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Abstract

In this paper, we study the problem of how to aggregate pair-
wise personalized attributes (PA) annotations (e.g., Shoes A
is more comfortable than B) from different annotators on the
crowdsourcing platforms, which is an emerging topic gaining
increasing attention in recent years. Given the crowdsourced
annotations, the majority of the traditional literature assumes
that all the pairs in the collected dataset are distinguishable.
However, this assumption is incompatible with how humans
perceive attributes since indistinguishable pairs are ubiqui-
tous for the annotators due to the limitation of human percep-
tion. To attack this problem, we propose a novel deep pre-
diction model that could simultaneously detect the indistin-
guishable pairs and aggregate ranking results for distinguish-
able pairs. First of all, we represent the pairwise annotations
as a multi-graph. Based on such data structure, we propose
an end-to-end partial ranking model which consists of a deep
backbone architecture and a probabilistic model that captures
the generative process of the partial rank annotations. Specif-
ically, to recognize the indistinguishable pairs, the probabilis-
tic model we proposed is equipped with an adaptive percep-
tion threshold, where indistinguishable pairs could be auto-
matically detected when the absolute value of the score dif-
ference is below the learned threshold. In our empirical stud-
ies, we perform a series of experiments on three real-world
datasets: LFW-10, Shoes, and Sun. The corresponding results
consistently show the superiority of our proposed model.

Introduction
Personalized attributes (PA) are semantic features describ-
able in words, such as texture, color, mood. Typical in-
stances include comfortable or high heeled for shoes, and
smiling or crying for human faces, etc. Introducing PA to
multimedia/computer vision community opens up a num-
ber of interesting possibilities, as shown in recent literature
(Fu et al. 2014, 2016; Singh and Lee 2016; Kovashka and
Grauman 2017; Parikh and Grauman 2011; Jing et al. 2017;
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Figure 1: Examples of indistinguishable pairwise compar-
isons.

Bampis et al. 2018; Squalli-Houssaini et al. 2018). For ex-
ample, estimating interestingness attribute (Fu et al. 2014)
from images/videos would be helpful for media-sharing
websites (e.g., Youtube); estimating attributes of consumer
goods such as shininess of shoes (Fu et al. 2016) plays a
central role in improving online shopping experiences; other
applications might include web advertising and video sum-
marization. And the list goes on.

Given the importance of PA, our first problem starts with
how to measure the strength of such attributes quantitatively.
At the first glance, one can realize it by simply specifying
a discrete score. For example, one could score the interest-
ingness of a movie as 1, 2, 3, · · · , 5, with 5 representing the
most interesting ones and 1 representing the least interest-
ing ones. However, the potential issue is that different peo-
ple often exhibit dissimilar interpretations of the score. For
instance, some annotators think score 3 is large enough for
good movies, while the others even give a boring movie the
same score. This makes such a scoring rule not suitable, es-
pecially when we are searching for a consensus over person-
alized opinions. In order to obtain more reliable annotations
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and thus learn better aggregation models, recent studies turn
to an alternative approach with pairwise comparisons. In a
pairwise comparison test, an individual is asked to choose
which one has a stronger presence of a given attribute. Since
both objects in a given pair take the other one as a reference
point, the scaling issue is thus largely alleviated. However,
introducing pairwise comparisons has its own problem, that
is, not all the pairs are distinguishable. As shown in Fig.1,
indistinguishable pairs are actually ubiquitous in the crowd-
sourcing platforms. The annotators often have no clue about
how to make decision on such queries. Facing this trouble,
we could allow the annotators to abstain from the choice,
when it is too hard to tell which one in a given pair is really
better. In fact, we could find a variety of visual applications,
where a “I can’t decide” option is inevitable. For example, in
subjective multimedia quality assessment (Chen et al. 2009;
Xu et al. 2011), videos and images of the same content are
to be evaluated for its quality; in online shopping systems,
one would like to choose the most comfortable shoes out of
a given pair; in the human-age estimation task, the users are
required to choose the younger person. In all these scenarios,
some pairs are easy to distinguish, while others are not.

In all these examples, if a rater is not sufficiently certain
regarding the relative order of the two items, he may abstain
from his choice decision and instead declare these two as
indistinguishable, which we call partial ranking. In this way,
a dataset with abstention of this kind provides us information
about possible ties or equivalent classes of items in partial
orders.

Given the above arguments, in this paper, we measure the
strength of attributes with the pairwise comparisons with
abstention. Based on this setting, our goal is to aggregate
the personalized annotations of such partial rankings on the
crowdsourcing platforms, which leads to consensus compre-
hensions of the attributes.

Though there is a considerable amount of work on pair-
wise ranking (Fu et al. 2014), the literature on learning par-
tial rankings from such pairwise comparison data with ab-
stentions is relatively sparse. In (Cheng et al. 2010), it pro-
duces partial ranking by thresholding a (valued) pairwise
preference relation, i.e., by a “α-cut” of preference relation.
However, it leaves the optimal choice of hyper-parameter α
to various heuristics and needs to know in advance the pref-
erence relation between every pair of items (i.e., n(n− 1)/2
pairs in total for n items), which requires a large number of
comparisons, being too prohibitive in modern applications.
To fill in this gap, in (Xu et al. 2018), it proposes a novel
framework to learn partial ranking based on extended prob-
abilistic models, in which the threshold α, can be automat-
ically learned from pairwise comparison data with absten-
tions via convex optimization. Moreover, (Yu and Grauman
2015) explores this problem from a “Just Noticeable Differ-
ence (JND)” perspective to decide whether a difference in
PA is perceptible.

These work mentioned above, either does not have pre-
diction power (Cheng et al. 2010; Xu et al. 2018), or aims to
predict the partial rankings based on limited representation
of low-level image features (Yu and Grauman 2015). Dif-
ferent from these work, our goal in this paper is to leverage

the strong representation power of deep neural networks to
aggregate the partial ranks for PA from a deep perspective.
As an overall summary, we list our main contributions as
follows:
• Based on the crowdsourcing data, we propose a deep

framework to aggregate pairwise comparisons for per-
sonalized attributes when some of the pairs are suffer-
ing from an indistinguishable difference. To the best of
our knowledge, our framework offers the first attempt
for partial ranking prediction in the presence of indistin-
guishable/indistinguishable pairs with a deep end-to-end
framework.

• In the core of the framework lies the unified probabilis-
tic model, which formulates the annotation process of the
users with specific consideration of abstention. Different
from the majority of the traditional methods, the proposed
framework could simultaneously learn to detect indistin-
guishable pairs and to predict the aggregated results for
distinguishable pairs. Based on this model, we propose a
novel loss function with the Maximum Likelihood Esti-
mation framework.

• Moreover, we also propose a prediction scheme for the
comparison results of unseen image pairs, without the
help of crowdsourcing annotations.

Related Work
Personalized Attributes. As mentioned in our introduction,
PA has been widely studied in recent years. It has inspired a
number of useful applications, including image/video inter-
estingness (Fu et al. 2014), memorability (Jing et al. 2017;
Squalli-Houssaini et al. 2018), and quality of experience
(Chen et al. 2009; Bampis et al. 2018) prediction, etc. Typi-
cally one learns PA in the learning-to-rank setting: the train-
ing data is ordered (e.g., we are told image A has it more
than B), and a ranking function is optimized to preserve
those orderings. This could be realized via popular learning
to rank models such as RankSVM (Joachims 2002), Rank-
Boost (Freund et al. 2003), RankNet (Burges et al. 2005),
GBDT (Friedman 2001), and DART (Rashmi and Gilad-
Bachrach 2015). However, such models assume that all im-
ages are orderable. However, this assumption is inconsis-
tent with humans perception. In fact, 40% of the time hu-
man asked to compare images for a relative attribute declare
that no difference is perceptible (Yu and Grauman 2014).
As shown in Fig.1, within a given attribute, sometimes we
can perceive a comparison, sometimes we can not. To ad-
dress this issue, (Yu and Grauman 2015) develops a non-
parameterized Bayesian local learning strategy to separate
distinguishable from indistinguishable pairs at test time. Dif-
ferent from this traditional line of research, we study the
partial rank aggregation problem under the context of deep
learning. With a parameterized style, our model scales better
than the non-parameterized model. Moreover, equipped with
better feature representation power, we show experimentally
that the proposed end-to-end framework could achieve bet-
ter ranking prediction.
Learning with a Reject Option. The notion of abstention
could be traced back to the classification community (Chow
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1970), where abstention is often formulated as a reject op-
tion. Specifically, a classifier might reject to decide a class
prediction if making no decision is considered less harm-
ful than making an unreliable and hence potentially false
decision. Nowadays, this framework has been successfully
applied to a wild range of classification variants including
binary classification (Herbei and Wegkamp 2006; Grand-
valet et al. 2009; Yuan and Wegkamp 2010; El-Yaniv and
Wiener 2010), multicategory classification (Zhang, Wang,
and Qiao 2018), multi-label classification (Pillai, Fumera,
and Roli 2013) and confidence set learning (Wang and Qiao
2018). Though we also expect to model the possibility of ab-
staining from a choice, our work adopts a completely differ-
ent setting from this line of research. First of all, the reject
option in classification problems models the ambiguity of
whether a given object belongs to a given class; whereas the
indistinguishable state in our paper models the ambiguity of
whether a pair of two objects have a significant difference
concerning a given personalized attribute. Secondly, under
the context of classification, the goal for including a reject
option is to improve the robustness of the classifier and the
reject option itself does not have a clear semantic meaning;
whereas our goal in this paper is to recognize the indistin-
guishable comparisons explicitly, and the indistinguishable
option itself has a clear semantic meaning showing that the
given pair has similar presence of a given attribute.
Partial Ranking. Finally, we review the related work on
partial ranking, namely, the methods for learning to rank
with partial orders where not all the instances are distin-
guishable. Recently, worth mentioning is the work on a spe-
cific type of partial orders, namely linear orders of unsorted
or tied subsets (partitions, bucket orders) (Gionis et al. 2006;
Lebanon and Mao 2008). However, the problems addressed
in these studies are different from our goals. As a represen-
tative work, (Cheng et al. 2010) starts to consider the partial
ranking problem from the learning perspective. The idea is
that it produces predictions in the form of partial order by
thresholding a (valued) pairwise preference relation, i.e., by
an “α-cut” of preference relation. However, it lacks a solid
principle to decide the hyper-parameter α as the threshold.
Moreover, it needs to know in advance the preference rela-
tion between every pair of items. To learn the threshold auto-
matically, (Xu et al. 2018) proposes an extended probabilis-
tic model for partial order ranking which could solve these
problems in (Cheng et al. 2010). However, these methods do
not have predictive power for new PA comers. (Yu and Grau-
man 2015) addresses this problem from a “just noticeable
differences (JND)” perspective, together with a limited rep-
resentation of low-level image features, to decide whether a
difference in personalized attributes is perceptible. Different
from these studies, in this paper, we propose a deep probabil-
ity model which not only offers the first attempt to integrate
partial rankings for PA, but also exhibits strong prediction
power for the choices of new PA alternatives.

Methodology
In this section, we first clarify the problem definition for our
model. Specifically, it includes the definition of our train-
ing dataset, the elaboration of our goal in this paper, and

the input and output of our proposed model. Then we for-
mulate our proposed model, which includes a probabilistic
ranking model, a deep representation framework, a maxi-
mum likelihood-based loss function and a label prediction
scheme.

Problem Definition

We aim to learn a PA partial ranking aggregation model,
where each comparison corresponds to a local ranking be-
tween a pair of images with respect to the given PA. We be-
gin our discussion with a brief introduction of the traditional
pairwise comparison training data. First, our training data
contains n object images to be compared. We then choose
N pairs from the pool of the training object images to form
the pairwise comparisons. For a given pair (i, j) including
two images i and j, we denote the corresponding raw input
as (xi, xj). Furthermore, we invite U annotators from the
crowdsourcing platforms to label the pairs. Mathematically,
the annotation results could be represented as a multi-graph.
We define the graph as G = (V, E). V is the set of vertexes
which contains all the distinct image items occurred in the
comparisons. E is the set of comparison edges. Each time
the comparison pair (i, j) is labeled by a new user, we add
an edge (i, j) to the set E . Since multiple users take part in
the annotation process, it is natural to observe multi-edges
between two vertexes. Traditionally, the pairwise compari-
son training data only provides two options for the annota-
tion. Now we could denote the labeling results as a function
y : E → {−1, 1}. For a given PA A, and a given user u, if
the user thinks that A has a stronger presence in i, then the
pair is labeled as yuij = 1. Equivalently we also denote this

as a relation: i
u
� j. If the opposite is the case, the user then

labels the pair as yuij = −1, and we denote this as j
u
� i. So

far we have clarified the setting of traditional pairwise an-
notation for PA. We see that the traditional setting assumes
that any pair (i, j) in the dataset must be distinguishable, in
a way that either i

u
� j or j

u
� i holds. However, indistin-

guishable pairs are ubiquitous in real-world problems. Tak-
ing the data in Fig.2.1 as an example, here the PA in question
is smiling, and we have five object images {V1, V2, · · · , V5}
and three annotators. Among the five images, we find that V2

and V3 are hardly distinguishable. In fact, this phenomenon
is well-justified by the limitation of human perception. Ac-
cording to psychology studies, it is impossible for human
beings to notice arbitrary small difference. Instead, there is
a minimum level of stimulation, known as Just Noticeable
Difference (JND) (Stern and Johnson 2010), such that only
when the difference between two objects is higher than JND
could it be noticeable at least half the time. This motivates
us to include an extra relation beyond� and≺. Specifically,
when the user u could not differentiate i and j with respect
to the given PAA and would like to abstain from the current
choice, we provide an alternative option as yuij = 0, which

could be equivalently expressed as i
u
≈ j.

With the third state considered, we come to a novel label-
ing function y : E → {−1, 0, 1}. Then the corresponding
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Figure 2: Overview of our approach. (1) This shows an example of the training dataset for a PA smiling. The upper half
shows the training set images and the lower half shows the annotations collected via crowdsourcing platforms. (2) This is
an instantiation of the multi-graph formed by the annotations in (1). Here, arrows stand for distinguishable annotations and
dotted lines stand for indistinguishable/abstention results. (3) In the training phase, we provide an end-to-end deep prediction
model to aggregate personalized partial ranks with the presence of abstention. (4) In the testing phase, the proposed model
is expected to predict a consensus local ranking score between unseen images. Moreover, the model is expected to recognize
indistinguishable/indistinguishable pairs.

yuij becomes:
yuij = −1, i

u
� j, (i, j) ∈ Du;

yuij = −1, j
u
� i, (i, j) ∈ Du;

yuij = −0, j
u
≈ i, (i, j) ∈ Du.

(1)

whereDu is the set of all pairs labeled by user u. We present
an instantiation of the annotations in Fig.2.1-Fig.2.2. The
upper half of this figure shows the training image items and
the lower half shows the annotations yuij collected from a
set of three users. Correspondingly, the edge-labeled graph
is shown in Fig.2.2. The edges standing for distinguishable
results are labeled as arrows which always point from the
weaker nodes to the stronger nodes. The abstention annota-
tions are labeled as dotted lines. Moreover, different colors
stand for different annotators.

Now we are ready to elaborate our goal in this paper.
Given the object images and the comparison annotations
{yuij} in the presence of abstention labels, our goal is then to
construct an end-to-end deep learning model which is able
to (a) aggregate personalized partial rankings for PAs into
consensus results based on the training data, and to (b) fur-
ther apply the learned model to predict the such consensus
ranking results for unknown image pairs.

Moreover, the input and the output of our proposed model
are then defined as the following.
Input. The input of our deep model is the multi-graph G
mentioned previously, the annotations {yuij} and the image
items, where each time a specific edge (i, j) and a specific
annotation yuij is fed to the network.
Output. Our model will output the relative score si and sj
for the input and a threshold λ which is necessary for judg-
ing the abstention state.

Note that, in the rest of the paper, whenever the yuij oc-
curs again, it refers to the new labeling process expressed in
Eq.(1).

A Deep PA Partial Ranking Aggregation Model
Now we propose a probabilistic partial ranking model cap-
turing the generative process of the annotations yuij . We as-
sume that each training object image has an aggregated con-
sensus preference score toward the underlying PA, where a
higher score indicates a stronger presence of the PA, and
the corresponding score list of the training images is s =
[s1, · · · , sn]. Accordingly, when i and j form an edge in G,
we expect to observe a consensus score difference si − sj .
For a given user u, due to his/her personalized comprehen-
sion toward the attribute, he/she will provide a score differ-
ence of si − sj + εuij , where εuij ∼ P is a random variable
indicating the personalized deviation from the consensus. As
mentioned in the previous subsection, due to the limitation
of human perception, we could not notice arbitrary small
difference. The difference becomes noticeable only when its
magnitude is more significant than a threshold λ. Then, for a
specific user u, and a specific observation (i, j), we assume
that yuij is produced by comparing the personalized score
difference si − sj + εuij with the threshold λ. Moreover, we
assume that a distinguishable result is claimed when the ab-
solute value of the difference |si − sj + εuij | is greater than
λ, otherwise u will observe indistinguishable result. In other
words, in our model, user u would choose yuij = 1, if the
observed score difference si − sj + εuij is greater than the
threshold λ. To the opposite, if si − sj + εuij is smaller than
−λ, then user u would choose yuij = −1. If none of them
is the case, and si − sj + εuij has a smaller magnitude than
λ, the user would claim that i and j are not distinguishable.
Above all, yuij is obtained from the following rule:

yuij =

 1, si − sj + εuij > λ;
−1, si − sj + εuij < −λ;
0, else.

εuij ∼ P . (2)

According to Eq.(2), we could predict the annotation yuij
once we know si and sj . However, in real-world problems,
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we do not know the score list s in advance. In this sense,
we turn to provide an estimation of the consensus scores
from the raw images x. Specifically, as shown in Fig.2.3,
we employ a deep Siamese (Chopra, Hadsell, and LeCun
2005; Norouzi, Fleet, and Salakhutdinov 2012; Wang et al.
2014) convolutional neural network to estimate the scores
s and the relative difference si − sj for the image pairs. In
our model, the input is an edge (i, j) in the graph G. Follow-
ing the convention of the Siamese convolutional neural net-
work, the weights in the network are shared across the two
branches. Each branch of the network is fed with one im-
age of the pair. Given this architecture, to obtain high-level
representations of the image, the raw inputs are first fed to
a convolution backbone architecture with weights Θb. Then
to estimate the score for i and j, the outputs of the back-
bone are fed to a scoring function with weights Θs. Denote
Θ = {Θb,Θs}, and denote the estimated score for i and j
as s(xi,Θ) and s(xj ,Θ) respectively, then we have:

s(xi,Θ) = Score(Backbone(xi,Θb),Θs), (3)
s(xj ,Θ) = Score(Backbone(xj ,Θb),Θs). (4)

Together with the probabilistic model for annotations in
Eq.(2) and the formulation of estimated scores in Eq.(3)-
(4), now we turn to construct a loss function to learn a suit-
able estimation of the scores such that the learned scores
{s(x,Θ)} match the annotations {yuij} as much as possible.
Specifically, we adopt the Maximum Likelihood Estimation
(MLE) framework. According to the principle of MLE, the
learned estimation s(x,Θ) should maximize the likelihood
to observe the annotations in the training set. To derive the
likelihood function, let us first derive the possibility to ob-
serve a given annotation yuij . We define two auxiliary vari-
ables ∆+

ij and ∆−ij as :

∆+
ij = λ− s(xi,Θ) + s(xj ,Θ),

∆−ij = −λ− s(xi,Θ) + s(xj ,Θ).
(5)

Recall Eq.(2), εuij subjects to a distribution P . Now we as-
sume that the Cumulative Distribution Function (CDF) of P
is F (·) such that F (x) = P

{
εuij ≤ x; Θ

}
, where P {B; Θ}

is the possibility to observe the event B parameterized by Θ.
Practically, we assume that εuij subjects to a logistic distribu-
tion with a CDF

F (x) =
1

1 + exp(−x)
.

Now we could derive the probability to observe yuij =
1, 0,−1, respectively. According to Eq.(2) and Eq.(5), we
have:

P{yuij = 1; Θ, λ} = P{εuij > ∆+
ij ; Θ, λ}

= 1− F
(
∆+
ij

)
;

P{yuij = 0; Θ, λ} = P{∆−ij < εuij ≤ ∆+
ij ; Θ, λ}

= F (∆+
ij)− F (∆−ij);

P{yuij = −1; Θ, λ} = P{εuij ≤ ∆−ij ; Θ, λ}
= F (∆−ij).

Then we could estimate the possibility to observe the an-
notation yuij as:

P
{
yuij ; Θ, λ

}
=

∏
q∈{−1,0,1}

P
{
yuij = q; Θ, λ

}[yuij=q]
,

where [B] = 1 if event B happens, otherwise [B] = 0.
By simply taking a negative logarithm transformation over
P
{
yuij ; Θ

}
, we come to the negative log-likelihood function

for a given annotation:
− log

(
P
{
yuij ; Θ, λ

} )
=

∑
q∈{−1,0,1}

−
[
yuij = q

]
log(P

{
yuij = q; Θ, λ

}
).

From a global view, we denote P {Y; Θ, λ} as the possi-
bility to simultaneously observe all the training annotations,
where Y = {yuij}(u,i,j) is the set for all the personalized
annotations in the training data.

P {Y; Θ, λ} =
∏
u

∏
(i,j)∈Du

P
{
yuij ; Θ, λ

}
Then we reach the negative log-likelihood function for the
whole training set:

L(Θ, λ) = − log (P {Y; Θ, λ})

= −
∑
u

∑
(i,j)∈Du

log
(
P
{
yuij ; Θ, λ

} )
.

Since the negative logarithm function is strictly decreas-
ing, maximizing the likelihood is equivalent to minimizing
L(Θ, λ). This means that we could train the network through
the following optimization problem:

min
Θ,λ
L(Θ, λ).

At the end of the training phase, we obtain a network with
the learned parameter Θ, λ, as well as the aggregated score
list s with the personalized effect eliminated.

As shown in Fig.2.4, during the test phase, our model will
predict the consensus partial ranking labels for unseen im-
ages without the help of crowdsourcing annotators. More
precisely, given the test pair (k,m), we expect to predict
the consensus label ykm. If k � m, ykm = 1; if k ≺ m,
ykm = −1; and if k ≈ m, ykm = 0. Taking the objects in
Fig.2.4 as examples, here our PA is smiling. If k is a more
smiling person, m is a less smiling person, and the differ-
ence is significant, then we come to a label ykm = 1. If the
opposite is the case, then we come to a label ykm = −1.
Otherwise, if the difference between two persons is not sig-
nificant, then we come to a label ykm = 0. To predict
the ykm from the raw images, we feed xk and xm to the
trained model, and obtain the predicted scores s(xk,Θ) and
s(xm,Θ). Since the personalized deviation in the annota-
tion process is modeled by εuij , the predicted score difference
s(xk,Θ)− s(xm,Θ) could be regarded as a reasonable es-
timation of the consensus score difference with the noise re-
moved. In this way, we predict the consensus label ykm with
ŷkm with the following formulation:

ŷkm =

{
1, s(xk,Θ)− s(xm,Θ) > λ;
−1, s(xk,Θ)− s(xm,Θ) < −λ;
0, else.

(6)
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Discussion
Under mild assumptions, we show that the proposed deci-
sion rule Eq.(6) could potentially provide a consistent result
with the consensus comparison order. Given a finite object
image set X = {x1,x2, · · · ,xn}, assume that there is a
consensus comparison relation ≺, such that y ≺ x if and
only if image x has a stronger presence of a given PA than
image y. We formulate the indistinguishable relation ≈ as
¬(x ≺ y)∧¬ (y ≺ x). Furthermore, we assume that≺ forms
a semi-order (and thus a partial order) in the sense that (Luce
1956):
• For all x, y ∈ X , it is not possible for both x ≺ y and
y ≺ x to be true.

• For all x, y, z, w ∈ X , if it is true that x ≺ y, y ≈ z, and
z ≺ w, then it must also be true that x ≺ w.

• For all x, y, z, w ∈ X , if it is true that x ≺ y, y ≺ z, y ≈
w, then it cannot also be true that x ≈ w and z ≈ w
simultaneously.

Note that semi-order is a weak assumption in our problem,
since all the three constraints should be naturally satisfied
by a comparison relation for PA. With the above-mentioned
assumptions, we have the following proposition.
Proposition 1. Given any finite X and a semi-order ≺ on
X . Furthermore, define x ≈ y as ¬(x ≺ y) ∧¬ (y ≺ x).
There exists a real-valued function s?(x) on X with range
[0, 1], and a λ? > 0, such that:{

k ≺ m, s?(xm)− s?(xk) > λ?;
m ≺ k, s?(xm)− s?(xk) < −λ?;
m ≈ k, else.

Proof. According to Thm.3 in (Fishburn 1970), there exists
a real-valued function u(·) on X such that:

y ≺ x if and only if u(y) + 1 < u(x). (7)

Let f(x) be a strict monotone function such that f
(
u(x)

)
∈

[0, 1], ∀x ∈ X and that:

f
(
u(x)

)
< f

(
u(y)

)
, if u(x) < u(y), ∀x, y ∈ X .

Then by choosing s? = f ◦ u and

λ? = min
x,y∈X ,u(x)>u(y)+1

f
(
u(x)

)
− f

(
u(y)

)
∀x, y ∈ S , we have:

y ≺ x⇐⇒ u(y) + 1 < u(x)

⇐⇒ f
(
u(y)

)
+ λ? < f

(
u(x)

)
.

x ≺ y ⇐⇒ u(x) + 1 < u(y)

⇐⇒ f
(
u(x)

)
+ λ? < f(u(y)).

x ≈ y ⇐⇒ |f
(
u(y)

)
− f

(
u(x)

)
| ≤ λ?.

Then we reach Eq.(7).

Prop.1 shows that we can find a reasonable estimation of
≺ with Eq.(6), if s(·,Θ), λ in the network could give a good
approximation of s?, λ?. Fortunately, the most recent stud-
ies on the universality of deep neural networks (Zhou 2020)
tend to support the approximation performance of deep neu-
ral networks. This suggests that we could obtain a reason-
able performance from the proposed method.

Dataset No.Pairs No.Images No.Classes
LFW-10 Dataset 50,000 2000 10
Shoes Dataset 61,879 14,658 6
Sun Dataset 45,694 14,000 5

Table 1: Dataset summary.

Experiments
In this section, experiments are exhibited on three bench-
mark datasets (see Tab.1) to illustrate the validity of the anal-
ysis above and applications of the methodology proposed.

Datasets
LFW-10. The LFW-10 dataset (Sandeep, Verma, and Jawa-
har 2014) consists of 2,000 face images, which are chosen
from the Labeled Faces in the Wild (Huang et al. 2008)
dataset. More specifically, it includes 10 personalized at-
tributes, like smiling, big eyes, etc. Each pair was labeled
by 5 people. As our goal is to predict PA from labels with
ties, we do not conduct any pre-processing steps like ma-
jority voting to merge these labels. The images are split
to 1000/1000 to create training/testing pairs. The resulting
dataset has 50,000 annotated sample pairs, with 500 training
and testing pairs per attribute. Specifically, pairs labeled as
“0” account for 41.09% of the total pairs.
Shoes. The Shoes dataset is collected from (Kovashka and
Grauman 2015) which contains 14,658 online shopping im-
ages. For each attribute, there are at least 190 users who take
part in the annotation procedure, and each user is assigned
with 50 images. Note that this dataset uses instance-wise
feedbacks (each query only involves an evaluation for one
object) rather than pairwise feedbacks. We then adopt a sam-
pling strategy to produce pairwise feedback data. Specifi-
cally, we randomly sample positive annotations and nega-
tives annotations from each user’s records to form the pairs
we need. We randomly select 2000 distinct pairs for each
attribute, where each pair contains a positive instance and a
negative instance. Whereas we sample 30% of indistinguish-
able pairs for each attribute, where each pair contains only
positive instances or negative instances. Finally, this yields
to a volume of 61,879 pairwise annotations for our dataset.
Sun. The SUN Attribute dataset is a well-known large-scale
scene attribute dataset including roughly 14,000 images and
a taxonomy of 102 discriminative attributes. Recently, the
personalized annotations over five attributes are collected
with hundreds of annotators. For each person, 50 images
are labeled based on their own comprehension and prefer-
ence. Overall, this dataset contains 64,900 annotations col-
lected from different users. Again, the Sun data only col-
lected instance-wise feedbacks. Here we use the same sam-
pling strategy as Shoes dataset to generate pairwise com-
parison results. As a result, we obtain a volume of 45,694
pairwise annotations for our Sun dataset.

Competitors
To show the effectiveness, we compare our method with 11
competitors, which fall into four categories:
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Types Backbone Algorithm Bald D.Hai B.Eye GLook Masc. Mouth Smile Teeth Foreh. Young Aver.

Shallow -

LinearR .2907 .3642 .2301 .3186 .2718 .3153 .3535 .2947 .3476 .4178 .3204
LogisticR .3657 .4257 .2481 .3631 .3180 .3480 .3413 .3456 .3555 .4826 .3594
RankNet .3695 .4189 .2553 .3729 .3162 .3518 .3530 .3487 .3568 .4822 .3625
RankSVM .3356 .4135 .2427 .3737 .3020 .3355 .3627 .3333 .3709 .4781 .3548

Tree -
RankBoost .3669 .4303 .2400 .3619 .3100 .3204 .3551 .3307 .3289 .4538 .3498
GBDT .3627 .4181 .2404 .3517 .2958 .3299 .3673 .3377 .3568 .4599 .3520
DART .3648 .4253 .2436 .3487 .2993 .3346 .3509 .3281 .3380 .4640 .3497

Prob. -
JND-NonPar .3668 .3756 .3924 .3860 .4072 .3448 .3680 .3584 .3868 .3688 .3755
Ex-Prob .4004 .3712 .4152 .3652 .4592 .3280 .3444 .3624 .3836 .3788 .3808

Deep

AlexNet
ranking@0.5 .4248 .3588 .5904 .3716 .5420 .3988 .3472 .4612 .3564 .2020 .4053
CE@0.5 .4192 .3648 .5812 .3716 .5340 .4004 .3712 .4508 .3716 .2448 .4110
Ours-MLE .4572 .4460 .5712 .4396 .6252 .4288 .4400 .4824 .4352 .3700 .4696

VGG-16
ranking@0.5 .5240 .4300 .7540 .4460 .6760 .4760 .3940 .4180 .5620 .2200 .4900
CE@0.5 .5020 .4520 .7820 .4640 .6760 .4760 .4160 .4080 .5700 .1660 .4912
Ours-MLE .5240 .5040 .7720 .4420 .7020 .5280 .4700 .4900 .5780 .3320 .5342

ResNet-50
ranking@0.5 .5200 .4400 .7820 .4400 .7020 .4760 .3980 .4140 .5740 .1660 .4912
CE@0.5 .4500 .4200 .6960 .4360 .6480 .4740 .3960 .4180 .5280 .2400 .4706
Ours-MLE .5300 .5160 .7640 .4420 .7400 .5180 .4320 .4800 .5560 .3920 .5370

Table 2: Experimental results (ACC) of 10 attributes on LFW-10 dataset.

Figure 3: Example prediction results on LFW-10 dataset.
Each row shows pairs for a particular attribute. The top
four rows illustrates success cases. Left panel: pairs our
proposed method correctly predicted as indistinguishable;
Right panel: pairs correctly predicted as distinguishable by
our method. The bottom row illustrates failure cases by our
method; i.e., the bottom left pair is indistinguishable for
DarkHair, but we predict it distinguishable.

Traditional and Shallow Models:
• LinearR: uses least squares problem for learning to rank.

• LogisticR: uses logistic regression for learning.

• RankSVM (Joachims 2002): With the modification of in-
put features by xij = (xi − xj), RankSVM turns the
learning to rank problem to a standard SVM with input
{xij , yij}(i,j). It is used to show the superiority of our
fine-grained model.

• RankNet (Burges et al. 2005): To show the effectiveness
of using a deeper network, we compare our method with
the classical RankNet model, where a traditional three
layer structure is used instead of a deeper architecture.

Tree-based Ensemble Models:
• RankBoost (Freund et al. 2003): Besides the deep learn-

ing framework, it is also known that the ensemble-based
methods could also serve a model for hierarchical learn-
ing and representation. In this sense, we compare our
method with the RankBoost model, one of the most clas-
sical tree-based ensemble methods.

• GBDT (Friedman 2001): Gradient Boosting Decision
Tree (GBDT) extends the idea of boosting, which gen-
erates a weak learner in each iteration by learning the re-
cursive residual. It has gained surprising improvements in
many traditional tasks and competitions.

• DART (Rashmi and Gilad-Bachrach 2015): Recently, the
well-known dropout trick has also been applied to tree-
based learning, be it the dart method. We also record its
performance to show the superiority of our method.

Probabilistic Models:
• JND-NonPar (Yu and Grauman 2015): To show the

power of our proposed scheme, we compare our method
with JND-NonPar, which provides an indistinguishable
pair recognition scheme with a stage-wise non-parametric
probabilistic model.

• Ex-Prob (Xu et al. 2018): We also compare our method
with Ex-Prob, which adopts extended probabilistic mod-
els for partial ranking.

Deep Models:
• ranking@0.5: The end-to-end baseline model with

AlexNet/VGG16/ResNet50 as backbone architecture,
ranking loss function and a fixed threshold 0.5.

• CE@0.5: The end-to-end baseline model with AlexNet/
VGG16/ResNet50 as backbone architecture, cross-
entropy loss function and a fixed threshold 0.5.
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Types Backbone Algorithm Comf. Fash. Form. Poi. Bro. Orn. Aver.

Shallow -

LinearR .4400 .3598 .3226 .5183 .3665 .4080 .4025
LogisticR .4400 .3476 .3097 .4817 .3478 .4080 .3891
RankNet .4457 .3476 .3161 .4634 .3292 .4138 .3860
RankSVM .4229 .3598 .2968 .5610 .3292 .3621 .3886

Tree -
RankBoost .4286 .3476 .2903 .4573 .3168 .4080 .3748
GBDT .4171 .3354 .2903 .3841 .3230 .4023 .3587
DART .4057 .3537 .3032 .4329 .2981 .3966 .3650

Prob. -
JND-NonPar .5314 .6098 .6258 .5732 .5901 .5805 .5851
Ex-Prob .6343 .6159 .6581 .5122 .6273 .6207 .6114

Deep

AlexNet
ranking@0.5 .7273 .7137 .8305 .4646 .8731 .6841 .7155
CE@0.5 .6930 .6483 .7969 .4154 .8093 .6334 .6660
Ours-MLE .8271 .7251 .8088 .4985 .8834 .7332 .7460

VGG-16
ranking@0.5 .7303 .7384 .8006 .4923 .8313 .6825 .7126
CE@0.5 .6855 .6607 .7565 .5200 .8512 .6268 .6835
Ours-MLE .8174 .7109 .7797 .4554 .8292 .7797 .7287

ResNet-50
ranking@0.5 .7213 .7213 .7976 .5385 .8745 .7091 .7271
CE@0.5 .6654 .6948 .7267 .5015 .8374 .6259 .6753
Ours-MLE .8279 .7014 .8245 .4769 .8779 .7656 .7457

Table 3: Experimental results (ACC) on Shoes dataset.

Figure 4: Example predictions on Shoes dataset.

Implementation Details
• LFW-10. Since the first three types of competitors adopt

non-deep models, we employ a stage-wise training strat-
egy to improve their performance for the sake of fairness.
More precisely, we first extract the pre-trained features
from AlexNet (Krizhevsky, Sutskever, and Hinton 2012)
and then feed them to the competitors. For the deep learn-
ing methods, we implement the models using library Py-
torch (Paszke et al. 2019), and train the network jointly for
all PAs. Moreover, AlexNet/VGG16/ResNet50 are used
as the backbones and the weights are initialized with pre-
trained features on ImageNet (Deng et al. 2009). For train-
ing, we use a mini-batch size of 128 image pairs for SGD.
We set the initial learning rate to 1e-3 and fix the mo-
mentum to 0.9. We train these networks for 300 epochs,

and the learning rate is reduced by a factor of 10 every 40
epochs. We use random crops of size 227x227 from our
256x256 input image during training and resize all images
to 227x227 for testing.

• Shoes. The implementation follows the same settings
with LFW-10 dataset.

• Sun. It follows the same settings with LFW-10 dataset,
except that the pre-trained features are initialized with
models pretrained on CelebA (Liu et al. 2015).

Comparative Results
LFW-10. Tab.2 reports the test accuracy (ACC) for each at-
tribute. We see that our method (marked with bold) consis-
tently outperforms all the benchmark algorithms by a signif-
icant margin. This validates the effectiveness of our method.
In particular, it can be observed that: (1) The performance
of end-to-end deep methods are better than all non-deep
methods, which suggests the strong representation power
of end-to-end neural networks in PA prediction tasks. (2)
For end-to-end models, ranking loss and cross-entropy loss
show comparable results on this dataset. (3) Moreover, since
our model learns λ automatically and adaptively, it enjoys
a significant improvement with respect to a fixed threshold
0.5. In addition, Fig.3 shows qualitative prediction exam-
ples returned by AlexNet, while other two backbones ex-
hibit similar results. Here we see the subtleties of confusing
pairs. In the success cases, for the left panel of image pairs,
our proposed method can predict them as indistinguishable,
while previous methods were usually forced to make a bi-
nary comparison. Meanwhile, those that are distinguishable
(right panel) may have only subtle differences. A number of
failure cases are also shown. Some of them are caused by
unique view points (e.g., for ‘dark hair’ attribute, the man
has sparse scalp, so it is hard to tell who has darker hair); oth-
ers are caused by the unsatisfactory feature representation,

685



Types Algorithm Rust. Clut. Mod. Open. Soot. Aver.

Shallow

LinearR .3000 .4943 .4337 .3832 .4615 .4146
LogisticR .2933 .4406 .3855 .3892 .4725 .3962
RankNet .2933 .4713 .3916 .3713 .4835 .4022
RankSVM .2600 .6130 .3373 .3293 .4396 .3959

Tree
RankBoost .2867 .4291 .3614 .3832 .4725 .3866
GBDT .2667 .3870 .3675 .3832 .4689 .3746
DART .2733 .4138 .3735 .3533 .4469 .3722

Prob.
JND-NonPar .5733 .5172 .4759 .4551 .5311 .5105
Ex-Prob .6400 .3870 .6205 .5569 .4103 .5229

Deep-
AlexNet

ranking@0.5 .8061 .3903 .7809 .7718 .3980 .6294
CE@0.5 .7947 .4085 .8013 .7780 .3980 .6361
Ours-MLE .8688 .3722 .8613 .8045 .4260 .6665

Deep-
VGG-16

ranking@0.5 .8254 .3783 .7563 .7430 .5196 .6445
CE@0.5 .7845 .3722 .7874 .7290 .4008 .6148
Ours-MLE .9031 .3763 .8736 .8419 .4008 .6791

Deep-
ResNet-50

ranking@0.5 .8356 .4085 .7606 .7438 .4623 .6422
CE@0.5 .8092 .3883 .7649 .6846 .4134 .6121
Ours-MLE .8826 .3883 .8661 .7804 .4553 .6745

Table 4: Experimental results (ACC) on Sun dataset.

Figure 5: ACC vs. Threshold on Sun Dataset.

e.g., in ‘young’ attribute, as ‘young’ would be a function of
multiple subtle visual cues like face shape, skin texture, hair
color, whereas something like baldness or smiling has a bet-
ter visual focus captured well by part-based features.
Shoes. Similar to the LFW-10 datasets, Tab.3 again shows
that the performance of our proposed end-to-end model is
significantly better than that of other competitors. Moreover,
some prediction examples computed by our method are il-
lustrated in Fig.4. In the top six rows with successful detec-
tion examples, we see how our method can correctly predict
various instances that are indistinguishable, even though the
raw images can be quite diverse (e.g., a sports shoe and a
flat leisure shoe are equally pointy). Similarly, it can detect
a difference even when the image pair is fairly similar (e.g., a
high boot and high-heeled dance shoe are distinguishable for
brown even though the colors are close). The failure cases
are mostly caused by ambiguity: both images have this at-
tribute with similar degree. This thus corresponds to a truly

Figure 6: Example predictions on Sun dataset.

ambiguous case which can go either way.
Sun. Tab.4 again shows that the performance of our pro-
posed model significantly outperforms other competitors on
this dataset. Moreover, just like the other two datasets, with
the threshold being fixed as λ = 0.5, we could observe sig-
nificant performance degradations. This suggests that intro-
ducing an adaptive threshold is necessary for recognizing
the indistinguishable pairs. To see the performance of other
thresholds, Fig.5 shows the ACC against threshold ranging
from 0.1 to 1, from which we could observe that setting the
threshold as 0.5 tends to induce a better performance for the
competitors. We thus only show the results of threshold@0.5
in the competitive experiments above. Besides, we illustrate
some of the prediction results on the dataset in Fig.6. From
this figure, we see that, in most cases, our method could suc-
cessively recognize the indistinguishable pairs, and could
provide a correct ranking result when the underlying pair
is distinguishable, even when the images being compared
have completely different backgrounds (say the examples
for Cluttered and Modern).

Conclusion
With the help of online crowdsourcing platforms, this work
explores a challenging problem, namely, how to correctly
learn aggregated pairwise PA ranking results from person-
alized opinions, when some of the pairs suffer from an in-
trinsically imperceptible difference. We propose an end-to-
end deep partial ranking model with a multi-graph formu-
lation of the annotation data, a deep feature learning mod-
ule, and a probabilistic partial rank aggregation model which
takes into consideration the limitation of human perceptions.
Specifically, an adaptive threshold λ is parameterized to-
gether with the ranking scores. In this model, indistinguish-
able pairs could be automatically detected when the absolute
value of the score difference is below the learned threshold
λ. Putting all these together, we obtain an end-to-end deep
learning framework based on an MLE-induced loss function.
In our empirical studies, we perform a series of experiments
on three real-world datasets: LFW-10, Shoes, and Sun. The
corresponding results show the effectiveness and superiority
of our proposed model.
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