
Queue-Learning: A Reinforcement Learning Approach for
Providing Quality of Service

Majid Raeis, Ali Tizghadam, Alberto Leon-Garcia
University of Toronto, Canada

{m.raeis, ali.tizghadam, alberto.leongarcia}@utoronto.ca

Abstract

End-to-end delay is a critical attribute of quality of service
(QoS) in application domains such as cloud computing and
computer networks. This metric is particularly important in
tandem service systems, where the end-to-end service is pro-
vided through a chain of services. Service-rate control is a
common mechanism for providing QoS guarantees in service
systems. In this paper, we introduce a reinforcement learning-
based (RL-based) service-rate controller that provides prob-
abilistic upper-bounds on the end-to-end delay of the sys-
tem, while preventing the overuse of service resources. In or-
der to have a general framework, we use queueing theory to
model the service systems. However, we adopt an RL-based
approach to avoid the limitations of queueing-theoretic meth-
ods. In particular, we use Deep Deterministic Policy Gradient
(DDPG) to learn the service rates (action) as a function of
the queue lengths (state) in tandem service systems. In con-
trast to existing RL-based methods that quantify their perfor-
mance by the achieved overall reward, which could be hard
to interpret or even misleading, our proposed controller pro-
vides explicit probabilistic guarantees on the end-to-end de-
lay of the system. The evaluations are presented for a tandem
queueing system with non-exponential inter-arrival and ser-
vice times, the results of which validate our controller’s capa-
bility in meeting QoS constraints.

Introduction
End-to-end delay of a service system is an important per-
formance metric that has a major impact on the customers’
satisfaction and the service providers’ revenues. Therefore,
providing guarantees on the end-to-end delay of a service
system is of great interest to both customers and service
providers. Ensuring quality of service (QoS) guarantees is
often a challenging task, particularly when the service sys-
tem is composed of finer-grained service components. This
can be seen in many different service contexts such as cloud
computing and computer networks. Specifically, with the
emergence of Network Function Virtualization (NFV) in
cloud environments, end-to-end service networks can be cre-
ated by chaining virtual network functions (VNF) together.
The goal of a cloud service provider is to efficiently man-
age the resources, while satisfying the QoS requirements

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the service chains. This can be achieved through differ-
ent control mechanisms such as vertical (horizontal) scal-
ing of the resources, which corresponds to adding/removing
CPU or memory resources of the existing VNF instances
(adding/removing VNF instances) in response to the work-
load changes (Toosi et al. 2019).

In order to study the problem of QoS assurance in
a broader context, we take a general approach and use
queueing-theoretic models for representing the service sys-
tems. Therefore, the presented results can be applied to a
wide range of problems, such as QoS assurance for VNF
chains. In this paper, we focus on dynamic service-rate con-
trol of the tandem systems as an effective approach for
providing end-to-end delay guarantees. This is closely re-
lated to the concept of vertical auto-scaling of VNF service
chains. There is a rich body of literature on the service-
rate control of the service systems, the majority of which is
based on queueing theoretic approaches (Kumar, Lewis, and
Topaloglu 2013; Lee and Kulkarni 2014; Weber and Stid-
ham 1987). However, most of this literature is limited to
simple scenarios or unrealistic assumptions, such as expo-
nential inter-arrival and service times. This is due to the fact
that the queueing theoretic techniques become intractable as
we consider larger networks under more realistic assump-
tions.

Considering the shortcomings of the queueing theoretic
methods and the fact that the service-rate control problem
involves sequential decision makings, we adopt a reinforce-
ment learning approach, which is a natural candidate for
dealing with these types of problems. In particular, we use
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.
2015) algorithm to handle the continuous action space (ser-
vice rates) and the large state space (queue lengths) of the
problem. The contributions of this paper can be summarized
as follows

• We introduce an RL-based framework that takes a QoS
constraint as input, and provides a dynamic service-rate
control algorithm that satisfies the constraint without
overuse of the service resources. This makes our method
distinct from the existing service-rate control algorithms
that quantify their performance by the achieved overall re-
ward, which is highly dependent on the reward definition
and might have no practical interpretations.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

461



• The proposed controller provides explicit guarantees on
the end-to-end delay of the system. This is in contrast to
existing methods that only consider some implicit notion
of the system’s latency such as the queue lengths.

• Our RL-based controller provides probabilistic upper-
bounds on the end-to-end delay of the system. This is an
important contribution of this paper since ensuring prob-
abilistic upper-bounds on a particular performance met-
ric, such as the end-to-end delay of the system, is a much
more challenging task compared to the common practice
control methods that only consider average performance
metrics such as the mean delay.

Related Work
Service system control problem has been studied using var-
ious techniques. The majority of these studies are based on
queueing theoretic methods, which are often limited to sim-
ple and unrealistic scenarios due to mathematical intractabil-
ity of the problem. The common approach used in this class
of studies is to minimize a cost function that consists of
different terms such as the customer holding cost and the
server operating cost (Kumar, Lewis, and Topaloglu 2013;
Lee and Kulkarni 2014). These methods do not directly con-
sider the delay of the system in their problem formulation
and therefore, cannot provide any delay guarantees. Using
a constraint programming approach, Terekhov et al. (2007)
study the control problem of finding the smallest-cost com-
bination of workers in a facility, while satisfying an upper-
bound on the expected customer waiting time. Although
this work provides a guarantee on the delay of the system,
the authors only consider the average waiting time of the
system. Another approach that has recently emerged as a
popular control method for complex service systems is re-
inforcement learning (Liu, Xie, and Modiano 2019; Raeis,
Tizghadam, and Leon-Garcia 2020). The authors in these
works study queueing control problems such as server allo-
cation, routing (Liu, Xie, and Modiano 2019) and admission
control (Raeis, Tizghadam, and Leon-Garcia 2020).

Similar control problems have been studied in different ar-
eas such as cloud computing and computer networks. VNF
auto-scaling is one such example, which aims to provide
QoS guarantees for service function chains (Toosi et al.
2019; Duan et al. 2017; Rahman et al. 2018). However, the
proposed algorithms in this area are often based on heuristic
methods and do not provide much insight into the behaviour
of the system or the control mechanism.

Problem Model and Formulation
In this paper, we consider multi-server queueing systems,
with First Come First Serve (FCFS) service discipline, as
the building blocks of the tandem service networks that we
study (Fig.1). In a tandem topology, a customer must go
through all the stages to receive the end-to-end service. We
do not assume specific distributions for the service times
or the inter-arrival times and therefore, these processes can
have arbitrary stationary distributions. We study QoS assur-
ance problem for a tandem network of N queueing systems,

…𝑞! 𝜇! 𝑐!
𝑞" 𝜇" 𝑐"

𝑞# 𝜇# 𝑐#

Figure 1: System model: a tandem network of multi-server
queueing systems, where the service rates µn, 1 ≤ n ≤ N ,
can be dynamically adjusted by the controller to satisfy the
QoS constraint.

where system n, 1 ≤ n ≤ N , is a multi-server queueing sys-
tem with cn homogeneous servers having service rates µn.
Moreover, we consider a service rate controller that chooses
a set of service rates for the constituent queueing systems
every T seconds. Therefore, the controller takes an action
at the beginning of each time slot1 and the service rates are
fixed during the time slot. We denote by qn the queue length
of the nth queueing system at the begining of each time
slot. The service rate controller takes actions based on the
queue length information of all the constituent systems, i.e.,
(q1, q2, · · · , qN ). Moreover, we denote the end-to-end delay
of the system at an arbitrary time slot by d.

As mentioned earlier, the reason for considering the ser-
vice rate controller is to provide QoS guarantees on the end-
to-end delay of the system. More specifically, our goal in
designing the controller is to provide a probabilistic upper-
bound on the end-to-end delay of the customers, i.e., P (d >
dub) ≤ εub, where dub denotes the delay upper-bound and
εub is the violation probability of the constraint. Since there
is an intrinsic trade-off between the system’s service capac-
ity and its end-to-end delay, satisfying the QoS constraint
might be achieved at the cost of inefficient use of the service
resources. Therefore, the amount of service resources that
are used by the controller is an important factor that needs
to be considered in our algorithm design.

Service Rate Control as a Reinforcement
Learning Problem

In this section, we start with a brief review of some basic
concepts and algorithms in reinforcement learning. Then, we
formulate our problem in the RL framework.

Background on Reinforcement Learning
The basic elements of a reinforcement learning problem are
the agent and the environment, which have iterative inter-
actions with each other. The environment is modeled by
a Markov Decision Process (MDP), which is specified by
< S,A,P,R >, with state space S , action space A, state
transition probability matrix P and reward function R. At
each time step t, the agent observes a state st ∈ S , takes
action at ∈ A, transits to state st+1 ∈ S and receives a
reward of rt = R(st, at, st+1). The agent’s actions are de-
fined by its policy π, where π(a|s) is the probability of tak-
ing action a in state s. The total discounted reward from
time step t onwards is called the return, which is calcu-
lated as rγt =

∑∞
k=t γ

k−trk, where 0 < γ < 1. The goal

1Throughout the paper, we use the terms time slot and time step
interchangeably.

462



of the agent is to find a policy that maximizes the aver-
age return from the start state, i.e., maxπ J(π) = E[rγ1 |π].
Let us define the (improper) discounted state distribution as
ρπ(s′) =

∫
S
∑∞
t=1 γ

t−1p(s)p(s→ s′, t, π)ds, where p1(s)
and p(s → s′, t, π) denote the density at the starting state
and the density at state s′ after transitioning for t steps from
state s, respectively. Now, we can summarize the perfor-
mance objective as J(π) = Es∼ρπ,a∼π[r(s, a)].

Stochastic Policy Gradient Policy gradient is the most
popular class of continuous action reinforcement learn-
ing algorithms. In these algorithms, the policy function is
parametrized by θ and is denoted by πθ(a|s). The parame-
ters θ are adjusted in the direction of ∇θJ(πθ) to optimize
the performance function. Based on the policy gradient the-
orem (Sutton et al. 2000), we have

∇θJ(πθ) = Es∼ρπ,a∼πθ [∇θ log πθ(a|s)Qπ(s, a)], (1)

where Qπ(s, a) denotes the action-value function defined as
Qπ(s, a) = E[rγ1 |S1 = s,A1 = a;π]. To calculate the gra-
dient in Eq. (1), policy gradient methods often use a sample
based estimate of the expectation. However, an important
challenge facing these methods is the estimation of the un-
known action-value function Qπ(s, a).

Stochastic Actor-Critic This family of policy gradient
algorithms use an actor-critic architecture to address the
above mentioned issue (Sutton et al. 2000; Peters, Vijayaku-
mar, and Schaal 2005). In these algorithms, an actor adjusts
the parameters θ of the policy, while a critic estimates an
action-value function Qw(s, a) with parameters w, which is
used instead of the unknown true action-value function in
Eq. (1).

Deterministic Policy Gradient (DPG) In contrast to the
policy gradient methods, DPG (Silver et al. 2014) uses a
deterministic policy µθ : S → A. Since the randomness
only comes from the states, the performance objective can
be written as J(µθ) = Es∼ρµ [r(s, µθ(s))]. Moreover, using
the deterministic policy gradient theorem, the gradient of the
performance objective can be obtained as

∇θJ(µθ) = Es∼ρµ
[
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

]
. (2)

The same notions of actor and critic can be used here. Com-
paring Eqs. (1) and (2), we can observe that the expectation
in the deterministic case is taken only with respective to the
state space, which makes DPG more sample efficient than
the stochastic policy gradient, especially for problems with
large action spaces.

Deep Deterministic Policy Gradient (DDPG) This algo-
rithm generalizes DPG to large state spaces by using neu-
ral network functions, which approximate the action-value
function (Lillicrap et al. 2015). While most optimization al-
gorithms require i.i.d samples, the experience samples are
generated sequentially in an environment. To address this
issue, DDPG uses a replay buffer. Specifically, the experi-
ences are stored in the replay buffer after each interaction,
while a minibatch that is uniformly sampled from the buffer
is used for updating the actor and critic networks. Moreover,

…!!
"!

!"
""

!#
"#

!! = ($", $#,· · · , $$ )
Service rate 
controller

(! = ()", )#,· · · , )$)

Ar
riv

al
s

De
pa

rt
ur
es

*!

###"#!

Figure 2: Service rate control as a reinforcement learning
problem

to deal with the instability issue that is caused in the update
process of the Q-function, DDPG uses the concept of target
networks, which is modified for the actor-critic architecture.
The target networks Q′ and µ′, with parameters w′ and θ′,
are updated asw′ ← τw+(1−τ)w′ and θ′ ← τθ+(1−τ)θ′,
where τ � 1. As a result, the stability of the learning pro-
cess is greatly improved by forcing the targets to change
slowly.

Problem Formulation
Now, let us formulate the service-rate control task as a re-
inforcement learning problem. As shown in Fig. 2, our en-
vironment is a tandem queueing network, where the agent
is responsible for controlling the service rates of the net-
work’s queueing systems. The goal is to design a controller
that guarantees a probabilistic upper-bound on the end-to-
end delay of the system, i.e., P (d > dub) < εub, while
minimizing the average sum of service rates per time slot. In
order to achieve this goal, our controller interacts with the
environment at the beginning of each time slot. Therefore,
the service rates are fixed during each time slot.

Now, let us define the components of our reinforcement
learning problem as follows:

State: The state of the system is denoted by s =
(q1, q2, · · · , qN ), where qn is the queue length of the nth
queueing system at the beginning of each time step.

Action: The action is defined as choosing a set of ser-
vice rates for the constituent queueing systems, i.e., a =
(µ1, µ2, · · · , µN ). Here we consider deterministic policies
and therefore, action will be a deterministic function of the
state, i.e. a = µθ(s).

Reward: Designing the reward function is the most chal-
lenging part of the problem. The immediate reward at each
time step should reflect the performance of the system, in
terms of the end-to-end delay, under the taken action in that
particular time slot. We pick the duration of the time slots,
T , such that T > dub. Let At denote the set of arrivals
at time step t, i.e. [t, t + T ], except those that arrived in
[t+T −dub, t+T ] but did not depart until t+T . The reason
for this exclusion is that we cannot find out if the end-to-end
delay of an arrival inAct (complement of setAt) will exceed
dub or not, by the end of that time slot. However, one should
note that this portion of excluded arrivals will be negligible
if T/dub � 1 or εub � 1. Nevertheless, we calculate the

463



immediate reward at time step t, which is represented by rt,
only based on the arrivals in At. We assign sub-rewards to
each arrival in At as follows:

r′i =
{
β1 di < dub
β2 di > dub

, i ∈ At, (3)

where r′i and di denote the assigned sub-reward and the end-
to-end delay of the ith arrival inAt. Furthermore, we should
take the cost of the chosen service rates into account. In other
words, there is an intrinsic trade-off between the provided
delay upper-bound and the average sum-rate of the queueing
systems (resources). Let µsum

t denote the sum of the service
rates at time step t, i.e., µsum

t =
∑N
n=1 cnµn,t, where µn,t

denotes the service rate of the nth queueing system at time
step t. Now, we define the immediate reward at time step t,
which is represented by rt, as follows

rt = r(st, µθ(st)) =

∑
i∈At r

′
i

E[na]
− µsum

t , (4)

where E[na] is the average number of arrivals in a given time
step. It should be mentioned that E[na] has been used only
to simplify the proof. In practice, we do not need to know
E[na], as it can be absorbed in the reward coefficients (β1,
β2). Now, the average reward per time step can be calculated
using the defined reward function in Eq. (4) as follows

J(µθ) =

∫
S
pµ(s)E[r(s, µθ(s))]ds, (5)

where pµ(s) denotes the steady state distribution of the
states, while following policy µ. Let us define Bt as the set
of arrivals in At for which di < dub. Now, by splitting At
into Bt and Bct , we have

E[r(st, µθ(st))|st = s]

=
E
[∑

i∈Bt β1 +
∑
i∈Bct

β2
∣∣s]

E[na]
− E[µsum

t |s]

= β1
E
[
|Bt|
∣∣∣s]

E[na]
+ β2

E
[
|Bct |

∣∣∣s]
E[na]

− E[µsum
t |s]

' β1P (d < dub|s) + β2P (d > dub|s)− E[µsum
t |s],

where the approximation in the last line can be obtained us-
ing the law of large numbers (LLN). Therefore, using Eq. (5)
we have

J(µθ) = β1P (d < dub) + β2P (d > dub)− E[µsum]. (6)

Now, let us choose the parameters of the reward function as
follows

β1 = εubλ, β2 = −(1− εub)λ. (7)
Substituting the parameters and rewriting Eq. (6), we have

J(µθ) = λ (P (d < dub)− (1− εub))︸ ︷︷ ︸
QoS Constraint

−E
[ N∑
n=1

cnµn

]
︸ ︷︷ ︸

Average sum-rate

,

(8)
where λ specifies the trade-off between the QoS constraint
and the average sum rate.

Hyper-Parameter Selection
Discussion on Trade-off Coefficient (λ)
As we discussed in the previous section, λ can be used to
adjust the trade-off between the QoS constraint and the av-
erage sum rates. Here, we discuss the effect of this param-
eter on the learned policy by transforming our goal into an
optimization problem.

Let us redefine our problem as learning a control pol-
icy that satisfies the QoS constraint with minimum service
resources. Therefore, we can express the service-rate con-
troller design problem as follows

max
θ

− E
[ N∑
n=1

cnµn

]
(9)

s.t. P (d < dub) ≥ 1− εub.

We define the Lagrangian function associated with prob-
lem (9) as

Lθ(λ) = −E
[ N∑
n=1

cnµn

]
+ λ (P (d < dub)− (1− εub)) ,

(10)
where λ is the Lagrange multiplier associated with the
QoS constraint in Eq. (9). As can be seen, the Lagrangian
function is similar to the average reward obtained in
Eq. (8). Moreover, the Lagrangian dual function is defined as
g(λ) = maxθ Lθ(λ) and the dual problem can be written
as

min
λ
g(λ), s.t. λ ≥ 0. (11)

Therefore, λ can be interpreted as the Lagrange multiplier
of the dual problem. Moreover, maximizing the average re-
ward J(µθ) with respect to θ will be the same as computing
the Lagrangian dual function associated with problem (9).
Hence, λ can be seen as a hyper-parameter for our RL prob-
lem, where choosing the proper λ can result in achieving the
goal formulated in (9). It should be noted that based on the
KKT (Karush–Kuhn–Tucker) conditions, the optimal point
λ∗ must satisfy λ∗ (P (d < dub)− (1− εub)) = 0. We will
use these insights in the next section for better selection of
the hyper-parameter λ.

Discussion on Time Slot Length (T )
The length of the time slot is another design parameter that
can affect the performance of the controller and the learned
policy. In general, decreasing the time slot length provides
finer-grained control over the system and can result in bet-
ter optimized policies. However, choosing very small time
slot lengths can cause two major practical problems. First,
any controller has a limited speed due to its processing time
and therefore, might not be able to interact with the environ-
ment in arbitrary short time-scales. The second and more im-
portant problem is that queueing systems do not respond to
the actions instantaneously, which makes the policy learning
problem even more complex. This can be especially prob-
lematic when the system is saturated (Mao et al. 2019). As a
result, the time slot length should be large enough such that
the immediate reward defined in Eq. (4) provides a good

464



assessment of the taken action. On the other hand, choos-
ing very large time slot lengths can result in various issues
too. As discussed earlier, larger time slot means less frequent
control over the system and as a result, potentially less op-
timal control policies. Furthermore, if the time slot length
becomes large enough such that the queueing system stabi-
lizes after taking each action, the rewards become less de-
pendent on the states and only assess the taken action (cho-
sen service rates). Therefore, the learned actions become al-
most independent of the states, which questions the whole
point of using adaptive service rate control. Another impor-
tant factor to consider is the data efficiency of our algorithm.
As we increase the time slot length, the controller will have
less interactions with the environment and therefore, it will
take a longer time for the controller to start learning useful
policies.

Based on the above discussion, we should choose a time
slot length that is large enough to capture the effect of the
taken actions, but not too large that jeopardizes the dynamic
nature of the policy. A related concept that can help us in
determining a reasonable time slot length is the time con-
stant or the relaxation time of the system. The relaxation
time can be used as a measure of the transient behaviour of
the queue, which is defined as the mean time required for
any deviation of the queue length from its mean (q̄) to re-
turn 1/e of its way back to q̄ (Morse 1955). For a simple
M/M/1 queue, the relaxation time can be approximated by
2λ/(µ − λ)2 (Morse 1955). As can be seen, the relaxation
time is a function of both the arrival rate (λ) and the service
rate (µ), which tremendously increases as ρ = λ/µ → 1,
i.e. when the controller chooses a service rate close to the
arrival rate. In addition to the fact that calculating the relax-
ation time for a complex network becomes mathematically
intractable, the dependence of it on the service rates makes it
dependent on the chosen actions and the policy. Therefore,
we cannot use the relaxation time concept directly in our
problem. However, we use a similar notion that is the core of
our problem formulation, i.e., the probabilistic upper-bound
on the end-to-end delay. Although we do not know the opti-
mal policy beforehand, we know that it must guarantee the
QoS constraint, i.e., P (d > dub) < εub. Given that εub is
often a small probability, dub can be used as an estimate of
the time it takes the set of customers at a given time to be
replaced with a new group of customers. Therefore, we will
use dub as a guideline for choosing the time slot length. We
will discuss this issue further in the next section.

Evaluation and Results
In this section, we present our evaluations of the proposed
controller under different circumstances. We first describe
the experimental setup in terms of the service network topol-
ogy and the technical assumptions used in the experiments.
We then explain the implementation and parameter selection
procedures. Finally, we discuss the experiments and results.

Experimental Setup and Datasets
As discussed in the previous sections, the reason why we
adopt a queueing-theoretic approach for modeling our sys-
tem is to provide general insights on the service-rate control

problem in different applications. As a result, we consider
general queueing models for the experimental evaluations.
It should be noted that these models can be close approx-
imations of the real-world service systems, since we make
no assumptions on the inter-arrival or service time distribu-
tions in our design process. Moreover, our method can be
used for pretraining purposes in real-world applications in
which interacting with the environment and obtaining real
experiences are highly expensive.

We should again emphasize that most of the existing
works on the control of queueing systems focus on conges-
tion metrics such as the average queue length or the aver-
age delay, ignoring the tail of the distributions. Moreover,
the primary goal in those studies is the optimization of a
cost function, which is highly dependent on the design pa-
rameters. To the best of our knowledge, there is no existing
work that is capable of providing probabilistic QoS guaran-
tees for the network’s end-to-end delay. Therefore, we focus
on the performance of our proposed method and discuss the
effect of different design parameters on the controller’s per-
formance.

Queueing Environment In order to perform our experi-
ments, we set-up our own queueing environment in Python.
In this environment, multi-server queueing systems can be
chained together to form a tandem service network. More-
over, the inter-arrival and service times can be generated
using different distributions. Although we are interested in
long-term performance metrics and there is no notion of ter-
minal state in queueing systems, we chose an episodic en-
vironment design for some technical reasons. More specif-
ically, we terminate each episode if the end-to-end de-
lay of the network exceeds Delay Max or the number
of steps reaches Max Step. The reason why we consider
Delay Max is to achieve more efficient learning by avoid-
ing saturated situations. This is particularly important in the
beginning episodes, where random exploration can easily
put the system in saturated states, in which the controller
is not able to fix the situation since it has not been trained
enough. In order to make sure that the controller experiences
different states for enough number of times and does not get
stuck in some particular states, we terminate each episode
after Max Step steps and reset the environment. The con-
troller can interact with the environment every T seconds,
and receives the next state and the corresponding reward,
which is defined based on Eq. (4).

Implementation Parameters and Challenges
The algorithm and environment are both implemented in
Python, where we have used PyTorch for DDPG implemen-
tation. Our experiments were conducted on a server with one
Intel Xeon E5-2640v4 CPU, 128GB memory and a Tesla
P100 12GB GPU. The actor and critic networks consist of
two hidden layers, each having 64 neurons. We use RELU
activation function for the hidden layers, Tanh activation
for the actor’s output layer and linear activation function
for the critic’s output layer. The learning rates in the ac-
tor and critic networks are 10−4 and 10−3, respectively. We
choose a batch size of 128 and set γ and τ to 0.99 and 10−2,

465



!! !# !"…

VNF1 VNF2 VNF3

Figure 3: VNF chain modeled as a tandem queueing network

respectively. For the exploration noise, we add Ornstein-
Uhlenbeck process to our actor policy (Lillicrap et al. 2015),
with its parameters set to µ = 0, θ = 0.15 and σ decaying
from 0.5 to 0.005.

An implementation challenge that requires more discus-
sion is the range of state values (queue lengths) and the
actions (service rates) that should be used in the training.
Specifically, we truncate qis by qmax, and limit µi between
µmaxi and µmini . The reason for considering qmax is that
when queue lengths become too large, which happens when
the system is congested, the exact values of the queue length
become less important to the controller. Therefore, we trun-
cate the state components by qmax = 1024 to make the state
space smaller and the learning process more efficient, with-
out having much effect on the problem’s generality. It should
be mentioned that we only truncate the states (observations)
and not the actual queue lengths of the environment. On the
other hand, the service rates should be chosen such that the
system stays stable and do not get congested. Therefore, we
choose µmini such that ρi < 1, where ρi = λi/µi is the traf-
fic intensity of the ith queue. µmaxi represents the maximum
service rate of the ith system, which can be chosen based on
the service system’s available resources.

Results and Discussion
Consider a service chain consisting of three VNFs, each
modeled as a multi-server queueing system as in Fig. 3
([c1, c2, c3] = [3, 5, 2]). For this experiment, we choose
Gamma distributed inter-arrival and service times. Through-
out this section, time is normalized such that the average
number of arrivals per unit of time (i.e., arrival rate) equals
λa = 0.95. Moreover, the Squared Coefficient of Variation
(SCV) for the inter-arrival and the service times are equal to
0.7 and 0.8, respectively. We should emphasize that our de-
sign does not rely on any particular inter-arrival or service
time distribution. The reason for choosing Gamma distri-
bution is to both show our method’s performance for non-
exponential cases, which is often avoided for mathematical
tractability, and also because this is an appropriate model
for task completion times (Law and Kelton 2014). Our goal
is to adjust the service rates (µ = 1/Ave ServiceT ime)
dynamically to guarantee a probabilistic delay upper-bound
of dub = 10 with violation probability εub = 0.1, i.e.,
P (d > dub) ≤ εub, while minimizing the average sum ser-
vice rate per decision time step. In this section, we first dis-
cuss how the reward function’s hyper-parameter λ should be
chosen. Then, we present our results on the convergence of
our algorithm and the effect of the time slot length on the
training phase. Finally, we will compare the performance of
the learned algorithms for different time slot lengths.

(a) (b)

Figure 4: Performance of the controller for different values
of λ: a) QoS violation probability b) Average sum service
rate (E[

∑N
n=1 cnµn])

Tuning λ in Reward Function As discussed earlier, we
can use hyper-parameter λ to adjust the trade-off between
the QoS constraint and the consumed resources (sum-rate).
Fig. 4 shows the achieved violation probability P (d > dub)

and the average sum service-rate (E[
∑N
n=1 cnµn]), for λ ∈

{8, 10, 12, 14, 16} and time slot length T = 30, after train-
ing. As can be observed, increasing λ results in the decrease
of constraint violation probability and the increase of aver-
age sum-rate. Specifically, small values of λ correspond to
the case that the constraint has been removed from the re-
ward function in Eq.(8), which results in large violation of
the QoS. On the other hand, a large λ corresponds to the
case that the sum-rate is removed from the reward function
and therefore, the goal of the controller is simplified to min-
imization of the probability of QoS violation, which can re-
sult in tremendous overuse of the resources.

In this experiment, the best performance is achieved for
λ∗ ' 14, since it results in the minimum sum-rate, while
satisfying the constraint (P (d > 10) ≤ 0.1). This can be
also verified by our earlier discussion on the optimal λ∗,
where the KKT (Karush–Kuhn–Tucker) condition requires
that λ∗ (P (d < dub)− (1− εub)) = 0. Therefore, in order
to adjust λ, we train the controller for a range of λ values
and pick the one or which P (d > dub) is the closest to εub.

Training Fig. 5 shows the convergence of the violation
probability (P (d > dub)), the average sum-rate, and the av-
erage reward per time step for three controllers with differ-
ent time slot lengths of T = 15, 30 and 100, as a function of
the number of training episodes. For each time slot length,
λ∗ has been obtained using the same procedure discussed
above, and the controllers have been trained with 4 different
initial seeds. The dark curves and the pale regions in each
figure show the average and the standard error bands, re-
spectively. Since the time slot lengths are different, we ad-
just the number of steps per episode accordingly to ensure
that each episode has the same interval length of 2000 (time
is normalized). As a result, the controllers with smaller time
slot lengths will have more interactions with the environ-
ment during each episode and therefore, are updated more
often. As can be observed from Figs. 5 (a) and (d), increas-
ing the time slot lengths results in larger variations in the
beginning training episodes. Moreover, the controllers with
larger time slot lengths have slower convergence (the con-

466



(a) (b) (c)

(d) (e) (f)

Figure 5: Impact of the time slot length on the convergence of QoS violation probability (P (d > dub)), average sum service-rate
(E
[∑N

n=1 cnµn
]
), and average reward per time step

Figure 6: Short-term violation of QoS constraint (Compari-
son of the trained controllers with different time slot lengths)

troller with T = 100 is shown separately because of its
slower convergence). It should be noted that all of the con-
trollers roughly see the same number of departures in an
episode, since the episodes are adjusted to have the same
interval duration. Therefore, increasing the time slot length
makes the algorithm less data efficient. Although controllers
with larger time slot lengths have the advantage of receiving
more meaningful rewards, since the effect of the taken ac-
tion has been assessed for a longer period of time, the results
suggest that time slot lengths in the order of dub = 10 result
in better performances. We can justify this using our previ-
ous discussion on the system’s time constant. As mentioned
earlier, dub plays the same role as the time constant of the
system, when εub � 1. Figs.5 (b) and (e) show that the con-
troller with smaller time slot length is able to consume less
resources (sum-rate), while satisfying the QoS constraint.
Similarly, we can observe from Figs.5 (c) and (f) that the
controller with smaller time slot length can achieve a better
average reward after training.

Test Now, let us compare the performance of the trained
controllers on the test data, which is generated using our en-
vironment with the same parameters discussed earlier in this

section. Fig. 6 plots the short-term fluctuations of the QoS
violation probabilities for controllers with different time slot
lengths. These violation probabilities have been calculated
for short time intervals of length 1000 and can be used as
short-term performance measures. Each controller has been
tested with 5 different sample arrivals. Similar to the previ-
ous figures, the pale regions show the standard error bands
around the means. As can be observed, the controller with
the smaller time slot length (T = 15) is more stable and does
a better job of providing QoS, by controlling the violation
probability at the fixed level of 10% with small variations.
On the other hand, increasing the time slot length results in
larger short-term fluctuations of the QoS, because of having
less control over the system.

Conclusions
This paper studies a reinforcement learning-based service
rate control algorithm for providing QoS in tandem queue-
ing networks. The proposed method is capable of guarantee-
ing probabilistic upper-bounds on the end-to-end delay of
the system, only using the queue length information of the
network and without any knowledge of the system model.
Since a general queueing model has been used in this study,
our method can provide insights into various application,
such as VNF chain auto-scaling in the cloud computing con-
text. For the future work, it would be interesting to extend
this method to more complex network topologies, where a
centralized controller might not be a practical solution.

References
Duan, J.; Wu, C.; Le, F.; Liu, A. X.; and Peng, Y. 2017. Dy-
namic scaling of virtualized, distributed service chains: A
case study of IMS. IEEE Journal on Selected Areas in Com-
munications 35(11): 2501–2511.

467



Kumar, R.; Lewis, M. E.; and Topaloglu, H. 2013. Dynamic
service rate control for a single-server queue with Markov-
modulated arrivals. Naval Research Logistics (NRL) 60(8):
661–677.

Law, A.; and Kelton, W. 2014. Simulation modeling and
analysis. 5th edn New York. McGraw Hill Education.

Lee, N.; and Kulkarni, V. G. 2014. Optimal Arrival Rate
and Service Rate Control of Multi-Server Queues. Queueing
Syst. Theory Appl. 76(1): 37–50.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971 .

Liu, B.; Xie, Q.; and Modiano, E. 2019. Reinforcement
Learning for Optimal Control of Queueing Systems. In 2019
57th Annual Allerton Conference on Communication, Con-
trol, and Computing (Allerton), 663–670.

Mao, H.; Negi, P.; Narayan, A.; Wang, H.; Yang, J.; Wang,
H.; Marcus, R.; Shirkoohi, M. K.; He, S.; Nathan, V.; et al.
2019. Park: An open platform for learning-augmented com-
puter systems. In Advances in Neural Information Process-
ing Systems, 2494–2506.

Morse, P. M. 1955. Stochastic properties of waiting lines.
Journal of the Operations Research Society of America 3(3):
255–261.

Peters, J.; Vijayakumar, S.; and Schaal, S. 2005. Natural
actor-critic. In European Conference on Machine Learning,
280–291. Springer.

Raeis, M.; Tizghadam, A.; and Leon-Garcia, A. 2020. Re-
inforcement Learning-based Admission Control in Delay-
sensitive Service Systems. In 2020 IEEE Global Communi-
cations Conference (GLOBECOM), 1–6.

Rahman, S.; Ahmed, T.; Huynh, M.; Tornatore, M.; and
Mukherjee, B. 2018. Auto-scaling VNFs using machine
learning to improve QoS and reduce cost. In 2018 IEEE
International Conference on Communications (ICC), 1–6.
IEEE.

Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.;
and Riedmiller, M. 2014. Deterministic Policy Gradient Al-
gorithms. volume 32 of Proceedings of Machine Learning
Research, 387–395. Bejing, China: PMLR.

Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 2000. Policy gradient methods for reinforcement learning
with function approximation. In Advances in neural infor-
mation processing systems, 1057–1063.

Terekhov, D.; Beck, J. C.; and Brown, K. N. 2007. Solving a
Stochastic Queueing Design and Control Problem with Con-
straint Programming. In Proceedings of the 22nd National
Conference on Artificial Intelligence - Volume 1, AAAI’07,
261–266. AAAI Press.

Toosi, A. N.; Son, J.; Chi, Q.; and Buyya, R. 2019. Elas-
ticSFC: Auto-scaling techniques for elastic service function
chaining in network functions virtualization-based clouds.
Journal of Systems and Software 152: 108–119.

Weber, R. R.; and Stidham, S. 1987. Optimal control of
service rates in networks of queues. Advances in applied
probability 19(1): 202–218.

468


