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Abstract

Deep neural networks (DNNs) are known to be vulnerable to
adversarial images, while their robustness in text classifica-
tion are rarely studied. Several lines of text attack methods
have been proposed in the literature, such as character-level,
word-level, and sentence-level attacks. However, it is still a
challenge to minimize the number of word distortions neces-
sary to induce misclassification, while simultaneously ensur-
ing the lexical correctness, syntactic correctness, and seman-
tic similarity. In this paper, we propose the Bigram and Uni-
gram based Monotonic Heuristic Search (BU-MHS) method
to examine the vulnerability of deep models. Our method has
three major merits. Firstly, we propose to attack text docu-
ments not only at the unigram word level but also at the bi-
gram level to avoid producing meaningless outputs. Secondly,
we propose a hybrid method to replace the input words with
both their synonyms and sememe candidates, which greatly
enriches potential substitutions compared to only using syn-
onyms. Lastly, we design a search algorithm, i.e., Monotonic
Heuristic Search (MHS), to determine the priority of word
replacements, aiming to reduce the modification cost in an
adversarial attack. We evaluate the effectiveness of BU-MHS
on IMDB, AG’s News, and Yahoo! Answers text datasets by
attacking four popular DNNs models. Results show that our
BU-MHS achieves the highest attack success rate by chang-
ing the smallest number of words compared with baselines.

1 Introduction
Deep neural networks (DNNs) have exhibited brittleness to-
wards adversarial attacks in the image domain, where an ad-
versarial image is intentionally modified with a only small
number of pixel perturbations (Szegedy et al. 2014; Good-
fellow, Shlens, and Szegedy 2015). This phenomenon raises
great interest in the Computer Vision community, while
the vulnerability of DNNs in Natural Language Processing
(NLP) field is generally underestimated, especially for those
security-sensitive NLP tasks, such as spam filtering, web-
page phishing, and sentiment analysis (Atallah et al. 2001).

Compared to image attacks, there are non-trivial difficul-
ties in crafting text adversarial samples. Firstly, the text ad-
versarial samples should be lexical correct, syntactic correct,
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Original Input Unigram Attack Bigram Attack

New York Fresh York Empire State
Machine Learning Device Learning Data Mining
Primary School Major School Elementary School

Table 1: Difference between unigram and bigram attacks.

and semantic similar. This will ensure the adversarial mod-
ifications are imperceptible to human readers. Secondly, the
words in text sequences are discrete tokens instead of con-
tinuous pixel values as in images. Therefore, it is infeasible
to directly compute the model gradient with respect to ev-
ery word. Thirdly, making small perturbations on many pix-
els may still yield a meaningful image from human percep-
tion perspectives. However, any small changes, even a single
word, to text document can make a sentence meaningless.

Several text attack methods have been proposed, such
as character-level attack, sentence-level attack, and word-
level attack (Wang et al. 2019). Character-level attack (e.g.,
noise→ nosie) leads to lexical errors, and sentence-level at-
tack (i.e., inserting a whole sentence into the original text)
often causes significant semantic changes. To avoid these
problems, many recent works focused on word-level attacks
that replace the original word with another carefully se-
lected one (Zhang et al. 2019). However, existing meth-
ods mostly generate substitution candidates for every indi-
vidual word (i.e., a unigram), which can easily break com-
monly used phrases, leading to meaningless outputs (e.g.,
high school → tall school). In addition, when sorting word
replacement orders, most algorithms calculate the word im-
portant score (WIS) and attack them via a descending or-
der of the WIS. There are different definitions of WIS, such
as probability weighted word saliency (PWWS) (Ren et al.
2019) and the changes of DNNs’ predictions before and after
deleting a word (Jin et al. 2020), etc. One major drawback
of using such a static attack order is word substitution in-
flexibility, e.g., sequentially selecting the top-3 WIS words
{top1, top2, top3} may not fool a classifier but sometimes
the combination {top1, top3} can make it.

In this work, we propose a new word-level attack method
named Bigram and Unigram based Monotonic Heuristic
Search (BU-MHS) which effectively addresses all the draw-
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Figure 1: The workflow of BU-MHS. A CNN model is mis-
led from “Sci/Tech” to “Business” by replacing one bigram.

backs above. Unlike traditional unigram word attack, we
consider both unigram and bigram substitutions. In our ap-
proach, we generate more natural candidates by replacing a
bigram with its synonyms (e.g., high school → secondary
school). Table 1 lists several examples that illustrate the
superiority of bigram attacks in comparison with unigram
attacks. Additionally, we propose to replace input words
by considering both their synonyms and sememe-consistent
words. By incorporating these complementary candidates,
we have better choices to craft high-quality adversarial texts.

More importantly, we propose an effective candida-
ture search method, Monotonic Heuristic Search (MHS),
to determine word priorities. The MHS inherits the best-
performed candidate combinations from the previous gen-
eration and determines the next replacement word with a
heuristic search. For instance, if changing the {top1} word
cannot mislead a classifier, the static methods used in the lit-
erature will select the combination {top1, top2} in the sec-
ond iteration, but our adaptive MHS will check more com-
binations, e.g., {top1, top2}, {top1, top3}, etc. Compared
with static strategy, the MHS allows us to fool DNNs mod-
els with much fewer modifications, which is significant in
reducing semantic changes and grammatical mistakes. Fig-
ure 1 illustrates an example of our algorithm. Our main con-
tributions in this work are summarized as below:
• We propose to attack text documents not only at the un-

igram word level but also at the bigram level to generate
natural adversarial samples and avoid semantic errors.

• We propose a hybrid approach to generate word substitu-
tions from both synonym candidates and sememe candi-
dates. Such a complementary combination enables us to
craft more meaningful adversarial examples.

• We design MHS to effectively prioritize word replace-
ments, which minimizes the number of word modifica-
tions and reduces semantic and syntactic mistakes.

2 Related Work
Text attack methods can be categorized into character-level,
sentence-level, and word-level attacks (Wang, Jin, and He

2019). Character-level attack generates adversarial texts
by deleting, inserting, or swapping characters (Belinkov and
Bisk 2018; Ebrahimi et al. 2018). However, these character-
level modifications lead to misspelled words, which can be
easily detected by spelling check machines. Sentence-level
attack concatenates an adversarial sentence before or af-
ter the original texts to confuse deep architecture models
(Jia and Liang 2017; Wallace et al. 2019a), but they usu-
ally lead to dramatic semantic changes and generate hu-
man incomprehensible sentences (Gan and Ng 2019; Wal-
lace et al. 2019b). Word-level attack replaces original in-
put words with carefully picked words. The core problems
are (1) how to select proper candidate words and (2) how to
determine the word substitution order. Incipiently, Papernot
et al. (2016) projected words into a 128-dimension embed-
ding space and leveraged the Jacobian matrix to evaluates
input-output interaction. However, a small perturbation in
the embedding space may lead to totally irrelevant words
since there is no hard guarantee that words close in the em-
bedding space are semantically similar. Therefore, subse-
quent studies focused on synonym substitution strategy that
search synonyms from the GloVe embedding space, existing
thesaurus (e.g., WordNet and HowNet), or BERT Masked
Language Model (MLM).

By using GloVe, Alzantot et al. (2018) designed a
population-based genetic algorithm (GA) to imitate the
natural selection. However, the GloVe embedding usually
fails to distinguish antonyms from synonyms. For exam-
ple, the nearest neighbors for expensive in GloVe space are
{pricey, cheaper, costly}, where cheaper is its antonyms.
Therefore, Glove-based algorithms have to use a counter-
fitting method to post-process adversary’s vectors to en-
sure the semantic constraint (Mrkšić et al. 2016). Compared
with GloVe, utilizing well-organized linguistic thesaurus,
e.g., synonym-based WordNet (Miller 1998) and sememe-
based HowNet (Dong and Dong 2006), is a simple and
easy implementation. Ren et al. (2019) sought synonyms us-
ing the WordNet synsets and ranked word replacement or-
der via probability weighted word saliency (PWWS). Zang
et al. (2020) manifested that the sememe-based HowNet can
provide more substitute words than WordNet and proposed
the Particle Swarm Optimization (PSO) to determine which
group of words should be attacked. In addition, some recent
studies utilized BERT MLM to generate contextual pertur-
bations, such as BERT-Attack (Li et al. 2020) and BERT-
based Adversarial Examples (BAE) (Garg and Ramakrish-
nan 2020). The pre-trained BERT MLM can ensure the pre-
dicted token fit in the sentence well, but unable to preserve
the semantic similarity. For example, in the sentence “the
food was [MASK]”, predicting the [MASK] as good or bad
are equally fluent but resulting in opposite sentiment label.
Notably, all these work focused on unigram attacks.

3 Algorithm
This section details the proposed BU-MHS method. For-
mally, let X = {X1,X2, · · · ,XN} denote the input space
containing N sentences, and Y = {Y1,Y2, · · · ,YK} rep-
resent the output space of K labels. The DNNs classifier F
learns a mapping from text space to labels F : X → Y .
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3.1 Black-box Text Attack
We design our method in black-box settings where no net-
work architectures, intermediate parameters or gradient in-
formation are available. The only capability of the black-box
adversary is to query the output labels (confidence scores) of
the threat model, acting as a standard user.

Given a well-trained DNNs classifier F , it aims to pro-
duce the correct label Ytrue ∈ Y for any input X ∈ X , i.e.,
F (X) = Ytrue, by maximizing the posterior probability:

arg max
Yi∈Y

P (Yi|X) = Ytrue (1)

A rational text attack pursues a human-imperceptible pertur-
bation ∆X that can fool the classifier F when it is added to
the original X. The altered input X∗ = X + ∆X is defined
as the text adversarial example. Generally, a successful ad-
versarial example can mislead a well-trained classifier into
either an arbitrary label other than the true label

arg max
Yi∈Y

P (Yi|X∗) 6= Ytrue (2)

or a pre-specified label Y∗

arg max
Yi∈Y

P (Yi|X∗) = Y∗ (3)

where Y∗ 6= Ytrue. The attack strategy defined in Eq. (2)
and Eq. (3) are known as untargeted attack and targeted at-
tack, respectively. A valid text perturbation needs to satisfy
lexical, grammatical, and semantic constraints. As our at-
tack method makes no character modifications, the lexical
constraint is naturally retained. Additionally, we propose a
bigram substitution strategy to avoid meaningless outputs,
and introduce an adaptive search algorithm MHS to mini-
mize the number of word perturbations while preserving the
semantic similarity and syntactic coherence.

3.2 Replacement Candidate Selection
HowNet annotates words by their sememes, where the se-
meme is a minimum unit of semantic meaning in linguistics.
For example, the word “apple” has multiple sememes, e.g.,
“fruit”, “computer”, etc. Words sharing the same sememe
tag can be interchangeable in crafting adversarial examples.

Candidate set creation. Suppose the input sentence con-
tains n words, i.e., X = {w1, w2, · · · , wn}. For each word
wi, we first connect it to its next word wi+1 and check if the
bigram (wi, wi+1) has synonyms in synonym space W. If
yes, we collect all the synonyms to create the bigram candi-
dates set Bi and skip searching candidates for wi and wi+1

separately1. Otherwise, we gather all the candidate words for
wi from the synonym space W and the sememe space H and
denote them as a subset Si ⊂ W ∪ H. It is worth mention-
ing that we pose a candidate filter here to make sure all the
candidate words in Si have the same part-of-speech (POS)
tags with wi. Replacing words with the same POS tags (e.g.,
nouns) can help avoid imposing grammatical errors.

If wi is a named entity (NE), we enlarge the Si by ab-
sorbing more same-type NE words. The NE refers to a pre-
defined real-world object that can be symbolized by a proper

1This means bigram substitution takes precedence.

noun, such as person names, organizations, and locations
(Nouvel, Ehrmann, and Rosset 2016). The candidate NE
(denoted as NECAND) must has the same NE type with the
original word. It is selected as the most frequently appeared
word from the complementary NE set W −WYtrue

, where
WYtrue

contains all the NEs of the Ytrue class. Then we
update the synonym set as Si ← Si ∪NECAND.

Considering polysemy, a word may have more than one
sememes defined in HowNet. To guarantee valid substitu-
tions, we take only words that have at least one common
sememes with the original word wi into its candidate set Si.

Best candidate selection. Given the candidate set Si (or
Bi)2, every w′i ∈ Si is a potential candidate for the replace-
ment of word wi. We define the candidate importance score
Iw′

i
for each substitution candidate w′i as the reduction of

prediction probability:

Iw′
i

= P (Ytrue|X)− P (Ytrue|X′i), ∀w′i ∈ Si (4)

where

X = w1, w2, · · · , wi, · · · , wn (5)
X′i = w1, w2, · · · , w′i, · · · , wn (6)

Then we pick the wordw′i that achieves the highest Iw′
i

to be
the best substitution word w∗i . Formally, the synonym can-
didate selection function is given as below

w∗i = R(wi, Si) = arg max
w′

i∈Si
Iw′

i
(7)

Repeating this procedure on every word one by one solves
the first key issue of our method, as is summarized in Algo-
rithm 1 from line 1 to line 11.

3.3 Adaptive Priority Determination
The word priority determination is designed to sort the
word replacement order. Given the best substitution word
w∗i for the original wi, we obtain n adversarial examples
{X∗1, · · · ,X∗n} with each being modified on one word, i.e.,
X∗i = {w1, · · · , w∗i , · · · , wn}. The change of true label
probability between X and X∗i denotes the attack effect that
can be achieved by modifying wi to w∗i :

∆P ∗i = P (Ytrue|X)− P (Ytrue|X∗i ) (8)

A straightforward way of determining the word replacement
priority is to sort the words by their ∆P ∗i descent order and
select the top-k ones. However, we empirically find that re-
placing words in such a static order incrementally always
leads to local optima and word over substitution. This means
simply selecting top-k words using ∆P ∗i does not necessar-
ily provide the best word combination in misleading DNNs.

In this paper, we propose the Monotonic Heuristic Search
(MHS) method, which adaptively determines the word sub-
stitution priority. We first create the initial generation G0

as an empty set (line 12 of Algorithm 1). Then we set
the maximum number of words that can be modified, i.e.,

2In the rest of the paper, we slightly abuse the notation by using
Si to denote the substitution candidate for wi. If wi belongs to a
bigram (wi, wi+1), then Si is equivalent to Bi.
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Algorithm 1: The proposed BU-MHS Attack Algo-
rithm

Input: Sample text with n words X = (w1, · · · , wn)
Input: Maximum word replacement bond M
Input: Classifier F
Output: Adversarial example Xadv

/* Select candidates for input words */
1 for i = 1 to n do
2 Connect wi with its next word as (wi, wi+1);
3 Collect bigram candidate set Bi for (wi, wi+1) from

synonym space W;
4 if Bi 6= ∅ then
5 Find the best bigram candidate from Bi;
6 i + = 1 ; . skip attacking wi+1

7 else
8 Get a synonym-sememe candidate set Si for wi

from W ∪H;
9 if wi is a NE then

10 Si ← Si ∪NECAND;

11 Find the best unigram candidate from Si;

12 Create the initial generation with empty G0 = ∅;
13 Set the upper bound M = min(M,n);

/* The MHS search starts */
14 for m = 1 to M do
15 Gm = F

(
Gm−1, {w∗

1 , · · · , w∗
n}

)
;

16 for Candidate ⊂ Gm do
17 Replace Candidate words in X to craft Xadv;
18 if F (X) 6= F (Xadv) then
19 break ; . successful attack
20 else
21 ∆Padv = P (Ytrue|X)− P (Ytrue|Xadv);

22 return Xadv

M = min(M,n). This threshold forces us to stop the loop
if the input example does not admit an adversarial alter-
ation after M times of substitution. The MHS procedure is
listed between lines 14-21 of Algorithm 1. For each gener-
ation, we first create the population set for the current gen-
eration Gm using the F function defined in Algorithm 2.
Specifically, the F directly returns all the best substitution
synonyms {w∗1 , · · · , w∗n} as the first generation. Then we
iteratively query the classifier F whether its prediction is
changed by replacing the first generation candidates. If a
population member Xadv achieves a successful attack, the
optimization completes and returns the Xadv . Otherwise, we
calculate the probability shift of ∆Padv in line 21. If we can
not find a successful attack from the first generation, then we
need to run the second iteration with the help of ∆Padv .

In the next generation, we recall the F to construct Gm

with three steps, as listed in lines 5-8 of Algorithm 2. Firstly,
we search the most effective element from the previous gen-
eration Gm−1 that attains the maximal ∆Padv . We denote
this best element as Gm−1

best . Then we wipe out all the can-
didate words belonging to Gm−1

best from the full candidates
set {w∗1 , · · · , w∗n}, resulting in s (1 ≤ s ≤ n) elements
left. Finally, we combine the Gm−1

best with every remaining
candidate w∗i and assign it to the current population mem-

Algorithm 2: Function of Generation Creation (F)
Input: Last generation combinations Gm−1

Input: The best substitution words {w∗
1 , · · · , w∗

n}
Output: Current generation combinations Gm

1 Initialize current generation Gm = ∅;
2 if Gm−1 = ∅ then
3 Gm = {w∗

1 , · · · , w∗
n} ; . 1st generation

4 else
5 Search for the most effective element Gm−1

best from
Gm−1 that achieves the highest ∆Padv;

6 Remove all words of Gm−1
best from {w∗

1 · · ·w∗
n},

resulting in s (1 ≤ s ≤ n) elements left;
7 for i = 1 to s do
8 Create new generation element Gm(i) by combing

Gm−1
best with ith remaining element w∗

i ;

9 return Gm

ber Gm(i). The greedy search between lines 16-21 of Algo-
rithm 1 is the same as the first generation but replaces one
more word/bigram in every next generation to craft Xadv .
This procedure does not stop until it successfully finds the
adversarial example or reaches the upper threshold of M .
The heuristic optimization method enables us to preserve the
best population member from the previous generation and
adaptively determine which word should be altered in the
current generation. Based on the MHS, we achieve a higher
successful attack rate by replacing a fewer number of words
compared with static baselines. This solves the second issue.

4 Experiments
We evaluate the effectiveness of our BU-MHS method on
widely used text datasets. We provide code and data with a
fully anonymous link3 to ensure reproducibility.

4.1 Datasets and Victim Models
Datasets We conduct experiments on three publicly avail-
able benchmarks. IMDB (Maas et al. 2011) is a binary senti-
ment classification dataset containing 50,000 movie reviews.
AG’s News (Zhang, Zhao, and LeCun 2015) is a news clas-
sification dataset with 127600 samples belonging to 4 topic
classes. Yahoo! Answers (Zhang, Zhao, and LeCun 2015)
is a ten-class topic dataset with 1,400,000 train samples and
60,000 test samples. The average text length (without punc-
tuation) of IMDB (227 words) is much longer than AG’s
News (38 words) and Yahoo! Answers (32 words).

Victim models We apply our attack algorithm on four
popular victim models. Word CNN (Kim 2014) is stacked
by a word embedding layer with 50 embedding dimensions,
a convolutional layer with 250 filters, and each kernel size
of 3. Character-based CNN (Char CNN) (Zhang, Zhao, and
LeCun 2015) is composed of a 69-dimensional character
embedding layer, 6 convolutional layers, and 3 densely-
connected layers. Word LSTM passes the input sequence
through a 100-dimension embedding layer, concatenating
a 128-units long short-term memory layer, and following a

3https://github.com/AdvAttack/TextAttack
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Dataset Model Test Accuracy

IMDB Word CNN 87.97%
Bi-LSTM 85.71%

Word CNN 90.75%
AG’s News Char CNN 89.24%

Word LSTM 91.62%

Yahoo! Answers Word CNN 71.21%
Bi-LSTM 71.60%

Table 2: Test accuracy of four DNNs models before attacks.

dropout of 0.5. Bidirectional LSTM (Bi-LSTM) consists of a
128-dimension word embedding layer, a bidirectional layer
that wraps 64 LSTM units, a dropout of 0.3, and a fully con-
nected layer for classification. Table 2 lists the classification
accuracy on the original legitimate test samples.

4.2 Baselines
We compare our method with representative black-box
word-level attack algorithms as listed below.

• RAND attack randomly selects a synonym from WordNet
and ranks the attack order by our MHS algorithm.

• Word saliency attack (WSA) (Li, Monroe, and Juraf-
sky 2016) gets replacement words from WordNet and
rephrases texts in the word saliency (WS) descending or-
der. The word saliency is similar to Eq. (4) but replaces
wi with unknown.

• PWWS (Ren et al. 2019) chooses candidate words from
WordNet and sorts word attack order by multiplying the
word saliency and probability variation.

• PSO (Zang et al. 2020) selects word candidates from
HowNet and employs the PSO to find adversarial text.
This method treats every sample as a particle where its
location in the search space needs to be optimized.

• TextFooler (TEFO) (Jin et al. 2020) obtains synonyms
from Glove space and defines the WIS by iteratively delet-
ing input words and calculating the DNNs score changes.

• BERT-ATTACK (BEAT) (Li et al. 2020) takes advantage
of BERT MLM to generate candidates and attack words
by the static WIS descending order. The WIS is similar to
Eq. (4) but changes wi to [MASK].

4.3 Evaluation Metrics and Experiment Settings
Evaluation Metrics. We use two metrics to evaluate the text
attack performance, i.e., successful attack rate (SAR) and
the average number of word substitutions. The SAR is de-
fined as the misclassification rate of the classifier F after it
is attacked. To quantify the perturbation cost, we count the
number of word substitutions in each sample and compute
the average number for each dataset to denote the adversar-
ial attack cost. Intuitively, a rational hacker targets to achieve
a high SAR by substituting a small number of words.
Experimental Settings. We train all the DNNs models us-
ing the ADAM optimizer (Kingma and Ba 2015), where

parameters are set as: learning rate = 0.001, β1 = 0.9,
β2 = 0.999, ε = 10−7. We deploy BU-MHS and the first
three baselines on Keras. The PSO, TEFO, and BEAT are
tested on the TextAttack framework (Morris et al. 2020),
where the Char CNN model and the Yahoo! Answers are
currently unavailable. We set the upper bound of word re-
placement number as M = 20 and use the recommended
parameters for all baselines. Their attack performance is as-
sessed on 1000 test samples of each dataset as the conven-
tional setting (Zang et al. 2020; Jin et al. 2020). For our BU-
MHS, the synonym candidates and sememe candidates are
picked from WordNet and HowNet, respectively.

4.4 Experimental Results and Analysis

The experimental results of SAR and the average word re-
placement number are listed in Table 3 and Table 4, respec-
tively. We manifest the three contributions mentioned in the
Introduction by asking three research questions:
Q1: Is our adaptive MHS superior to static baselines?
To validate this, we design the U-MHS that searches sub-
stitution words from only WordNet and attacks text only at
the unigram word level - the same as WSA and PWWS, but
employs our MHS to determine the word substitution prior-
ity. Experimental results in Table 3 and Table 4 show that
U-MHS achieves higher SAR and changes a much smaller
number of words comparing with static counterparts (WSA,
and PWWS). Besides, the RAND delivers higher SAR than
WSA on IMDB and AG’s News. This also illustrates the
merit of our adaptive MHS.
Q2: Is the hybrid of synonym and sememe beneficial? We
present a hybrid version of U-MHS, i.e., HU-MHS, which is
all the same with U-MHS but integrates HowNet to search
synonym-sememe candidates. Table 3 shows that HU-MHS
accomplishes the highest SAR in all cases and outperforms
U-MHS by a large margin. Intriguingly, Table 4 exhibits that
HU-MHS achieves such high SAR by using the fewest word
substitutions. This strongly suggests the profit of incorporat-
ing HowNet in the candidate selection step.
Q3: What’s the advantage of combining the bigram at-
tack? The bigram substitution is vitally significant in im-
proving semantic smoothness and generating meaningful
sentences. To show this, we list three adversarial examples
from IMDB (Table 6), AG’s News (Table 7) and Yahoo! An-
swers (Table 8). We can see from the adversarial examples
that our bigram substitution can greatly reduce the seman-
tic variations. For example, in Table 7, our method replaces
one bigram (Olympic Games→ Olympiad) but causes less
semantic variation than HU-MHS changing two unigrams.

Overall, Table 3 and Table 4 elaborate that the HU-MHS,
BU-MHS, and U-MHS almost swept the top-3 results on all
datasets, indicating the superiority of our method.

Platform and Efficiency Analysis. We conduct all ex-
periments on Enterprise Linux Workstation 7.7 with 2.7GHz
CPU frequency and 176GB memory. Table 5 lists the time
consuming of various methods on AG’s News dataset. Ta-
ble 5 shows that our BU-MHS is more efficient than the dy-
namic PSO but costs more time than static counterparts.
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Dataset Model
M = n

2
M = n M = 20

BEAT PSO TEFO PWWS WSA PWWS RAND U-MHS HU-MHS BU-MHS

IMDB Word CNN 91.02% 100% 100% 94.60% 38.85% 90.56% 81.13% 95.58% 100% 100%
Bi-LSTM 90.15% 100% 100% 99.76% 81.70% 97.09% 94.79% 98.90% 100% 100%

AG’s
News

Word CNN 86.91% 85.48% 82.75% 85.48% 77.98% 81.98% 82.42% 85.76% 92.77% 91.77%
Word LSTM 77.52% 79.87% 85.17% 79.87% 74.73% 76.81% 79.76% 81.07% 88.40% 86.21%
Char CNN - - - 75.48% 68.33% 75.25% 75.26% 80.70% 92.17% 91.49%

Yahoo! Word CNN - - - 68.39% 66.82% 68.23% 51.96% 70.27% 90.14% 88.58%
Answers Bi-LSTM - - - 67.76% 66.20% 67.29% 51.64% 67.92% 87.95% 85.60%

Table 3: The successful attack rate (SAR) of various attack algorithms. For each row, the highest SAR is highlighted in bold,
the second highest SAR is highlighted in underline, and the third highest SAR is denoted with italic.

Dataset Model
M = n

2
M = n M = 20

BEAT PSO TEFO PWWS WSA PWWS RAND U-MHS HU-MHS BU-MHS

IMDB Word CNN 7.5 3.42 8.01 8.625 16.15 5.87 7.31 4.5 2.07 2.11
Bi-LSTM 7.89 5.22 8.13 5.53 10.55 5.16 5.67 4.238 2.28 2.33

AG’s
News

Word CNN 5.97 5.02 7.42 6.29 9.51 6.03 5.23 4.815 4.16 4.32
Word LSTM 6.24 5.82 8.49 8.05 10.12 7.72 6.19 5.97 5.74 5.99
Char CNN - - - 5.59 8.23 5.44 5.06 4.389 3.41 3.52

Yahoo! Word CNN - - - 3.34 3.95 3.15 3.65 2.78 1.85 1.89
Answers Bi-LSTM - - - 3.47 3.83 3.2 3.74 2.98 2.28 2.4

Table 4: The average number of word substitutions of various attack methods. For each row, the smallest word substitution
number is highlighted in bold, the second smallest is denoted in underline, and the third smallest is represented with italic.

BEAT PSO TEFO PWWS WSA RAND BU-MHS

1.94 6.52 0.14 1.05 0.79 2.97 2.87
1.05 10.4 0.17 2.62 2.7 5.6 8.45

Table 5: The top and bottom row shows the runtime (hours)
by attacking Word CNN and Word LSTM, respectively.

4.5 Transferability
The transferability of adversarial examples implies whether
the adversarial samples generated to mislead a specific
model F can mislead other models F ′. To evaluate the
transferability, we construct three more CNN models named
Word CNN2, Word CNN3, and Word CNN4. Different from
the previous Word CNN model, Word CNN2 has one more
fully connected layer, Word CNN3 replaces the Relu nonlin-
ear function with Tanh, and Word CNN4 adds one convolu-
tional layer. We apply the adversarial examples generated on
Word CNN to attack these three new models and the LSTM
model. Figure 2 shows the results on the original Word CNN
and transferred models. It can be seen from Figure 2 that our
method attains the best transfer attack performance, elabo-
rating the strength of our method in transfer attack.

4.6 Adversarial Retraining
Adversarial retraining is an effective way to improve the
model’s robustness by joining the adversarial examples to
the training set. In this experiment, we randomly generate

No Attack Random WSA PWWS BU-MHS

Figure 2: Transfer attack on Yahoo! Answers. Lower accu-
racy indicates higher transfer ability (the lower the better).

and append {500, 1000, 1500, 2000} AG’s New adversarial
samples to its training set and retrain the Word CNN model.
Figure 3 shows the five-run mean accuracy of Word CNN on
the clean test set after adversarial training. From Figure 3 we
know that our method generates more effective adversarial
samples than PWWS in improving the model robustness. We
also evaluate if the retrained model is immune to adversarial
attacks by attacking the retrained model. Results in Table 9
show that retrained victim models can defend against the at-
tacks to a certain degree. Additionally, our BU-MHS brings
higher SAR than PWWS after retraining, indicating the BU-
MHS is harder to defend by adversarial retraining.

4.7 Targeted Attack Evaluations
Algorithm 1 can be easily adapted to make targeted at-
tack with slight modifications, e.g., change line 18 from
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PWWS (Successful attack. True la-
bel score = 45.74%)

I think that the movie was really good dear. Subject, acting and Nusrat BAD Fateh BAD ALi
Khan’s music were marvellous tall. Although the director has succeeded in showing the status of
women in rural areas and how they suffer at the hands of male-dominated culture, he has neglected
Phoolan BAD’s character a bit piece and has focussed more on the violence faced by her.

HU-MHS (Successful attack. True
label score = 2.69%)

I think that the movie was really presumably good. Subject, acting and Nusrat Fateh ALi Khan’s
music were marvellous. Although the director has succeeded in showing the status of women in
rural rustic areas and how they suffer at the hands of male-dominated culture, he has neglected
Phoolan’s character a bit and has focussed more on the violence faced by her.

BU-MHS (Successful attack. True
label score = 41.69%)

I think that the movie was really good. Subject, acting and Nusrat Fateh ALi Khan’s music were
marvellous. Although the director has succeeded in showing the status of women in rural areas
country and how they suffer at the hands of male-dominated culture, he has neglected Phoolan’s
character a bit and has focussed more on the violence faced by her.

Table 6: Adversarial examples of IMDB (attack Word CNN). Italic texts are attacked words, while bold ones are substitutions.

PWWS (Successful attack. True la-
bel score = 37.17%)

Afghan women make arrive brief Olympic debut introduction. Afghan women made a short-
lived debut in the Olympic Games on Wednesday as 18-year-old judo wildcard Friba Razayee
was defeated after 45 seconds of her first match peer in the under-70kg middleweight.

HU-MHS (Successful attack. True
label score = 41.13%)

Afghan women make brief Olympic debut introduction. Afghan women made a short-lived debut
in the Olympic Games on Wednesday as 18-year-old judo wildcard Friba Razayee was defeated
after 45 seconds of her first match supply in the under-70kg middleweight.

BU-MHS (Successful attack. True
label score = 40.02%)

Afghan women make brief Olympic debut. Afghan women made a short-lived debut in the
Olympic Games Olympiad on Wednesday as 18-year-old judo wildcard Friba Razayee was de-
feated after 45 seconds of her first match in the under-70kg middleweight.

Table 7: Adversarial examples by attacking Word LSTM model on AG’s News dataset.

PWWS (Failure. True label
score = 75.85%)

How do I become go a base-
ball player actor?

HU-MHS (Successful attack.
True label score = 31.79%)

How do I become a baseball
cubicle player?

BU-MHS (Successful attack.
True label score = 4.95%)

How do I become a
baseball player ballplayer?

Table 8: Adversarial examples by attacking Bi-LSTM model
on Yahoo! Answers dataset.

Methods
Before retraining After retraining

SAR # words SAR # words

PWWS 81.98% 6.03 73.42% 8.165
BU-MHS 91.77% 4.32 77.36% 7.66

Table 9: Attack the retrained Word CNN on AG’s News. “#
words” denotes the average number of word substitutions.

F (X) 6= F (Xadv) to F (Xadv) = Ytarget. The targeted at-
tack experiments are conducted on AG’s News dataset, and
the four target labels are: 0 (World), 1 (Sports), 2 (Business)
and 3 (Sci/Tech). We found similar results on four labels
but just report the results when Ytarget = 0 due to the
space limitation. The results shown in Table 10 indicate that
our BU-MHS attains a much higher SAR and replaces less
words than PWWS for all victim models. This means our
method is powerful for both targeted and untargeted attack.

Figure 3: Adversarial retraining results. The higher the ac-
curacy, the more robust of the model after retraining.

Model
SAR # words replace

PWWS BU-MHS PWWS BU-MHS

Word CNN 87.21% 94.67% 4.78 3.69
Char CNN 32.61% 65.07% 11.56 9.08

Word LSTM 77.92% 87.87% 7.09 5.68

Table 10: Targeted attack results on AG’s News dataset.

5 Conclusions
In this paper, we have proposed a novel BU-MHS algorithm
for crafting natural language adversarial samples. The BU-
MHS exploits unigram and bigram modifications to avoid
the semantic errors and employs adaptive MHS to reduce
attack cost. The hybrid synonym-sememe approach provides
more candidate options. Future research directions include
designing defense methods via an n-gram strategy.
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