not fall
within valid ranges. Next, we extract motion features by first
computing the relative geodesic distance ∆xpi and elapsed
time ∆tpi

between each GPS point pi and its successor
pi+1. These two features enable the computation of higher-
order distance derivatives, including velocity Vpi

, accelera-
tion Api

, jerk Jpi
, and turn Upi

:

∆xpi
= Geodesic(lati, loni, lati+1, loni+1), (9a)

∆tpi = pi+1[t]− pi[t], (9b)
Vpi

= ∆xpi
/∆tpi

, (9c)
Api

= (Vpi+1
− Vpi

)/∆tpi
, (9d)

Jpi
= (Api+1

−Api
)/∆tpi

, (9e)

Upi
= tan−1 Geodesic(lati, loni, lati−1, loni)

Geodesic(lati, loni, lati, loni−1)

− tan−1 Geodesic(lati, loni, lati+1, loni)

Geodesic(lati, loni, lati, loni+1)
. (9f)

Following previous transportation literature (Zheng et al.
2008b; Yu 2020), we empirically select velocity, accelera-
tion, jerk, and turn as the motion features to train our trajec-
tory segmentation model. The features are standardized by
removing the mean and scaling to unit variance. We empiri-
cally set the sample lengthM to 128, such that Fi ∈ R128×4.

Model Configuration BTCN uses 3 consecutive pairs of
temporal residual and SE blocks. Within the i-th temporal
residual block, both convolutions combine a larger kernel
size of 8 with exponentially increasing dilation rates d = 2i,
i ∈ {0, 1, 2}. The dropout probability pdrop is set to 0.2 for
all dropout layers, as in (Ribeiro et al. 2019); it is main-
tained at test time as required for MC dropout sampling,
from which S = 50 samples are obtained. For all SE blocks,
the reduction ratio r is set to 8. BTCN is trained for 200
epochs using the Adam optimizer with a learning rate of
10−5 and default hyperparameters β1 = 0.9, β2 = 0.999.

Baselines BTCN is evaluated against the three most
prominent families of trajectory segmentation methods
among the relatively few found in the GPS-based transporta-
tion mode identification literature:

• Uniform segmentation. A naive approach to trajec-
tory segmentation is to extract fixed-size, nonoverlapping
chunks of timesteps from each trajectory. (Dabiri and
Heaslip 2018) uses a window of 200 points, which they
found to be the median length of the labeled GPS trajec-
tories in Geolife.

• Heuristics-based change point detection. Following the
intuition that walking must precede any change of trans-
portation mode, the authors in (Zheng et al. 2008b) pro-
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Segmentation Method Walk Bike Bus Car Train ACC MAE PR Train (min)

(Dabiri and Heaslip 2018) N/A N/A 728.4 3.12 N/A
(Zheng et al. 2008b) N/A N/A 234.5 1.91 N/A

(Xiao, Juan, and Zhang 2015) N/A N/A 287.7 2.34 N/A
(Dabiri et al. 2020) N/A N/A 526.1 1.23 0.02

TCN (non-Bayesian, no SE) 0.821 0.755 0.416 0.376 0.726 0.619 31.5 3.51 33.89
TCN (non-Bayesian, r = 8) 0.799 0.782 0.441 0.367 0.812 0.640 26.1 2.92 45.12

BTCN (no SE) 0.792 0.752 0.414 0.391 0.775 0.625 29.7 2.84 33.67
BTCN (r = 2) 0.827 0.727 0.349 0.478 0.753 0.627 25.8 2.04 45.14
BTCN (r = 4) 0.809 0.773 0.353 0.485 0.744 0.632 28.3 2.43 45.21
BTCN (r = 8) 0.820 0.811 0.396 0.475 0.789 0.658 24.7 1.97 45.15
BTCN (r = 16) 0.773 0.799 0.454 0.416 0.751 0.638 28.1 2.44 44.93

Table 1: GPS trajectory segmentation evaluation results. Where applicable, accuracies are reported for each class,
with ACC denoting global accuracy. Higher ACC, lower MAE, and PR ≈ 1 is better. Training time is in minutes.

pose a four-step method that divides trajectories into al-
ternating “walk” and “non-walk” segments based on dis-
tance, velocity, and acceleration thresholds. Similarly,
(Xiao, Juan, and Zhang 2015) also identifies gaps caused
by GPS signal interruption, extracting change points at the
boundaries of “walk” and gap segments.

• Optimization-based change point detection. (Dabiri
et al. 2020) first applies uniform segmentation to each tra-
jectory, then converts the obtained segments into multi-
variate time series of velocity and acceleration features
before feeding them to an optimization-based model.
The latter attempts to find subsegments such that the
homogeneity within each subsegment is maximized,
while the number of change points is penalized by a
hyperparameter-controlled linear function.

Evaluation Metrics Following standard clustering eval-
uation practice (Xie, Girshick, and Farhadi 2016; Ji, Hen-
riques, and Vedaldi 2019), all classes predicted by BTCN
and its variants are first mapped to the ground-truth classes
using linear assignment (Kuhn 1955). Segmentation perfor-
mance is then measured by timestep-level accuracy (ACC).

While BTCN labels each timestep by transportation
mode, the above baselines are label-agnostic: they merely
detect transportation mode change points, i.e., discrete
timesteps where the transportation mode changes, without
knowledge of the specific mode corresponding to each im-
plicitly defined segment. To allow for direct comparison
with BTCN, we extract change points by simply scanning
its output from left to right. We then evaluate BTCN against
the above baselines using the following evaluation metrics:

• Mean Absolute Error (MAE). As the number of pre-
dicted and ground-truth change points may differ, we first
identify for each predicted change point ŷi ∈ Ŷ its nearest
ground-truth yi ∈ Y . Given that most trajectories in Ge-
olife have been sampled at a rate of 1–5 seconds, we pre-
serve generality by measuring the distance between two
change points by the number of discrete timesteps sepa-
rating them. Then, given n predicted change points Ŷ and
their nearest ground-truth change points Y ′, the MAE is

calculated as MAE = 1
n

∑n
1 |y′i− ŷi|.We select this met-

ric under the assumption that the number of timesteps be-
tween y′i and ŷi matters more than whether ŷi precedes or
comes after y′i.

• Prediction Ratio (PR). Let npred, ntrue be the total num-
bers of predicted change points Ŷ and true change points
Y , respectively. The PR is computed as PR = npred/ntrue.
When PR < 1 or PR > 1, the segmentation model is said
to under- or over-predict change points. Either case could
complicate transportation mode identification, even if the
MAE is low: too few change points could mean noisy seg-
ments with more than one transportation mode, while too
many would result in short, harder to classify segments.

Experimental Results
Performance Evaluation Our experimental results are
summarized in Table 1. BTCN consistently and significantly
outperformed all evaluated methods, with its lowest MAE of
24.7 constituting a nearly 10× improvement over the best-
performing baseline (Zheng et al. 2008b). Recall that our
definition of MAE measures the mean number of discrete
timesteps between true and predicted change points; for unit
GPS sampling rate, our result means BTCN would only take
approximately 25 seconds on average to identify a change
in transportation mode, while the above baseline would re-
quire nearly 4 minutes. Although the proposed method did
demonstrate change point over-prediction on par with the
baselines, it is important to note that BTCN is designed for
timestep-level classification rather than change point detec-
tion. In fact, we formalized trajectory segmentation based on
mutual information maximization alone, without explicitly
penalizing over-segmentation. This is an open problem, es-
pecially in the absence of labels, and is left for future work.

Although each of the selected baselines has its own
merit, they are not without limitations. Uniform segmenta-
tion (Dabiri and Heaslip 2018) offers simplicity at the ex-
pense of constructing noisy segments likely to contain mul-
tiple transportation modes. Indeed, uniform segmentation
attained both the highest MAE and PR among all meth-
ods. Guided by domain-specific knowledge, the heuristics-
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S ACC MAE PR Aleatoric Epistemic

1 0.6763 32.6 4.03 1.047E-02 0.0
2 0.6769 31.0 3.23 1.050E-02 3.902E-01
5 0.6775 29.3 2.76 1.043E-02 6.401E-01

10 0.6776 28.3 2.41 1.042E-02 7.162E-01
20 0.6777 27.2 2.22 1.048E-02 7.516E-01
50 0.6778 26.5 2.08 1.044E-02 7.746E-01

100 0.6778 26.1 2.02 1.047E-02 7.818E-01

Table 2: Performance and uncertainty metrics for BTCN
over number of Monte Carlo samples.

based segmentation baselines (Zheng et al. 2008b; Xiao,
Juan, and Zhang 2015) both produced much lower MAEs,
although they still predicted approximately twice the num-
ber of change points compared to the ground truth. This
might be due to heuristics not always being able to account
for unexpected traffic conditions (Zheng et al. 2008b).

Scoring the second highest MAE of 526.1, despite hav-
ing the best PR, the sub-par performance of optimization-
based segmentation (Dabiri et al. 2020) is not surprising:
this method is individually applied to truncated segments,
thereby failing to consider the entire data distribution. In
other words, it assumes that the samples are independent
and identically distributed. Such an assumption is unlikely
to hold for trajectory data collected from numerous users at
varying times and traffic or weather conditions.

Ablation Study To quantify the contribution of dropout
variational inference and SE blocks to the performance of
BTCN, we evaluate the latter when both components are dis-
abled, as well as by removing either component while main-
taining the other. As shown in Table 1, the non-Bayesian
variant without SE blocks achieved the lowest global and
per-class accuracy. Adding MC dropout pushed the global
accuracy from 61.9% to 62.5%, while enabling SE blocks
with r = 8 instead boosted it to 64.0% and combining
both components resulted in the highest global accuracy at
65.8%. In fact, the best accuracy for four out of five classes
was attained by the full BTCN, albeit with different reduc-
tion ratios r, while removing either of the Bayesian or SE
components resulted in nearly twice the over-prediction of
change points.

Finally, Table 2 shows the sensitivity of evaluation and
uncertainty metrics to the number of MC samples S. For
this experiment, we used the best-performing BTCN out of
5 executions. Although global accuracy did not seem to dras-
tically improve as S increased, the MAE dropped by about
19% and the PR was nearly halved. No noticeable improve-
ment to accuracy was observed when S > 50, which is the
value we used throughout our experiments.

Uncertainty-filtered Segmentation For safety-critical in-
telligent transportation applications involving GPS trajec-
tory segmentation, the ability of a model to selectively make
timestep-level predictions based on some measure of con-
fidence could be beneficial. Fig. 4 shows how global and
per-sample accuracy varies under different confidence per-
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Figure 4: Global and per-class accuracy of BTCN when only
classifying timesteps that exceed confidence thresholds.

centiles for the best-performing BTCN out of 5 executions.
In this context, confidence was simply defined as the nega-
tive aleatoric or epistemic uncertainty.

It appears that selectively classifying timesteps with
higher aleatoric confidence consistently achieved higher
global and per-class accuracy. On the contrary, we noted
minimal global accuracy improvement in the case of epis-
temic confidence; there were almost no variations until the
90th percentile, followed by a sharp drop for the 95th and 99th

percentiles. It is hypothesized that the poor performance of
epistemic confidence as a measure of accuracy in our work
is tied to the unsupervised, mutual-information-based objec-
tive function that BTCN was trained with.

Conclusion and Future Work

In this paper, we introduced a novel GPS trajectory seg-
mentation approach to address the shortcomings of related
GPS-based work in learning from unlabeled data and cap-
turing predictive uncertainty. Viewing trajectory segmenta-
tion through the scope of semantic image segmentation, the
proposed BTCN reached 65.8% timestep-level accuracy on
Microsoft’s Geolife dataset, significantly outperforming es-
tablished GPS-based baselines. We also conducted an abla-
tion study to empirically validate the necessity of its com-
ponents, and showed that BTCN effectively captured uncer-
tainty by producing higher accuracy for input timesteps with
lower aleatoric uncertainty.

In future work, we will investigate graph neural networks
to capture not only temporal but also spatial information
from non-Euclidean road network representations. We will
also explore how to effectively penalize over-segmentation
in the absence of labels.
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