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Abstract

Deep learning models have been applied to many healthcare
tasks based on electronic medical records (EMR) data and
shown substantial performance. Existing methods commonly
embed the records of a single patient into a representation
for medical tasks. Such methods learn inadequate represen-
tations and lead to inferior performance, especially when the
patient’s data is sparse or low-quality. Aiming at the above
problem, we propose GRASP, a generic framework for health-
care models. For a given patient, GRASP first finds patients in
the dataset who have similar conditions and similar results
(i.e., the similar patients), and then enhances the representa-
tion learning and prognosis of the given patient by leverag-
ing knowledge extracted from these similar patients. GRASP
defines similarities with different meanings between patients
for different clinical tasks, and finds similar patients with use-
ful information accordingly, and then learns cohort represen-
tation to extract valuable knowledge contained in the simi-
lar patients. The cohort information is fused with the cur-
rent patient’s representation to conduct final clinical tasks.
Experimental evaluations on two real-world datasets show
that GRASP can be seamlessly integrated into state-of-the-art
models with consistent performance improvements. Besides,
under the guidance of medical experts, we verified the find-
ings extracted by GRASP, and the findings are consistent with
the existing medical knowledge, indicating that GRASP can
generate useful insights for relevant predictions.

Introduction
With the rapid growth and accumulation of electronic medi-
cal records (EMR) data, deep learning methods have been
widely applied in many healthcare tasks, such as mortal-
ity prediction, patients subtyping, and diagnosis prediction.
These methods can assist doctors in analyzing patients’
health status, formulating reasonable treatment, and prevent-
ing adverse outcomes in a more intelligent and effective way.

EMR data are temporally sequenced by patient clinical
records that are represented by a set of medical variables.
Most existing methods embed the EMR data of each single
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patient into a representation separately and perform medical
tasks based on it (Baytas et al. 2017; Choi et al. 2018; Ma
et al. 2020b). However, EMR data are usually sparse (Xu
et al. 2018), and while dealing with a patient record with low
quality, such methods will learn inadequate representations
and lead to inferior performance. Thus, some researchers
try to enhance the performance by incorporating external
information. For example, GRAM (Choi et al. 2017) and
KAME (Ma et al. 2018b) incorporate the ontologies of the
medical codes. Their essence is to incorporate external in-
formation beyond the dataset to learn a better representation
for the patient, and they achieve improvements in some con-
ditions. However, these approaches do not work well when
people hardly obtain external information or prior knowl-
edge about them, especially for some rare diseases or emerg-
ing diseases (e.g., COVID-19) (Huang et al. 2020). Further-
more, such ontology information is often not applicable due
to the idiosyncratic use of terminology (Choi et al. 2018). A
challenge arises now, that is, how to fully utilize such EMR
data to learn adequate patient representations without exter-
nal knowledge?

In fact, in addition to the methods of using external infor-
mation, fully mining the correlation between similar patients
can also improve the performance. This intuition is based on
the observation of how human doctors use the similarity be-
tween patients to assist the clinical analysis. When a patient
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Figure 1: The similar patients can provide auxiliary infor-
mation for current analysis and treatment.
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Figure 2: Two Dilemmas of Selecting Similar Patients

goes to see a doctor, the doctor will first examine the lab
test results. Then, as shown in Figure 1, the doctor usually
recalls the health status of the similar patients that she/he
has treated, or looks up their records from the hospital sys-
tem, and then assess and treat the current patient. The same
insight can be used in deep learning models for healthcare
tasks. While processing the current patients, there are other
cases with conditions alike. The information of these similar
patients can be utilized as guidance for the current progno-
sis.

Although seeming straightforward, applying this intuition
to real clinical tasks will face the following challenges:

Challenge 1. How to measure the similarity between pa-
tients? (Zhu et al. 2016) proposes a similarity evaluation
model based on the temporal matching of patient EMR.
However, they did not associate the connotation of similar-
ity with clinical tasks. In different clinical tasks (e.g., mor-
tality prediction and different disease diagnosis), the patient
characteristics that need attention are different, so two pa-
tients who are considered similar in one clinic task may not
be considered so similar in another. Furthermore, different
tasks correspond to different healthcare models. Therefore,
how to design a unified framework that can consider differ-
ences in clinical tasks with different models and reasonably
measure the similarity between patients is the first challenge.

Challenge 2. How to select similar patients? (Suo et al.
2018) uses the intuitive K nearest neighbor method, that is,
for any given patient A, finding the nearest (most similar)
K patients as the similar patients. However, this idea does
not work well in a space with uneven data distribution. As
shown in Figure 2, there are more samples similar to A, but
less similar to B. When K is small (Figure 2-a), there are
many similar patients around A that are not fully utilized
(dotted circles). However, when increasing K (Figure 2-b),
some patients who are not similar to B are also selected as
the similar patients (red lines), resulting in a negative effect.

Challenge 3. How to incorporate the auxiliary informa-
tion from the similar patients? The amounts of auxiliary in-
formation required by various types of patients are different.
Some patients have sufficient data, and their health status
representations are relatively easy to extract. Thus they need
less knowledge from similar patients and rely more on their
own. On the contrary, for other patients whose representa-
tions are hard to extract, the more auxiliary information is
needed. Therefore, it is worth thinking about how to adap-
tively fuse the current patient information with the auxiliary
information.

By jointly considering the above issues, we propose a

generic framework, GRASP, which can be integrated with
existing healthcare models. Our main contributions are sum-
marized as follows:

• We propose a generic framework called GRASP, which
boosts the performances of existing healthcare models
by fully considering both the current patient’s informa-
tion and the auxiliary information from similar ones. (Re-
sponse to Challenge 1)

• Specifically, GRASP automatically assigns different types
of similar patients into cohorts and extracts cohort rep-
resentations. Considering the interdependency of the co-
horts, the representations are formed as a graph, and GNN
is used to extract the enhanced cohort representation as
the auxiliary information. (Response to Challenge 2)

• Next, GRASP assigns the weights of the auxiliary repre-
sentation and the patient representation, and adaptively
fuses them to depict the patient more comprehensively.
(Response to Challenge 3) Besides, in this way, the
learned patient representations are facilitated to be dis-
criminative group-wisely.

• Extensive experiments show that our framework can be
seamlessly integrated into state-of-the-art models with a
consistent performance improvement under various set-
tings. Besides, the findings discovered by GRASP are in
accord with experts and medical knowledge, which shows
it can provide useful insights and explanations.

Related Work
Over the past years, deep learning models have shown the
capability to perform mortality prediction (Suresh, Gong,
and Guttag 2018; Tan et al. 2020; Ma et al. 2020a,b), pa-
tients subtyping (Baytas et al. 2017), and diagnosis predic-
tion (Lee et al. 2018; Ma, Xiao, and Wang 2018; Ma et al.
2017; Gao et al. 2019). Though the medical tasks vary from
each other, their essences are extracting the health status rep-
resentations of patients. For example, RETAIN (Choi et al.
2016) uses a two-level neural attention model to detect influ-
ential visits and significant variables. T-LSTM (Baytas et al.
2017) handles irregular time intervals by enabling time de-
cay to learn better patient representations. Concare (Ma et al.
2020b) embeds the feature sequences separately and uses
the self-attention to capture the healthcare context to learn
personalized representations. Furthermore, some researches
incorporate external information to boost the performance.
GRAM (Choi et al. 2017) and KAME (Ma et al. 2018b) in-
corporate medical ontologies to train the model sufficiently.
The fundamental idea of them is to aggregate external infor-
mation to enhance representation learning for the final tasks.

In fact, in addition to the method of using external infor-
mation, fully extracting the correlation between similar pa-
tients inside the dataset can also improve the performance of
the model. There are some patients with similar status, and
they are more likely to suffer from a similar outcome. To
this end, some researchers focus on similarity discovery for
healthcare. (Zhu et al. 2016) proposes a patient similarity
evaluation model based on the temporal matching of patient
EMR for cohort study. Moreover, (Suo et al. 2018) collects
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Figure 3: EMR Data Description

and predicts K most similar patients together. They use the
most common label appearing as the current patient’s pre-
dicted label. However, as the discussion in Challenge 1 and
2, they do not work very well in some conditions. Differ-
ent from the above models, we propose GRASP, which can
explicitly capture the holistic observation among similar pa-
tients and incorporate such auxiliary information to learn a
more comprehensive representation.

Preliminary
Electronic Medical Records (EMR) data record the medical
processes of the patients. As shown in Figure 3, a patient has
a sequence of records along with time of visits, generating
time-ordered EMR records, which are denoted as rt ∈ RNr

(t = 1, 2, · · · , T ). Each EMR record contains Nr medical
features (e.g., laboratory measurements).

The predictive problem in this paper can be formulated
as given T historic EMR data of a patient, to predict the
patient’s future health condition y (i.e., prognosis). In gen-
eral, the future health condition is defined as the prob-
ability of suffering from a specific risk (e.g., mortality).
Since GRASP is a generic framework, it utilizes existing
healthcare models as the Backbone and improves them.
We follow the definition to formulate the problem as: ŷ =
GRASP(Backbone(r1, · · · , rT )).

Methodology
Overview
Figure 4 shows the architecture of GRASP. It comprises the
following sub-modules:
• The patient representation extraction module embeds the

patient’s clinical records into a representation with a back-
bone model.

• The cohort discovery and utilization module finds the pa-
tients with similar health status to the current patient, ag-
gregates them into a cohort, and extracts the guidance rep-
resentation.

• The adaptive fusion module combines the above-learned
representations (i.e., current patient representation and
guidance representation) adaptively for the final task.

Patient Representation Extraction
Since GRASP is a generic framework and needs to perform
on patient representations, a backbone model is required to

work as the representation extractor. Such a backbone ex-
tractor can be one of the existing state-of-the-art models
(e.g., (Ma et al. 2020b)) and the hidden representations be-
fore the final layer of those models are used as the represen-
tations of the patients. For ease of understanding, RNN is
used to illustrate the process in Figure 4 and here.

Given a sequence of medical records along with visits
r1, · · · , rT , the representation of the patient can be ob-
tained as: vt = ReLU(Wvrt), ht = RNN(vt, ht−1), where
t = 1, ..., T is the time steps of the patient’s visits. Wv ∈
RNv×Nr is a weight matrix and we ignore the bias terms for
simplicity. vt ∈ RNv is the obtained visit-level embedding
for t-th visit of the patient. ht ∈ RNh is the hidden state.
Nr, Nv , and Nh are the dimensions of records, visit embed-
dings and hidden states, respectively. We can obtain the final
latent hidden state hT as the representation of the specific
patient, which is often used for some prediction tasks. For
other backbone models, the process of obtaining the patient
representation hT can be abbreviated as:

hT = Backbone(r1, · · · , rT ). (1)

Similar Patient Cohort Discovery and Utilization
Now, the representations are obtained in the previous sec-
tion. For a specific patient, as discussed before, the knowl-
edge from the similar patients can be utilized as guidance
for the analysis or prognosis. A straightforward way to find
similar patients is to calculate similarity via the learned rep-
resentations hT of every patient pair. However, how to iden-
tify the really similar patients from the seemingly similar
ones is hard. This will be more challenging for those unbal-
anced datasets. For instance, as shown in Figure 2, there are
more samples similar to A, but less similar to B. If we select
k similar patients for the current patient and k is set small,
as shown in Figure 2-a, many samples similar to A cannot
be selected. Thus, the information about the similar patients
cannot be fully utilized. If k is set large, as shown in Fig-
ure 2-b, some samples that are not similar to B will also be
selected, resulting in a negative effect. Thus, we argue that
collecting each kind of similar patients into cohorts (i.e., as-
signing the number of similar samples automatically) is a
more robust way.

For every batch of samples, the patients’ representations
are clustered via K-Means (Jain 2010) with Euclidean dis-
tance. Then, the centroids of each cluster are extracted to
form a centroid (i.e., prototype) matrix Γ ∈ RNc×Nh , where
Nc is the number of cohorts. K-Means does not change the
points in the feature space, so the process is differentiable.

Next, in general, a direct way to select which cluster
the current patient belongs to is referring to the result of
K-Means. However, in the early training phase, when the
model is not convergent and the representations are not
fully learned, the result is unstable. Thus, considering the
exploration-exploitation decisions1 in reinforcement learn-
ing, we need exploration to find better cluster attribution in
the earlier training phase and exploitation to maintain the

1Exploration, where we gather more information that might
lead to better decisions in the future. Exploitation, where we make
the best decision given current information.
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Figure 4: The GRASP framework

current best decision later (Sutton and Barto 2018). Sam-
pling can solve such a condition (Maddison, Tarlow, and
Minka 2014), especially when it is with decay, which can
turn exploration to exploitation gradually. So in practice,
we can acquire a more robust selection by introducing the
Gumbel-Max technique (Gumbel 1954; Maddison, Tarlow,
and Minka 2014), which provides an efficient sample ap-
proach. The similarity of representation of the current pa-
tient and each centroid can be calculated by:

e = hTΓᵀ. (2)
Then, the Gumbel noise, treated as a form of regulariza-

tion, is added to e in Equation 2, and the softmax function is
performed. The cluster similarity distribution is calculated:

g = − log(− log u),

ẽ = (e+ g) /τ,

a = softmax (ẽ) ,

(3)

where g is the Gumbel noise calculated from a uniform dis-
tribution u ∼ U(0, 1), and τ is the temperature, which can
turn exploration to exploitation gradually during the train-
ing process. As τ getting close to 0, the softmax function
is similar to the argmax operation, and it becomes uniform
distribution gradually when τ →∞. When sampling, a hard
version is performed to select one cluster per patient, which
means the samples will be discretized as one-hot vectors.
The above sampling steps can be formulated as:

a = Gumbel-Softmax(e), (4)

where a is a one-hot vector indicating which cluster the cur-
rent patient belongs to.

Then, we can use the centroid vector of the cluster as
the similar patients’ information straightforwardly. Never-
theless, there remain interactions between clusters. For ex-

ample, if we select a large cohort number, which means di-
viding patients into fine-grained clusters, some close clus-
ters still share similar characteristics. Such interactions need
to be captured. Thus, a K-nearest neighbor (K-NN) graph
G is constructed from the centroids of clusters and A is the
adjacency matrix of the graph, which shows the connectiv-
ity between the K-nearest centroid (cluster) representations.
And the self-connection is added to A to make such an ag-
gregation more self-attentive: Â = A + I , where I is the
identity matrix and Â is the adjacency matrix ofG with self-
connection. Next, graph convolutional layers (GCN) (Kipf
and Welling 2016) are applied to enhance the representation
learning by leveraging the structural information:

Γ′ = ReLU
(
Â ReLU

(
ÂΓW 0

)
W 1
)
, (5)

where Γ′ is the enhanced cluster representations form Γ, and
W 0 and W 1 ∈ RNh×Nh are the projection matrices. The
corresponding auxiliary cohort representation is obtained:

hc = aΓ′. (6)

Adaptive Attention Fusion
Now there are two representations related to the patient: hT
and hc. The former focuses on the patient herself, while the
latter refers to similar patients. An adaptive fusion method
is utilized to extract the proper amount of information from
them and build a comprehensive patient representation.

More specifically, two weights (α, β ∈ R) are introduced
to determine the amount of the above two representations,
which are obtained by fully connected layers on hc and hT :

α = Sigmoid (Wchc) , (7)

β = Sigmoid (WThT ) , (8)
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where Wc,WT ∈ R1×Nh are the projection matrices. We
add a constraint α + β = 1 by calculating α = α

α+β , β =

1− α. The final representation can be obtained as:

s = α · hc + β · hT . (9)

Then the predictor can be built via a fully connected layer.
Mathematically, the predicted probability can be calculated:

ŷ = Sigmoid(Wfinals), (10)

where Wfinal ∈ R1×Nh is the weight matrix. The cross-
entropy loss is used as the loss function:

L = − 1

B

B∑
i=1

(yᵀi log(ŷi) + (1− yi)ᵀ log(1− ŷi)), (11)

where B is the batch size. ŷi ∈ [0, 1] is the predicted prob-
ability, and yi ∈ {0, 1} is the ground truth. In a real-world
clinical scene, we can cluster the whole dataset and save the
centroids. In this way, when a new patient comes in, the cen-
troids can be used as the substitution of similar patients.

Experiment
Data Description and Task Formulation
Cardiology Dataset We perform the sepsis prediction on
the open-source PhysioNet cardiology dataset (Reyna et al.
2019), which were collected from three geographically dis-
tinct U.S. hospitals over the past decade. They are labeled
by Sepsis-3 clinical criteria. The dataset consists of 40,336
patients and consists of a combination of hourly vital signs
and lab values. The dataset is divided into the training set,
validation set, and test set with a proportion of 0.8 : 0.1: 0.1.
It is an imbalanced dataset and statistics are in Table 1.

CKD Dataset Another dataset we use is a real-world
chronic kidney disease (i.e., CKD) dataset. In this study, all
CKD patients who received therapy from January 1, 2006, to
March 1, 2018, in a real-world hospital are included to form
this dataset2. The statistics of the CKD dataset are presented
in Table 1. The / in Table 1 is used to separate label informa-
tion of mortality prediction task (left) and disease diagnosis
task (right). The latter task will be described in the analysis
part. The mortality prediction task on CKD dataset is de-
fined as a binary classification task of predicting the death
of a patient in one year. Due to the scarce amount of CKD
data, 10-fold cross-validation is employed.

We assess performance using the area under the precision-
recall curve (AUPRC), the minimum of precision and sensi-
tivity Min(Se,P+), and F1-score. AUPRC is the most infor-
mative evaluation metric when dealing with a highly imbal-
anced and skewed dataset (Davis and Goadrich 2006; Choi
et al. 2018; Chu et al. 2019) like the real-world data.

Experimental Setup and Baselines
To conduct the experiment, we use the Adam optimiza-
tion with learning rate = 1e-3. More information are avail-
able at 3. To fairly compare different approaches, the hyper-
parameters of the models are fine-tuned by grid search on

2This study was approved by the Research Ethical Committee.
3https://github.com/choczhang/GRASP

Dataset Cardiology CKD
# of patients 40,336 662
# of visits 1,552,210 13,108
Avg. # of visits 38.48 19.95
Max. # of visits 336 69
Min. # of visits 8 1
# of features 33 17
% of positive labels 7.26% 38.97% / 36.40%

Table 1: Statistics of the Datasets

the training data. We include several state-of-the-art models
as our baseline models as well as the backbones of GRASP:

• RETAIN (NeurIPS) (Choi et al. 2016) utilizes a two-level
attention to detect weights of visits and variables.

• T-LSTM (SIGKDD) (Baytas et al. 2017) handles time in-
tervals by a time decay mechanism in LSTM.

• TimeNet∗ (IJCAI) (Gupta et al. 2018) maps clinical time
series separately and aggregates all the feature embed-
dings to conduct healthcare prediction. To conduct a fair
comparison, we do not use the pre-trained model.

• ConCare∗ (AAAI) (Ma et al. 2020b) embeds the feature
sequences separately and uses the self-attention to model
dynamic features and static information. For a fair com-
parison, the static information is not considered here.

We also conduct the following ablation studies:

• GRASP1− does not capture the interaction between clus-
ters. It uses the centroid as the auxiliary information.

• GRASP2− does not have the Gumbel sampling module.

Prediction Results
Table 2 shows the performance of models with GRASP and
baselines on the two datasets. For sepsis prediction on the
Cardiology dataset, the number in () denotes the standard
deviation of bootstrapping for 1000 times. And for mor-
tality prediction on CKD dataset, it denotes the standard
deviation of 10-fold cross-validation. We can observe that
GRASP consistently increases the performance of all the
baselines. Although RETAIN can provide interpretability,
the quantitative performance is sacrificed, which is consis-
tent with the results reported in (Ma et al. 2018a). Con-
Care (Ma et al. 2020b) uses the self-attention to capture the
interdependency between features and achieves the best re-
sults among the baselines. However, with GRASP, the inter-
dependency among patients is added, which leads to a per-
formance boost. As shown in Table 1, the Cardiology dataset
is more imbalanced and sparse than the CKD dataset, and
the performance gain of GRASP is larger. This observation
also implies that GRASP improves the performance better on
such low-quality datasets.

Analysis
Extra information utilization vs. Cause of death To ex-
plore how the auxiliary information from other similar pa-
tients affects mortality prediction, we further analyze the
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Sepsis Prediction on Cardiology Dataset Mortality Prediction on CKD Dataset
Methods AUPRC min(Se, P+) F1-Score AUPRC min(Se, P+) F1-Score

GRU 0.6771 (0.02) 0.6117 (0.02) 0.6114 (0.01) 0.7126 (0.02) 0.6628 (0.02) 0.6431 (0.01)
GRASP+GRU 0.7268 (0.02) 0.6508 (0.01) 0.6491 (0.01) 0.7483 (0.01) 0.6971 (0.01) 0.6728 (0.02)

RETAIN 0.6580 (0.02) 0.6123 (0.02) 0.6198 (0.01) 0.7063 (0.02) 0.6496 (0.02) 0.6241 (0.02)
GRASP+RETAIN 0.7003 (0.02) 0.6485 (0.02) 0.6394 (0.01) 0.7256 (0.02) 0.6715 (0.01) 0.6604 (0.01)

T-LSTM 0.7138 (0.02) 0.6553 (0.02) 0.6587 (0.02) 0.7180 (0.01) 0.6702 (0.02) 0.6438 (0.01)
GRASP1−+T-LSTM 0.7336 (0.02) 0.6758 (0.01) 0.6635 (0.01) 0.7209 (0.01) 0.6851 (0.02) 0.6578 (0.01)
GRASP2−+T-LSTM 0.7465 (0.02) 0.6742 (0.01) 0.6702 (0.02) 0.7365 (0.01) 0.6825 (0.02) 0.6636 (0.02)
GRASP+T-LSTM 0.7513 (0.01) 0.6821 (0.02) 0.6798 (0.01) 0.7496 (0.01) 0.6986 (0.02) 0.6751 (0.01)

TimeNet∗ 0.7570 (0.02) 0.6762 (0.02) 0.6785 (0.01) 0.7358 (0.02) 0.6819 (0.02) 0.6504 (0.01)
GRASP1−+TimeNet∗ 0.7793 (0.02) 0.6791 (0.02) 0.6887 (0.01) 0.7423 (0.02) 0.6998 (0.02) 0.6817 (0.01)
GRASP2−+TimeNet∗ 0.7803 (0.02) 0.6850 (0.02) 0.6849 (0.01) 0.7517 (0.02) 0.7020 (0.02) 0.6866 (0.01)
GRASP+TimeNet∗ 0.7885 (0.02) 0.6977 (0.02) 0.7045 (0.01) 0.7523 (0.02) 0.7013 (0.02) 0.6885 (0.02)

ConCare∗ 0.7770 (0.02) 0.7010 (0.02) 0.7056 (0.01) 0.7368 (0.02) 0.6757 (0.02) 0.6600 (0.01)
GRASP1−+ConCare∗ 0.7881 (0.02) 0.7176 (0.02) 0.7185 (0.01) 0.7493 (0.02) 0.6829 (0.02) 0.6814 (0.01)
GRASP2−+ConCare∗ 0.7925 (0.01) 0.7080 (0.02) 0.7169 (0.01) 0.7488 (0.02) 0.6972 (0.02) 0.6902 (0.02)
GRASP+ConCare∗ 0.8014 (0.02) 0.7210 (0.02) 0.7234 (0.01) 0.7597 (0.02) 0.7059 (0.02) 0.6945 (0.01)

Table 2: Results for the tasks on Cardiology and CKD Datasets
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Figure 5: Extra Information Utilization vs. Cause of Death

extra information utilization w.r.t. different causes of death
(COD) in the CKD dataset. In the Adaptive Attention Fusion
step, GRASP generates two weights. The α determines how
much the auxiliary information from other similar patients
(i.e., hc) affects mortality prediction, and the β shows how
much effect the information from the patient (i.e., hT ) has.
We randomly sample 20% of the patients as the test set and
utilize the rest as the training set. After training, the weights
of the auxiliary information (i.e., α) are collected on the test
set. The average weights of the auxiliary information w.r.t
patients with different COD are shown in Figure 5.

The result shows that patients who died of cardiovascu-
lar (CVD), cerebrovascular (CVE), and peritonitis have the
lowest α , which means that their prediction needs less aux-
iliary information from similar patients. These diseases are
acute diseases (Fried et al. 1996; Kannel et al. 1987). In gen-
eral, the health status of patients who have these diseases
tends to deteriorate rapidly in a short period of time (ES-
TANOL and M. MARIN 1975), therefore the health status is
more exclusive and similar patients are scarce. Thus the in-

formation from similar patients has less guidance for predic-
tion, which explains why GRASP generates lower weights.

In contrast, cancer, cachexia, and peripheral vascular dis-
eases (PVD) are relatively chronic diseases. The health sta-
tus of patients with these diseases change more slowly and
more common since their health status often deteriorates
more chronically (Prentice and Gloeckler 1978; Derogatis,
Abeloff, and Melisaratos 1979). In this way, the guidance
from other similar patients is more helpful, since more pa-
tients have experienced similar status, which guides the pre-
diction of the current patient. This finding also suggests clin-
icians pay more attention to patients with CVD and CVE in
order to make timely interventions and save more lives.

Patient Cohort Study In this part, following the oper-
ation of GRASP, we conduct patient cohort discovery for
similar patients on the CKD dataset to investigate the ex-
pressive power of the patient representation learned with
GRASP. Chronic kidney disease (CKD) is a chronic disease,
and the patients need to receive continuous medical analy-
sis for years or even decades. Patient cohort discovery is to
seek patient groups with similar disease progression path-
ways (Baytas et al. 2017) and it can help clinicians develop
targeted treatment plans and prevent adverse outcomes.

Cluster Performance. First, we compare the perfor-
mance of patient clustering for the models with/without
GRASP. We use the hidden representations before the final
layer of those models as representations for patients’ health
status. The learned representations are used to cluster the pa-
tients by K-Means algorithm (Jain 2010). Since we do not
know the ground truth groups, we use Calinski-Harabasz
score (Caliński and JA 1974) (C-H score) to evaluate the
cluster performance quantitatively. A higher C-H score re-
lates to a better method. The C-H score is calculated as:
Calinski-Harabasz score = tr(Bk)

tr(Wk)
m−k
k−1 , where m is the

sample size, k is the number of clusters, Bk is the covari-
ance matrix between clusters, Wk is the covariance matrix
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Model Score Model Score
GRU 53.60 GRASP+GRU 94.67

RETAIN 36.80 GRASP+RETAIN 52.98
T-LSTM 75.34 GRASP+T-LSTM 116.40
TimeNet∗ 304.06 GRASP+TimeNet∗ 457.03
ConCare∗ 468.76 GRASP+ConCare∗ 575.72

Table 3: Calinski-Harabasz scores

within clusters, and tr() is the trace of matrix.
We randomly sample 20% of the patients as the test set

and use the rest as the training set. We tried several k values
for K-means and can observe six main clusters. Therefore
we report the clustering C-H score when k = 6. The results
are in Table 3. We can see that GRASP helps the backbone
models achieve higher C-H scores, which shows its ability
to intensify intra-group compactness and inter-group sepa-
rability.

Next, we conduct qualitative cohort studies for the two
tasks, mortality prediction and disease diagnosis (i.e., an-
other label for the same dataset, which is defined as a bi-
nary classification task of judging whether the patient is di-
agnosed with diabetes), on CKD dataset to mining medical
findings from different perspectives.

Cohort Study on Mortality Prediction. We randomly
sample 20% of the patients as the test set and utilize the rest
as the training set to perform the mortality prediction task.
In a more concise way, the model we use is GRASP with
GRU as the backbone. The learned representations are clus-
tered by K-Means (Jain 2010), and statistical analyses are
conducted to assess the reasoning of the model. We report
the result when cluster number = 6. The result is shown in
Table 4. Each row shows the index of the cohort, the death
(positive) rate of that cohort, and the distinctive features, re-
spectively. The features are represented using their abbre-
viations, and the features used in the experiment and their
full names are listed in the Appendix. The distinctive fea-
tures of each cohort are defined as the key distinguishable
features to interpret the difference between the cohorts and
extract medical findings for the insight. The T-test is used
to identify distinctive features. We find that there are 5 to 7
significant features in each cluster, and the top 5 significant
features ranked by p-value4 are reported in Table 4.

Six cohorts of three different types can be observed: low-
risk (i.e., cohort # 0 and # 1), medium-risk (i.e., cohort # 2
and # 3) and high-risk (i.e., cohort # 4 and # 5). The death
rates of the cohorts are distinct, which shows the learned
representations distribute discriminatively. Furthermore, the
distinctive features of each cohort are different, especially
for the two high-risk cohorts. In Cohort # 4, Serum cre-
atinine (Scr), Weight, Urea, and Appetite are identified as
the distinctive features. Those features are important indi-
cators for nutritional status (Carrero 2009; Di Iorio et al.
2018; Gama-Axelsson et al. 2012). Thus, these features re-
flect the health status from a long-term perspective and are
corresponding to the chronic causes of death.

4The p-values of the reported features are all small than 0.01.

Index Posi-Rate Distinctive Features
# 0 0.04 DBP, Cl, SBP, Weight, Glucose
# 1 0.12 Albumin, Hb, Urea, hs-CRP, Scr
# 2 0.39 Scr, Glucose, K, Albumin, Hb
# 3 0.48 Urea, Scr, DBP, Appetite, Weight
# 4 0.74 Scr, Weight, Urea, Appetite, Cl
# 5 0.82 SBP, Albumin, hs-CRP, DBP, Scr

Table 4: Statistics of each cohort w.r.t. mortality prediction

Index Posi-Rate Distinctive Features
# 0 0.04 Weight, P, Urea, Glucose, Scr
# 1 0.07 Glu., Scr, Albumin, Appetite, Hb
# 2 0.46 DBP, Scr, Albumin, SBP, K
# 3 0.53 Urea, Glu., DBP, P, Albumin
# 4 0.82 Weight, SBP, Appetite, K, Glu.
# 5 0.90 Glu., Scr, Albumin, DBP, Appetite

Table 5: Statistics of each cohort w.r.t disease diagnosis

In contrast, in the other high-risk cohort, Cohort # 5, Sys-
tolic blood pressure (SBP), Albumin, hs-CRP, and DBP are
identified as the distinctive features. SBP, hs-CRP, and DBP
can reflect the acute changes in health status (Wang et al.
2013; Sarnak et al. 2002), and Albumin is a key feature to
evaluate the fundamental health condition (Bal et al. 2013).
Specifically, DBP and SBP are essential indicators for heart
diseases such as cardiovascular (Kannel 1999) and patients
with high hs-CRP are likely to have infections (Aziz et al.
2003), which are corresponding to the acute causes of death.

Cohort Study on Disease Diagnosis. Next, we change
the target to the disease diagnosis task on the CKD dataset.
We perform the same operation and get cohorts with regard
to the diabetes diagnosis. The result is shown in Table 5. We
can see that the diagnosed rates of those cohorts are also dis-
tinguishable and the distinctive features of each cohort are
different. Moreover, the top distinctive features are remark-
ably different from the ones on mortality prediction. Glu-
cose, of course, has a direct relation with diabetes (Group
2008), and Weight can also reflect the degree of diabetes
in a more indirect way (Group et al. 2009). The two high
diagnosis rate cohorts (# 4 and # 5) are differentiated by the
distinctive features. The above studies show GRASP can dis-
tinguish different kinds of similar patients to form cohorts.

Conclusions
In this work, we propose GRASP to boost healthcare mod-
els by incorporating auxiliary information from similar pa-
tients. It discovers the patients with similar health status,
aggregates them into cohorts, and extracts guidance rep-
resentation. The guidance and the patient information are
adaptively fused to depict the health status comprehensively.
GRASP demonstrates significant performance improvement,
provides medical findings on different COD, and discovers
reasonable patient cohorts. The findings are in accord with
experts and literature. We hope GRASP can help physicians
analyze the patients to prevent the adverse outcome.
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