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Abstract

Protein secondary structure prediction (PSSP) is an essen-
tial task in computational biology. To achieve the accurate
PSSP, the general and vital feature engineering is to use multi-
ple sequence alignment (MSA) for Position-Specific Scoring
Matrix (PSSM) extraction. However, when only low-quality
PSSM can be obtained due to poor sequence homology, pre-
vious PSSP accuracy (merely around 65%) is far from prac-
tical usage for subsequent tasks. In this paper, we propose
a novel PSSM-Distil framework for PSSP on low-quality
PSSM, which not only enhances the PSSM feature at a lower
level but also aligns the feature distribution at a higher level.
In practice, the PSSM-Distil first exploits the proteins with
high-quality PSSM to achieve a teacher network for PSSP
in a full-supervised way. Under the guidance of the teacher
network, the low-quality PSSM and corresponding student
network with low discriminating capacity are effectively re-
solved by feature enhancement through EnhanceNet and dis-
tribution alignment through knowledge distillation with con-
trastive learning. Further, our PSSM-Distil supports the input
from a pre-trained protein sequence language BERT model to
provide auxiliary information, which is designed to address
the extremely low-quality PSSM cases, i.e., no homologous
sequence. Extensive experiments demonstrate the proposed
PSSM-Distil outperforms state-of-the-art models on PSSP by
6% on average and nearly 8% in extremely low-quality cases
on public benchmarks, BC40 and CB513.

Introduction
Protein structure analysis, especially protein tertiary (3D)
structure, plays a critical role for practical protein applica-
tions, such as the understanding of the protein functions and
the design of drugs (Noble, Endicott, and Johnson 2004).
Currently, there are three mainstream methods for protein
tertiary structure (3D) prediction, i.e., X-ray crystallography
and nuclear magnetic resonance (NMR) (Wuthrich 1989),
cryo-EM based methods (Wang et al. 2015) and computer-
aided ab initio prediction (Mandell and Kortemme 2009).
Given the extremely time-consuming drawback of X-ray
crystallography, the sequence length limitation of nuclear
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Figure 1: Proposed PSSM-Distil for protein secondary struc-
ture prediciton (PSSP) on low-quality PSSM. PSSM-Distil
uses a teacher-student network to conduct the knowledge
distillation (KD) and contrastive learning (CL) from high-
quality PSSM, thus leading to the final improved PSSP.

magnetic resonance (NMR) and the expensive equipment re-
quirement for cryo-EM, computer-assisted protein structure
prediction attracts broad attention due to its convenience and
superior performance. For ab initio tertiary structure predic-
tion, protein property, such as protein secondary structure,
provides crucial information as it represents the local pat-
terns of protein structure. Therefore, enhancing the accuracy
of protein secondary structure prediction (PSSP) is funda-
mental for subsequent protein structure prediction.

PSSP is to classify every amino acid on a protein sequence
with a secondary structure label (coil, alpha helix, beta-sheet
for 3-state secondary structure) indicating the local struc-
ture, which is very similar to sequence labeling in natural
language processing (NLP). Existing methods usually use
the homologs searched from the protein database, which
is called multiple sequence alignment (MSA), to generate
the Positional-Specific Scoring Matrix (PSSM) for protein
sequence. Various sophisticated deep learning models (Li
and Yu 2016; Wang et al. 2016; Zhou and Troyanskaya
2014) achieved satisfactory PSSP performance (around 85%
Q3 accuracy) when taking high-quality PSSM along with
one-hot amino acid sequence as evolutionary information.
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Specifically, Zhou and Troyanskaya (2014) used a deep con-
volutional network to model the relation between PSSM fea-
tures and labels. Wang et al. (2016) proposed an improved
model by adding a conditional random field after CNN to
better model the sequential relation. Sønderby and Winther
(2014) tackled the problem with a two layers LSTM, while
Li and Yu (2016) added GRU units after convolutional lay-
ers to further boost the representation power of the model.
Guo et al. (2020) set the CNN and LSTM networks in paral-
lel to capture both local and long-range information. How-
ever, even benefiting from the powerful deep discriminating
models, the PSSP performance of protein with low sequence
homology and low-quality PSSM is still far from being sat-
isfactory, achieving usually around 65% Q3 accuracy. Such
low PSSP would directly affect the subsequent protein fold-
ing and tertiary structure prediction. Recent work Guo et al.
(2020) exploited the “Bagging” mechanism to obtain the en-
hanced PSSM for protein with low-quality PSSM through a
fixed ratio MSA down-sampling in an unsupervised manner.
However, such “Bagging” method merely conducts PSSM
feature enhancement, while ignoring the joint optimization
of the enhanced feature and final PSSP on high-level seman-
tic space, leading to inferior robustness and PSSP perfor-
mance.

Therefore, in this paper, we will address the practical
PSSP problem for protein sequence with low sequence ho-
mology (i.e., low-quality PSSM) in a large database. We pro-
pose a novel framework called PSSM-Distil, as illustrated in
Fig. 1. The proposed model automatically enhances the low-
quality PSSM by aligning its distribution to the high-quality
ones. That is to say, PSSM-Distil first exploits proteins with
high-quality PSSM to obtain a classifier (any previous gen-
eral model like BLSTM) for PSSP as a teacher network in
a full-supervised way. Under the guidance of teacher net-
work, low-quality PSSM through an EnhanceNet and corre-
sponding student network with low discriminating capacity
is effectively resolved by feature enhancement and distri-
bution alignment through knowledge distillation with con-
trastive learning, which is the core contribution of our pro-
posed PSSM-Distil model. Additionally, our PSSM-Distil
model supports the input from the pre-trained BERT (Rao
et al. 2019) model on UniRef90 to provide auxiliary infor-
mation, which is designed to address the extremely low-
quality PSSM cases, i.e., a protein with no homologous se-
quence. Also, extensive experiments demonstrate the pro-
posed PSSM-Distil outperforms state-of-the-art models on
PSSP by a large margin on the validation set of CullPDB,
public benchmark CB513 and newly proposed large dataset
BC40 (release date is 2020-07-28).

Our contributions are summarized as follows: 1) We pro-
pose a new framework called PSSM-Distil for protein sec-
ondary structure prediction (PSSP) on low-quality PSSM,
which exploits a teacher-student network to distill knowl-
edge from high-quality PSSM with contrastive learning. 2)
Our PSSM-Distil could not only obtain enhanced PSSM
in a self-supervised manner through prior knowledge-based
down-sampling, but also align the enhanced PSSM distribu-
tion with the high-quality one for final PSSP, leading to a
largely improved prediction accuracy, i.e., average 6% for

protein with low-quality PSSM, and over 8% improvement
in extremely low-quality cases. 3) We further release a large
scale up-to-date test dataset BC40 (release date is 2020-07-
28) to verify the effectiveness of PSSM-Distil. Unlike Rao
et al. (2019) who directly utilized BERT’s embedding to fa-
cilitate PSSP, we are the first paper to sampling MSAs from
pre-trained BERT’s output to construct BERT Pseudo PSSM
which will input to PSSP as auxiliary information and sig-
nificantly improve the PSSP performance of protein with no
homology.

Related Works
Multiple Sequence Alignment (MSA) MSA is a sequence
alignment of multiple homologous protein sequences for a
target protein (Wang and Jiang 1994). It is a key technique
for modeling sequence relationships in computational biol-
ogy. Given a protein database and a protein sequence, MSA
is searched by performing pairwise comparisons (Altschul
et al. 1990), Hidden Markov Model-like probabilistic mod-
els (Eddy 1998; Johnson, Eddy, and Portugaly 2010; Rem-
mert et al. 2012), or a combination of both (Altschul et al.
1997) to align the sequence against the given database. Once
MSA is conducted, it is usually transferred to the Position-
Specific Scoring Matrix (PSSM) for subsequent tasks.

Low-quality PSSM Enhancement. Since MSA and
PSSM are critical for protein property prediction, “Bagging”
(Guo et al. 2020) is the first attempt to enhance the low-
quality PSSM. By minimizing the MSE loss between the
reconstructed and original PSSM, “Bagging” reconstructs
high-quality MSA from down-sampled MSA with low-
quality PSSM via an unsupervised method. Even though
“Bagging” is the first work to achieve a relatively satisfac-
tory performance, there are still some limitations. First, it
exploits a fixed ratio for MSA down-sampling to obtain the
low-quality PSSM, which makes the “Bagging” model less
robust, especially for sequences with extremely low homol-
ogy. Second, “Bagging” only conducts PSSM enhancement
while ignoring the joint optimization of PSSM and the final
PSSP.

Knowledge Distillation. Knowledge distillation transfers
the knowledge from a pre-trained teacher network to a stu-
dent network through training on the soft targets provided
by the teacher network, which is originally proposed by Bu-
ciluǎ, Caruana, and Niculescu-Mizil (2006) and later im-
proved by Hinton, Vinyals, and Dean (2015). Over the
past years, knowledge distillation has numerous applica-
tions (Chen et al. 2017; Yim et al. 2017; Yu et al. 2017;
Schmitt et al. 2018). Inspired by these works, we propose
the first method that exploits the knowledge distillation for
PSSP. Same as the motivation for Mirzadeh et al. (2019),
our approach aims to close the gap between teacher network
and student network. However, instead of directly passing
the knowledge from teacher network to student network,
our enhancement module enhances low-quality PSSM to a
high-quality one for student network learning via contrastive
learning.
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Contrastive Learning. Contrastive loss was introduced
by Hadsell, Chopra, and LeCun (2006) to learn representa-
tion by contrasting positive pairs against negative pairs. Re-
cent work in computer vision (Oord, Li, and Vinyals 2018;
He et al. 2020; Misra and Maaten 2020; Tian, Krishnan,
and Isola 2019; Zhuang, Zhai, and Yamins 2019; Chen et al.
2020) presents promising results on unsupervised visual rep-
resentation learning using approaches related to the con-
trastive loss. Inspired by the intuition and the results of con-
trastive learning, we are the first to import contrastive learn-
ing into PSSM enhancement. By contrasting high-quality
PSSM to low-quality and the corresponding enhanced one,
our model learns to generate enhanced PSSM closer to the
high-quality PSSM distribution. We notice that Tian, Krish-
nan, and Isola (2019) also combines the contrastive learn-
ing with knowledge distillation, however, our motivations
are quite different. While they try to bridge the gap between
student and teacher network with contrastive learning, our
method instead takes advantage of both methods to improve
our EnhanceNet.

Protein sequence pre-training. Self-supervised learning
is a powerful tool for extracting information from unlabeled
sequences (Devlin et al. 2018; Peters et al. 2018; Radford
et al. 2019; Yang et al. 2019). Like language, large unla-
beled datasets of protein sequences are expected to contain
significant biological information. Recent work in protein
sequence pre-training has shown positive results on vari-
ous downstream tasks including secondary structure predic-
tion (Alley et al. 2019; Bepler and Berger 2019; Heinzinger
et al. 2019; Rao et al. 2019; Rives et al. 2019). TAPE (Rao
et al. 2019) is the first work proposing systematical evalu-
ation of the protein sequence pre-training model. They as-
sessed the performance of pre-training on three common
types of representation models, which are recurrent, con-
volutional, attention-based models. They also proposed a
benchmark dataset for five downstream tasks including sec-
ondary structure prediction. We chose the attention-based
BERT model based on its downstream performance reported
from the TAPE paper. But, we trained our BERT on a larger
database-UniRef90 (Suzek et al. 2015), since it is the com-
mon database choice of MSA search for PSSP. After the
pre-training process, the model can then provide auxiliary
information as PSSM for protein with no homology.

Method
Protein Secondary Structure Prediction (PSSP)
There are 20 common amino acids that function as the build-
ing blocks of a protein sequence. PSSP is a sequence-to-
sequence task where each amino acid xi in a protein se-
quence is mapped to a label yi ∈ {alpha-helix (H), beta-
strand (E), Coil (C)} for 3-state PSSP.

For PSSP, we adopt the most common choice called
Position-Specific Scoring Matrix (PSSM). The PSSM in-
dicates the substitution log-likelihood of all the 20 amino-
acid types at each position, based on homologous sequences.
PSSM of a protein sequence, denoted by X, is defined as
Xk,j = log(

Pk,j

Bk
), where P is the position probability ma-

trix and B is the background frequency matrix. k is one kind
of amino acids and j ∈ (1, .., L) with L denoting the length
of the protein sequence. P is defined as Pk,j =

Ck,j+p
N+20×p ,

where p is a scaler called pseudo-count to avoid zero-
occurrence issue of some amino-acid types which we set
as 1 in practice and N is the number of homologous se-

quences in the MSA. B is defined as Bk =
∑L

j=1 Ck,j∑
k

∑L
j=1 Ck,j

,

which is the frequency of each amino acid occurs in the en-
tire protein MSA. The above Ck,j is the occurrence count
of amino acid k in position j of an MSA M, which is de-
fined as Ck,j =

∑N
i=1 I(Mi,j = k), where I is an indicator

function taking value 1 if Mi,j = k and 0 otherwise.
High-quality PSSM is critical for PSSP, thus the enhance-

ment of low-quality PSSM is the key for high accuracy
PSSP. To tackle this issue, as shown in Fig. 2, we propose a
novel teacher-student framework PSSM-Distil with knowl-
edge distillation (KD) and contrastive learning (CL). Details
of each component will be disclosed as follows.

Knowledge Distillation for PSSM Enhancement
A teacher-student framework is exploited to achieve knowl-
edge distillation (KD) on the PSSP task. Specifically, as
shown in Fig. 2, we firstly train a teacher classifier Ft

with high-quality PSSM Xh on PSSP task. Then we down-
sample the high-quality PSSM Xh to obtain the low-quality
PSSM Xl. Note that here we conduct the down-sampling
operation based on prior statistics instead of the fixed down-
sample ratio used in “Bagging” (Guo et al. 2020) which
details will be given in the experiment section. Based on
the low-quality PSSM Xl and one-hot encoding of pro-
tein sequence S, an EnhanceNet Fe is trained to obtain
the enhanced PSSM Xe. Furthermore, the auxiliary infor-
mation Xb provided by the pre-trained BERT model can
also flow into the EnhanceNet as additional input for a bet-
ter performance, i.e., Xe = Fe(S,Xb,Xl). Successively,
the enhanced PSSM Xe is fed to a student network Fs

with its protein sequence S to obtain its classification log-
its Fs(S,Xe). Similarly, we obtain the classification logits
Ft(S,Xh) through the pre-trained teacher network for high-
quality PSSM. Finally, we define the KD loss Ld as Eq.1.

Ld = σLce + (1− σ)Lkl (1)

where σ is a hyper-parameter weighting the two losses
which we set as 0.1 in practice. Lce is the cross entropy loss
between the student prediction distribution Fs(S,Xe) and
the PSSP label Y , i.e., Lce = CE (Fs (S,Xe) , Y ). Lkl is
the Kullback–Leibler divergence between teacher’s and stu-
dent’s prediction distribution as shown in Eq. 2.

Lkl = KLmarginal (Fs (S,Xe) , Ft (S,Xh)) (2)

By minimizing Ld, both the parameters of student network
Fs and EnhanceNet Fe will be updated. Hence, we achieve
better PSSM enhancement and adaptation at the same time.

Contrastive Learning on PSSM Distribution
Inspired by the achievement of contrastive learning (CL) on
self-supervised vision tasks, we exploit CL loss as additional

619



Enhance Net Fe Student Fs

High-quality PSSM Xh ,SLow-quality PSSM Xl

Enhanced PSSM Xe ,SS, Xb , Xl

MSE Loss Lm Teacher Ft

Teacher Ft

Teacher Ft Ft(S,Xl)

Ft(S,Xh)

Ft(S,Xe)

Fs(S,Xe)

Down Sample

1DCNNs

BLSTM

FCFC

Pretrained BERTBERT Pseudo PSSM Xb

Teacher Ft Ft(S,Xb)

KD Loss Ld
CL Loss L

t

Teacher Ft

(+)

(-)

(-)

(+): Positive Sample (-):  Negative Sample

Figure 2: The overall pipeline of our framework: a teacher-student model for knowledge distillation and contrastive learning
with an EnhanceNet Fe for low-quality PSSM enhancement. First, the pure sequence S is concatenated with the pre-trained
BERT pseudo-PSSM Xb and the low-quality PSSM Xl as the input to the EnhanceNet Fe to predict an enhanced PSSM Xe.
Then, the MSE loss Lm is used to minimize the difference between the enhanced PSSM Xe and the high-quality PSSM Xh.
Moreover, the high-quality PSSM Xh which is the ground truth of the Xe is sent into the teacher network Ft to extract the
classification logits Ft(S,Xh) and Xe is input to the student network Fs to get Fs(S,Xe). Then, knowledge distillation is
applied between the fixed weights teacher network and the student network by KD loss presented in Eq.1. The high-quality
PSSM Xh, low-quality PSSM Xl and the BERT pseudo-PSSM Xb are also fed into the teacher network Ft to obtain Ft(S,Xh),
Ft(S,Xl) and Ft(S,Xb) respectively. We regard Xl and Xb as the negative sample and the Xh as the positive sample to
optimize Xe and applied a contrastive loss in Eq. 7 as the additional supervision for networks Fe, Fs. Finally, a joint loss in
Eq. 9 is exploited to train our model in the end-to-end manner. In inference, only a blue arrow path is used. The Algorithm.1
illustrates more details of the above training process.

supervision to optimize the EnhanceNet by further enhanc-
ing the low-quality PSSM in a high-level semantic space.
Concretely, as shown in Fig. 2, once the teacher network
Ft is well-trained, we can use it as a feature extractor, which
transforms the original input feature to a high-level semantic
space. For CL loss, we regard the high-quality PSSMs Xh

as positive samples, the low-quality PSSMs Xl and BERT
Pseudo-PSSM Xb as negative samples and the enhanced
PSSM Xe as enhanced samples. Then we use a conventional
contrastive learning inequality defined as Eq. 3 to character-
ize the shifting of the mapping FX in semantic space for the
enhanced sample Xe. In particular, the FX will move closer
to the mapping FP of positive sample Xh and away from
the mapping FN of negative samples Xl,Xb.

KLmarginal (FX ,FP ) ≤ KLmarginal (FX ,FN ) (3)

More specifically, FX is the mapping in semantic space of
the enhanced PSSM Xe defined as Eq. 4.

Xe = Fe(S,Xb,Xl)

FX = Ft(S,Xe)
(4)

Similarly, the FP and FN are the mappings in semantic
space from positive and negative samples respectively. Here,
we choose FP , denoted by Eq. 5, as the classification log-
its for high-quality PSSM Xh extracted from the pre-trained
teacher network Ft.

FP = Ft(S,Xh) (5)

We denoteFN as the combination of the classification logits
from the teacher network for low-quality PSSM Ft(S,Xl)

and BERT Pseudo PSSM Ft(S,Xb). We defined FN as
Eq. 6

FN =
1

2
(Ft(S,Xl) + Ft(S,Xb)) (6)

Finally, we adopt a triplet loss to model the inequality in
Eq.3 which can be illustrated as Eq. 7, where η is a hyper-
parameter and we set it equal to 0.6 in practice.

Lt = max
(
0,KL(FX ,FP )−KL(FX ,FN ) + η

)
= max

(
0,KL (Ft (S,Xe) , Ft (S,Xh))

−KL (Ft (S,Xe) ,FN ) + η
) (7)

Loss Function
Additionally, same as in previous work (Guo et al. 2020), we
use the mean square error (MSE) loss to directly minimize
the difference between the enhanced PSSM Xe and the high-
quality PSSM Xh referred in Eq. 8.

Lm = ‖Xe −Xh‖2 (8)

By combining with the aforementioned KD and CL loss, the
overall loss function of our framework is shown in Eq. 9
where α, β, γ are the weighting hyper-parameters. In prac-
tice, we set α = 0.16, β = 0.016, and γ = 0.82.

L = αLd + βLm + γLt (9)

BERT Pseudo PSSM Generation
To supply auxiliary information for better enhancement of
low-quality PSSM, as shown in Fig. 2, BERT Pseudo PSSM
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Dataset CullPDB CullPDB CB513 BC40
Type Training Validation Testing Testing
Size 5600 525 514 36976

Table 1: Details of dataset used in our experiments, includ-
ing dataset names, types and number of proteins sequence.

Xb derived from pre-trained BERT is concatenated with
low-quality PSSM Xl and fed to EnhanceNet Fe for en-
hancement. For the generation of the BERT Pseudo PSSM
Xb, we take advantage of BERT training objective. Since
BERT is a masked language model and uses neighboring
contexts to recover the masked token, we mask each posi-
tion of a protein sequence one at a time to obtain the pre-
dicted probability vector of 20 amino acids for the masked
position. By repeating the above procedure, we could obtain
the BERT sequence probability map for a specific protein
sequence. Then we sample 2000 pseudo protein sequences
as MSA from the probability map to generate BERT Pseudo
PSSM Xb.

Algorithm 1: PSSM-Distil for PSSP
Input: Protein Sequence S; High-quality PSSM Xh;

BERT Pseudo PSSM Xb; Low-quality PSSM Xl;
Student Fs; Teacher Ft; EnhanceNet Fe; Label Y ;

1 // Training Phase
2 Ft← Pretrain Teacher Network Ft by Xh;
3 Xl← DownsampleXh;
4 Xe← Fe(S,Xl,Xb);

5 // Mappings of Enhanced, Positive and Negative
Samples

6 FX ← Ft(S,Xe);
7 FP ← Ft(S,Xh);

8 FN ← 1
2
(Ft(S,Xl) + Ft(S,Xb)) ;

9 // Using Ld, Lm and Lt to Optimize Fs, Fe

10 Fs, Fe←Minimize αLd + βLm + γLt;

11 // Inference Phase
12 Xe ← Fe(S,Xl,Xb);
13 PSSP← Argmax(Fs(S,Xe));

Output: Parameters of Ft, Fs, Fe

Experiment
Dataset
We train the PSSM-Distil framework on the training set
of CullPDB (Wang and Dunbrack Jr 2003). CullPDB val-
idation set, CB513 (Kryshtafovych et al. 2014) and a new
dataset BC40 constructed by ourselves are used to evaluate
the performance of our method and conduct comparisons
with previous methods. For the CullPDB dataset, any two
proteins share less than 25% sequence identity. Following
the same procedure as in (Zhou and Troyanskaya 2014), we
divide the CullPDB dataset into a training set and validation
set with no more than 25% of the training set shared with
CB513 and BC40. We conduct an MSA search for all train-
ing, validation and test protein sequences from the Uniref90
database (Suzek et al. 2015). The protein sequence labels
for all training, validation and test proteins are generated

by DSSP (Kabsch and Sander 1983). The dataset details are
shown in Table 1.

BC40 Dataset1 To further validate our proposed approach
on real-world PSSP applications, we construct the BC40
dataset (release date is 2020-07-28) in which each entry is
publicly available from PDB. Specifically, PDB will cluster
all protein chains by MMseq2 (Steinegger and Söding 2017)
at 30%, 40%, . . . , 90%, 95%, and 100% sequence identity
each week to remove redundancy, and BC40 is the dataset
with 40% cutoff such that the proteins share no more than
40% sequence identity. Additionally, we also remove the
proteins that share more than 25% sequence identity with
our CullPDB dataset.

Network Architecture
Like other sequence labeling models in NLP, our teacher
network Ft and student network Fs share a similar design
which consists of BiLSTM and linear fully-connected lay-
ers, while EnhanceNet Fe has additional 1-dimensional con-
volution layers. More specifically, an embedding layer with
dimension 32 in EnhanceNet Fe is used to map the origi-
nal protein sequence to a higher dimensional semantic space
with dimension (L×32). Then, embedding features (L×32)
is concatenated with the low-quality PSSM Xl (L×20) and
BERT Pseudo PSSM Xb (L×20) as an L×72 dimensional
input for the latter part, where L is the sequence length. As
shown in the blue part of Fig. 2, the principal part of Fe

consists of two branches: BiLSTM and 1D-CNN branches
which extract features independently from previous L × 72
input. In the BiLSTM branch, there is a BiLSTM model that
contains two hidden layers and each layer has 400 hidden
units to extract local features at the token level and global
features at the sequence level. In the 1D-CNN branch, three
1D-CNN layers are used to extract local features for each
token position along the 72-dimension of input and the hid-
den number for each CNN is 300. Finally, we concatenate
the output of the two branches and use two linear fully-
connected layers to regress out the final enhanced PSSM Xe

which has the same shape as the low-quality PSSM Xl in-
put. The teacher and student networks Fs, Ft are two PSSP
classifiers. Each of them consists of a 2-layer BiLSTM to
extract features and 2 linear FC layers with a final softmax
layer for prediction.

Implementation Details
We use PyTorch to implement our work. Three networks
Fe, Fs, Ft are trained in an end-to-end manner. Particularly,
as depicted in Algorithm 1, we first train the teacher network
Ft by using high-quality PSSM Xh, which learns how to use
a good PSSM to predict SS. Then, EnhanceNetFe andFt are
jointly optimized by loss function L in Eq. 9. We use Adam
optimizer with an initial learning rate that equals 0.01 and
conducts learning rate decay every 50 epochs. We employ a
drop out layer before the softmax layer in each network with
the dropout set to 0.75. Specifically, we train our models on

1https://drug.ai.tencent.com/protein/bc40/download.html
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one Tesla V100 GPU. Greed search is utilized for hyper-
parameter tuning. Source code2 for our inference phase with
pretainined models have been released for demonstration.

Prior Distribution based PSSM Down-sampling
As illustrated by the yellow arrow in Fig. 2, we down-sample
the high-quality PSSM Xh to obtain low-quality Xl, which
is one input for the subsequent module. Since EnhanceNet
Fe is employed to enhance low-quality PSSMs, in the train-
ing phase, the down-sampled low-quality PSSM Xl should
exist no domain gap to the natural low-quality PSSM. Thus,
different from Bagging using a fixed down-sampling ratio,
we exploit the prior native distribution based PSSM down-
sampling strategy. In practice, we first calculate the MSA
count distribution X based on native sequences with low-
quality PSSM in the training set, i.e., calculate the frequency
of MSA count when the MSA count less than 60 (Guo et al.
2020). Once the prior distribution of native low-quality X
has been achieved, in the training phase, we randomly select
a batch of MSAs from original MSAs with a count num-
ber which is sampled from distribution X . Benefiting from
the low-quality PSSMs Xl achieved through domain aligned
down-sampling, our EnhanceNet can output more realistic
high quality Xe, leading to superior and robust performance
than previous methods.

Results
We evaluate our PSSM-Distil framework on low-quality
PSSM protein sequences from three public datasets:
CullPDB, CB513 and BC40. The comparison experiment
with the previous state-of-the-art models confirms the
supreme priority of our approach. Particularly, our method
is effective on all levels of difficulties with 7%-15% of im-
provements over the vanilla model denoted as “Real” and
surpasses the previous state-of-the-art method “Bagging”
(Guo et al. 2020) by 6% on average and nearly 8% in the
extreme low-quality cases. The accuracy is computed on a
per-protein basis. Moreover, the performance gained from
each component of our model is well examined by the abla-
tion study.

Comparison Experiment. We compare the PSSP results
of PSSM-Distil, the previous state-of-the-art model “Bag-
ging” and the vanilla PSSP model “Real”. “Real” is trained
on the protein sequences with low-quality PSSMs from
CullPDB without any enhancement. To give a more detailed
comparison, we split the protein sequences with low-quality
PSSM into several divisions of MSA count and MSA meff
according to Guo et al. (2020). Shown in Table 2 and Ta-
ble 3, our approach achieves the best performance on pro-
tein sequences with low-quality PSSMs under regardless of
low MSA count score or low MSA meff score settings. Fur-
thermore, for the extreme low-quality cases, i.e., MSA count
equals to 0 or the meff score is less than 5, our method
still gains relatively satisfactory results against previous ap-
proaches. In particular, in the case of MSA Count equals to
0, our method still has 73.7% accuracy with 7.6% improve-
ment over the previous best method “Bagging” on the BC40

2https://github.com/qinwang-ai/PSSM-Distil

MSA Counts Datasets Number Real Bagging Our

≤ 60
BC40 1861 0.707 0.736 0.778

CullPDB 30 0.755 0.765 0.807
CB513 18 0.702 0.703 0.725

≤ 30
BC40 1231 0.687 0.717 0.766

CullPDB 19 0.739 0.746 0.784

≤ 10
BC40 639 0.649 0.689 0.759

CullPDB 9 0.714 0.736 0.779

= 0 BC40 177 0.594 0.661 0.737
CullPDB 2 0.759 0.773 0.877

Table 2: PSSP results on BC40, CullPDB and CB513 test
sets for for protein sequence with low-quality PSSM lev-
eled by MSA count score. The “MSA Counts” stands for the
number of alignment sequences in the MSA of a protein se-
quence. The “Number” column stands for the number of the
protein sequences in the datasets that their searched MSAs
falling in the MSA Counts category. The “Real” column is
the baseline result without any enhancement technique. The
“Bagging” column is the result of a previous data enhance-
ment method. Our experimental results show large improve-
ment over the baseline method and “Bagging”.

Meff Datasets Number Real Bagging Our

≤ 35
BC40 2833 0.725 0.749 0.786

CullPDB 56 0.775 0.793 0.808

≤ 25
BC40 2338 0.716 0.745 0.780

CullPDB 44 0.739 0.780 0.804

≤ 15
BC40 1708 0.698 0.731 0.772

CullPDB 29 0.751 0.762 0.788

≤ 5
BC40 886 0.655 0.699 0.755

CullPDB 11 0.732 0.740 0.766

Table 3: PSSP results on BC40 and CullPDB for protein se-
quence with low-quality PSSM leveled by Meff score.

test set, which proves our method is robust and effective un-
der the condition that no MSA is available. Note that for
CB513, we only report the results with threshold level ≤ 60
for MSA count in Table 2, due to too few sequences exist-
ing for lower threshold levels such as ≤ 30,= 0 to make it
representative.

To specify the effect of MSA count and Meff score on
PSSP accuracy in more detail, we also conduct the quan-
titative comparison between our method and “Bagging”
on PSSP accuracy improvement against the vanilla “Real”
model over different MSA count and Meff score ranges,
which is shown in Fig. 3. It is worth noting that our PSSM-
Distil is increasingly more effective as PSSM quality de-
creases, demonstrating that our method successfully targets
the lower quality cases and outperforms the previous best
method “Bagging” by a large margin in those extreme low-
quality PSSMs. Particularly, on bin [0, 5] for MSA count and
[0, 1] for MSA Meff, our improvements have 8% more than
“Bagging”. Moreover, our method achieves improvement on
all score ranges for both MSA count and MSA meff, while
“Bagging” only improves on low MSA count and low MSA
meff bins and even worsen the performance for some high
MSA count and high MSA meff ranges, which they pointed
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Figure 3: PSSM-Distil PSSP accuracy improvement com-
parison with “Bagging” over vanilla “Real” model on dif-
ferent count and meff score range. The blue bars are the
improvement results of PSSM-Distil, whereas the orange
bars are the improvement results of “Bagging”. PSSM-Distil
significantly improves over “Real” on both low-quality and
high-quality cases, while “Bagging” only improves the low-
quality cases with the cost of damaging the high-quality pre-
diction accuracy

MSA Counts Our w/o BERT w/o CL w/o MSE
≤ 60 0.778 0.768 0.772 0.776
≤ 30 0.766 0.754 0.757 0.760
≤ 10 0.759 0.740 0.743 0.748
= 0 0.737 0.707 0.714 0.725

Table 4: Ablation study results on the BC40 dataset of our
method. The “Our” column is the full pack result of the our
method. “w/o BERT” is the result without BERT Pseudo
PSSM Xb. “w/o CL” is the result without the triplet loss Lt

from constrastive learning. “w/o MSE” is the result without
MSE loss Lm between Xe and Xh. The obvious degenera-
tion from ablating each component from our method implies
the important role of these components for our method.

out as the side-effect of their method in their paper, which
may result from the fixed down-sampling strategy.

Ablation Study. We conduct the ablation study to demon-
strate the effectiveness of each designed component for the
PSSM-Distil framework and evaluate the performance for
low-quality PSSMs on the BC40 dataset with the same four
divisions of MSA count. In particular, we remove the aux-
iliary input Xb from pre-trained BERT, contrastive learning
loss Lt and MSE loss Lm respectively to show the ablation
results on different MSA count ranges in Table 4.

As shown in Table 4, the results from the “w/o BERT”
column entail that the extremely low-quality case suffers the
most with 3% of degeneration, which demonstrates the ef-
fectiveness of the pre-trained BERT model on these extreme
cases. The “w/o MSE” column breaks the direct link of our
model to the previous state-of-the-art “Bagging” models,
which shows the smallest decreases among the ablation of
all the components. These results demonstrated the superior
framework choice of PSSM-Distil.

High
Quality

Enhanced

Low
Quality

Figure 4: The visualization of the MSA quality by sam-
pling it from low-quality (top row), enhanced (middle row),
and high-quality (bottom row) PSSM. Our enhanced PSSM
demonstrates higher fidelity reconstruction of the high-
quality PSSM with more complex MSA patterns, while low-
quality PSSM shows only simple and repetitive patterns.

PSSM Visualization. The visualization results of en-
hanced PSSMs are given in Fig. 4, which illustrates the ca-
pacity of different amino acids on each residue. The graphs
are generated using WebLogo3. We can easily observe that
the original low-quality PSSM (top row) is very sparse
and contains less information comparing with high-quality
PSSM (bottom row). However, our enhanced PSSM (middle
row) is informative and shares similar patterns with high-
quality PSSM, which exactly proves the effectiveness of
PSSM-Distil on PSSM enhancement.

Conclusion
We present PSSM-Distil, a PSSM enhancement method
with knowledge distillation and contrastive learning to
tackle the low homologous PSSP issue. We first achieve
a teacher network for PSSP by using high-quality PSSMs.
Next, we jointly train the EnhanceNet and a student net-
work for PSSM enhancement and PSSP by using the low-
quality PSSMs which are down-sampled from high-quality
PSSMs. Regardless of the sophisticated architecture design,
the novel loss function is elaborated with knowledge dis-
tillation, contrastive loss and MSE loss to jointly optimize
the EnhanceNet and the student network for the generation
of high-quality PSSMs and accurate PSSP. Additionally, we
explicitly utilize the BERT pseudo PSSM for extreme low-
quality cases’ enhancement, i.e., protein sequences with no
homology at all. Our work opens up the possibility for re-
search on newly discovered or unknown protein structure
prediction with low-quality PSSMs.

3https://weblogo.berkeley.edu
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