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Abstract

Object detection methods are widely adopted for computer-
aided diagnosis using medical images. Anomalous findings
are usually treated as objects that are described by bound-
ing boxes. Yet, many pathological findings, e.g., bone frac-
tures, cannot be clearly defined by bounding boxes, owing to
considerable instance, shape and boundary ambiguities. This
makes bounding box annotations, and their associated losses,
highly ill-suited. In this work, we propose a new bone fracture
detection method for X-ray images, based on a labor effective
and flexible annotation scheme suitable for abnormal findings
with no clear object-level spatial extents or boundaries. Our
method employs a simple, intuitive, and informative point-
based annotation protocol to mark localized pathology infor-
mation. To address the uncertainty in the fracture scales anno-
tated via point(s), we convert the annotations into pixel-wise
supervision that uses lower and upper bounds with positive,
negative, and uncertain regions. A novel Window Loss is sub-
sequently proposed to only penalize the predictions outside
of the uncertain regions. Our method has been extensively
evaluated on 4410 pelvic X-ray images of unique patients.
Experiments demonstrate that our method outperforms previ-
ous state-of-the-art image classification and object detection
baselines by healthy margins, with an AUROC of 0.983 and
FROC score of 89.6%.

Introduction
Due to its efficiency, accessibility, and low cost, X-ray imag-
ing is one of the most commonly performed diagnostic ex-
aminations in clinical practice. Conventional computer vi-
sion techniques have been extensively researched in the past
few decades to develop computer aided diagnosis (CAD) so-
lutions, aiming to increase image reading efficiency and re-
duce misdiagnoses risks. Current state-of-the-art CAD sys-
tems widely adopt generic principles of image classification
and object detection to identify and localize the anomalies.
However, to provide both robust classification and localiza-
tion in applications where pathologies have ambiguously de-
fined extents, such as for pelvic X-rays (PXRs), alternative
solutions are needed. This is the topic of our work.
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Figure 1: Fractures in PXRs where the numbers of instances
and their spatial extents are extremely ambiguous. The anno-
tations of fractures can be represented by small/tight bound-
ing boxes on fracture lines (green boxes), or relatively big
bounding boxes containing the entire fractured region (yel-
low boxes). To skirt this inherent subjectivity, we adopt and
learn from point-based annotations (red dots).

Spurred by the public release of large-scale datasets, chest
X-ray (CXR) CAD has received a great deal of recent at-
tention, with many prominent methods treating the prob-
lem as a multi-label image classification problem (Rajpurkar
et al. 2017; Wang et al. 2017; Baltruschat et al. 2019). These
works typically report area under receiver operating charac-
teristic curve (AUROC) scores, e.g., 0.817 (Baltruschat et al.
2019) on the NIH-ChestXray14 dataset (Wang et al. 2017)
and 0.930 (Pham et al. 2020) on the CheXPert dataset (Irvin
et al. 2019). Yet, in clinical diagnostic workflows, localiza-
tion of the detected anomalies is also needed both to inter-
pret the results and for verifiable decision making. While
class activation maps (CAMs) can provide a degree of local-
ization under classification setups, they have limited local-
ization power and tend to miss abnormal sites when multiple
pathological findings occur concurrently in an image.

To improve localization performance, several methods
use additional box-level annotations to facilitate the training
of image classifiers (Li et al. 2018; Liu et al. 2019a; Huang
et al. 2020). For other CAD applications where localization
performance is more central, such as lung nodule and breast
mass/calcification detection, explicit object detection frame-
works are widely adopted (Yan et al. 2018b, 2019; Jiang
et al. 2020). However, compared to image classifiers, object
detection methods focus predominantly on localization and
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may struggle to produce robust image-level diagnoses, e.g.,
by triggering undesirable false positives.

Another critical downside to object detectors is their re-
liance on bounding boxes. Besides being prohibitively labo-
rious, bounding boxes (or any explicit defining boundary)
are not always suitable for all types of medical anomalies,
particularly when pathological findings cannot be easily de-
lineated as discrete instances with definite boundaries. Frac-
tures in PXRs serve as excellent exemplar, as they usually
involve multiple anatomical sites with complex morphol-
ogy and curvilinear fragments that make defining the bor-
der, extent, and number of the bounding boxes extraordi-
narily difficult and ambiguous (as shown in Fig. 1). There-
fore, an anomaly diagnosis and localization method with 1)
a cost-effective and flexible annotation scheme and 2) simul-
taneously high classification and localization performance is
critical and highly desirable.

In this work, we present a trauma PXR bone fracture diag-
nosis and localization system with a cost-effective and flex-
ible annotation scheme that is suitable for detecting abnor-
mal findings with no clear object boundaries. Interpreting
trauma PXRs in an emergency room environment requires
timely image-level diagnoses and fracture localizations. The
image-level diagnosis determines the downstream actions in
the clinical workflow, e.g., further examination, hospitaliza-
tion, or hospital discharge. Robust fracture localization can
help physicians avoid missed diagnoses that must be treated
in a timely manner, otherwise serious complications can oc-
cur. Due to the geometrical complexities of bone fractures
and the perspective projection distortions of PXRs, diagno-
sis and localization of fractures in PXR is a challenging task
where even experienced physicians can make considerable
diagnostic errors (Chellam 2016).

To cope with the inherent geometrical complexity of
pelvic fractures, our model use annotated points as super-
visory signals. This point-based annotation is labor efficient
and allows ambiguous fracture conditions to be adequately
represented as one point or multiple points (on the fracture
sites). To account for the uncertainties in the scale and shape
of the annotated fracture sites, we propose to convert the
points to pixel-wise supervision signals, which consist of
lower and upper bounds of the expected network prediction
with an allowed region between the bounds. A novel Win-
dow Loss is proposed that only penalizes predictions outside
of the bounds, which encourages the model to learn from the
reliable information without being distracted by the inherent
uncertainties in the annotations. We evaluated our proposed
method on 4410 PXRs collected from a primary trauma cen-
ter representing real clinical situations. Our method reports
an AUROC of 0.983 and FROC score of 89.6%, significantly
outperforming previous state-of-the-art image classification
and object detection methods by at roughly 1% or more on
AUROC and 1.5% on FROC score, respectively.

Related Work
Image Classification Methods
The availability of large-scale public CXR datasets with
image-level labels has catalyzed a large body of work

on CXR classification. Typically, these methods train
deep neural networks that output per-image classification
scores and calculate losses against the image-level la-
bels. CheXNet (Rajpurkar et al. 2017) trains a DenseNet-
121 (Huang et al. 2017) with global average pooling (GAP)
performed on the penultimate feature maps before being
inputted into a fully connected layer, and Wang et al.
(2017) replaced the GAP with log-sum-exp (LSE). Yao et al.
(2018); Wang et al. (2019); Li et al. (2018); Liu et al. (2019a)
take a different approach by regarding the convolutional
feature maps as local appearance descriptors of spatially
sliced blocks. The features maps are then processed with
a 1x1 convolution to produce class-wise probability maps
and globally pooled to produce the image-level classifica-
tion probabilities. Choices of pooling methods include LSE
pooling (Yao et al. 2018; Wang et al. 2019) or the product of
the probabilities (Li et al. 2018; Liu et al. 2019a), where the
latter assumes that probability values are independent and
identically distributed.

Methods with global feature pooling (Yan et al. 2018a)
typically rely on spatial attention mechanisms like CAMs
or Grad-CAM to localize the underlying anomalies. In con-
trast, methods with class-wise probability maps (Yao et al.
2018; Wang et al. 2019) can directly produce localizations
without any add-on components. Either way, deep models
trained with only image-level labels may not always pro-
duce plausible localizations with high reliability. Other ap-
proaches (Li et al. 2018; Liu et al. 2019a) have addressed
this issue by developing strategies to exploit the small num-
ber/percentage of images with bounding box annotations.

Similar to prior work (Chen et al. 2020), our method uses
a 1x1 convolution on the last feature map to produce a frac-
ture class probability map. Different from the above classi-
fication based methods, our method is trained using point-
based labels. In this way, we share a similar motivation
with Li et al. (2018); Liu et al. (2019a) to leverage addi-
tional low cost localization annotations. However, we apply
a fundamentally different conceptual framework, using 1)
point-based annotations to account for the intrinsic ambigu-
ity on visually defining/depicting bone fractures in X-rays as
spatially-bounded objects and 2) designing a new Window
Loss to naturally handle and learn from these annotations.

Object Detection Methods
Substantial progress has been made in recent years in the
development of deep learning based object detection meth-
ods. These include anchor-based solutions (Ren et al. 2015;
Lin et al. 2017b) and recent anchor-free solutions (Tian et al.
2019; Law and Deng 2018), which repeatedly break the ac-
curacy records on benchmarks like MS-COCO (Lin et al.
2014a). The success and popularity of object detection in
natural imagery has motivated research on adopting them
for a wide spectrum of medical image anomaly localiza-
tion problems, such as distal radius fractures in hand X-
rays (Yahalomi, Chernofsky, and Werman 2019), pneumonia
in CXR (Sirazitdinov et al. 2019), masses in mammogra-
phy (Al-Masni et al. 2018) and general lesions in computed
tomography (CT) (Yan et al. 2018b, 2019). Many domain
specific enhancements have been proposed, including incor-
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Figure 2: Framework of the proposed method. (a) Network architecture and training mechanism of the proposed method. (b)
Lower and upper bounds of the generated pixel-level supervision. (c) Profiles of the proposed Window Loss using MSE or KLD
as the divergence measure.

porating symmetry cues for breast mammography (Liu et al.
2019b); exploiting the anatomical prior of vertebraes via
self-calibration (Zhao et al. 2019); and addressing missing
annotations, hard negatives, and/or heterogeneous datasets
for universal lesion detection (Yan et al. 2020; Cai et al.
2020). Like object detectors, our work explicitly learns from
localization annotations, but the inherent visual ambiguity of
pelvic fractures makes our problem fundamentally different.
To address this, we propose a point-based annotation scheme
and Window Loss for such challenging ambiguities.

Method
There are two critical metrics to measure a CAD solution’s
effectiveness in clinical settings: generality (handling of un-
seen patients) and precision (generating good accuracy ro-
bustly for the given task). Naturally, incorporating as many
patients as possible for training is desirable, but patient
data often cannot be fully annotated at scale, precluding ap-
proaches seen in natural images (Lin et al. 2014b). In med-
ical imaging, the labor costs are always paramount. Even
more intractably, for many applications, e.g., PXR fracture
detection, there are inherent perceptual uncertainties and
challenges in annotating precise bounding boxes of patho-
logical findings. Alternative strategies are needed. A promis-
ing inspiration can be found in extreme points for object an-
notation (Papadopoulos et al. 2017), which are found to be
a quicker and easier visual perception protocol by human
annotators. Similarly, in this work, we use only point-based
annotations to localize bone fractures in PXRs (i.e., where
to look?) so we can execute the annotation process at scale
to cover as many as thousands of patients to achieve gen-
erality. To achieve precision, we propose a Window Loss
that can robustly cope with the aforementioned ambiguities
in defining the extents and scales of fracture sites (i.e., how

to look?). Fig. 2 illustrates an overview of our framework.

Point-based Annotation
The complex morphology of pelvic fractures challenges the
collection of reliable and consistent localization annotations.
Due to the difficulties in defining the border, extent, and
number of bounding boxes, the commonly adopted bound-
ing box annotation suffers from high inter-annotator varia-
tions, which can cause conflicting supervisory signals. For
instance, the pelvic fractures shown in Fig. 1 can be an-
notated using multiple small boxes or one larger box. We
propose to use point-based annotations to provide the lo-
calization information. The pin-pointing annotation protocol
is flexible and naturally fits our complex scenario: we ask
the annotators/physicians to place points on visible fracture
sites. For complex scenarios where the instance of fractures
cannot be clearly defined, the annotators decide to place one
or multiple points at their own discretion. Two challenges
arise when using point-based annotation to supervise net-
work training: 1) unknown scales of fracture sites, and 2)
inter-rater variability in point placements. We address this
with our proposed Window Loss.

Window Loss
Despite any uncertainties in scale and inter-annotator vari-
ability, point-based annotations provide the following infor-
mation: 1) regions in close proximity to the annotated points
are likely abnormal; 2) regions far away from all points
are highly likely to be normal; 3) for in-between regions it
is difficult, if not possible, to specify any particular confi-
dence value. We encode this by calculating an allowed con-
fidence range at every point in the image. Any prediction
that falls into the allowed range is deemed acceptable, re-
gardless of where it falls. This aligns with the inherent am-
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biguities of fracture localization, where many image regions
do not permit the specification of any particular value. On
the other hand, if any prediction violates the allowed confi-
dence range, it is penalized.

To calculate an allowed confidence range, we create two
heatmaps to represent the upper confidence and lower con-
fidence bounds at every pixel location. Both heatmaps are
set to 1 at any point annotation and their values decline
toward 0 at points further away. However, the lower con-
fidence bound reduces rapidly as the distance to the point
increases, whereas the upper bound reduces more gradually.
We construct both heatmaps using the sigmoid of the dis-
tance to the annotation points:

`(i, j) = max
k

σ(
r` −Dk

ij

τ
), (1)

u(i, j) = max
k

σ(
ru −Dk

ij

τ
), (2)

where σ is the sigmoid function, Dk
ij denotes the distance

from pixel (i, j) to the k-th annotation point, and τ controls
the softness of the confidence decline. Here the rate of the
confidence bound decline is controlled by ru and r` for the
upper and lower bounds, respectively. Importantly, ru > r`.
Example profiles of the two confidence bounds are shown in
Fig. 2b. Regions above the upper bound or below the lower
bound are disallowed regions, whereas regions between the
two bounds are allowed ranges.

The Window Loss aims to discourage confidence predic-
tions in any of the disallowed regions, while allowing any
prediction within the allowed range. Dropping the pixel in-
dexing for simplicity, we formulate the Window Loss as

WL(p, `, u) =


D(p, `) if p ≤ `,
0 if ` < p ≤ u
D(p, u) if p > u

, (3)

where D(·, ·) is a chosen divergence measure. Formulated
this way, the Window Loss encouraged predictions violating
the upper bound (resp., lower) to be lower (resp., higher),
while not penalizing any predictions falling within the al-
lowed regions. In term of divergence measures, we eval-
uate two options: mean squared error (MSE) and Kull-
back–Leibler divergence (KLD), written as

DMSE(x, y) = ‖x− y‖2, (4)

DKLD(x, y) = y log(
y

x
) + (1− y) log( 1− y

1− x
). (5)

Examples of the Window Loss using MSE and KLD are
shown in Fig. 2c. The Window Loss can garner signifi-
cant improvements in performance where ambiguities are
unavoidable. Its simple formulation allows it to be easily
plugged into any existing deep learning framework.

Network Architecture
The radiographic appearances of pelvic fractures can vary
considerably in both scale and shape. To represent the patho-
logical patterns at different scales, we employ a ResNet-50

with a feature pyramid network (FPN) backbone (Lin et al.
2017a). The ResNet-50 portion has a bottom-up path that en-
codes the input PXR using four sequential blocks, with each
down-sampling the image size by 2. The FPN adds a top-
down path that upsamples and fuses the bottom-up feature
maps. The feature maps are then processed by a 1x1 con-
volution to produce dense probability maps at four different
scales for the input PXR image. The output probability maps
can be interpreted as the confidence of presence of fractures
at the corresponding locations in the PXR.

FPNs have been widely adopted in object detection to
cope with the variance in object scales using multiple pyra-
mid levels of feature maps with respect to different spatial
resolutions. With bounding box annotations, objects are as-
signed to different pyramid levels according to their size. For
fracture detection in PXR with point-based annotations, the
size of the fracture is inherently ambiguous (from perspec-
tives of both the complexity of the fractures and the form of
annotation). Therefore, we assign every fracture annotation
point to all FPN pyramid levels to encourage the network to
recognize the fractures at different spatial resolutions. Dur-
ing training, losses are calculated on all pyramid levels. Dur-
ing inference, the probability maps from the four levels are
ensembled and merged by averaging. The total training loss
is the sum of the Window Loss on the four-level FPN out-
puts, written as:

L =
∑

k=1,2,3,4

E
i,j

[
WL

(
Pk(i, j), `k(i, j), uk(i, j)

)]
, (6)

where Pk is the probability map output at the k-th pyramid
level, `k and uk are the confidence bounds resized to the
spatial resolution of Pk.

Implementation Details
We trained our model on a workstation with a single In-
tel Xeon E5-2650 v4 CPU @ 2.2 GHz, 128 GB RAM, 4
NVIDIA Quadro RTX 8000 GPUs. All methods are imple-
mented in Python 3.7, and PyTorch v1.4. We use the Im-
ageNet pre-trained weights to initialize the backbone net-
work. The Adam optimizer with a learning rate of 4e − 5,
a weight decay of 0.001 and a batch size of 48 is used to
train the model for 100 epochs. All images are padded to
square and resized to 1024× 1024 for network training and
inference. We randomly perform rotation, horizontal flip-
ping, intensity and contrast jittering to augment the training
data. The supervision bounds are generated using parame-
ters r` = 50, ru = 200 and τ = 2. The trained model is
evaluated on the validation set after every training epoch,
and the one with the highest validation AUROC is selected
as the best model for inference.

Experiments
Dataset: We retrieved 4410 PXR images of unique patients
that were recorded from 2008 to 2016 in the trauma registry
of Chang Gung Medical Hospital. Trauma-related findings
are identified by a board consisting of a radiologist, a trauma
surgeon, and an orthopedic surgeon who had fifteen years,
seven years, and three years of experience, respectively. The
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Figure 3: Visualization of fracture localization results. The proposed methods, WL-MSE and WL-KLD, achieve higher lo-
calization performances than the previous state-of-the-art methods. The localization performance of WL-MSE is qualitatively
better than that of WL-KLD, which is in line with the FROC metrics.

best available information was provided, including the orig-
inal images, radiologist reports, clinical diagnoses, surgical
reports, and advanced imaging modality findings, if avail-
able. A total of 2776 images with acute trauma-related radio-
graphic findings (1975 and 801 hip and pelvic fractures, re-
spectively) are identified, resulting in 4066 annotated points
(range 0-7). All experiments are conducted using five-fold
cross-validation with a 70%/10%/20% training, validation,
and testing split, respectively.

Evaluation Metrics
Classification metric We evaluate the image-level frac-
ture classification performance using the receiver operat-
ing characteristic (ROC) curve and the widely used AU-
ROC classification metric. For methods predicting probabil-
ity map (e.g., the proposed method), the maximum response
of the probability map is taken as the image-level classifica-
tion score. For object detection methods predicting bound-
ing box, the maximum classification score of all predicted
boxes is taken as the image-level classification score.

Localization metric We evaluate the fracture localization
performance of different methods using free-response oper-

ating characteristic (FROC) curve. To quantify FROC, we
calculate an FROC score as the average recall at five false
positive (FP) rates: (0.1, 0.2, 0.3, 0.4, 0.5) FPs per image.
We also separately report the recall at FP=0.1 (Recall@0.1),
the most clinically relevant setting. Given an operating point
of the FROC, the predicted heatmap is binarized using the
operating point to produce a mask. Connected component
analysis is performed on the mask and each connected com-
ponent is regarded as one detected fracture finding. A bound-
ing box is then generated on each connected component. An
annotation point is considered to be recalled if it is inside
any bounding box. To define false positives, a ground truth
mask is first generated with disks of radius 50 centered on
the annotation points, which indicates areas that are certainly
affected by the anomalies. A bounding box is considered as
false positive if its intersection with the mask is less than
10% of its own region.

Comparison with Baseline Methods

Image classification methods We evaluate three state-of-
the-art X-ray CAD methods based on image classification,
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Figure 4: Comparison of receiver operating characteristic
(ROC) curves (Recall scaled from 0.8 to 1.0).

CheXNet (Rajpurkar et al. 2017), WSPL1 (Wang et al. 2017)
and UFDet2 (Wang et al. 2019). CheXNet trains a classi-
fication network with a GAP layer on the last feature map
followed by a fully connected layer. WSPL replaces the
GAP with a LSE pooling. UFDet estimates a dense proba-
bility map and use LSE pooling to produce the classification
score. We evaluate the stage-1 of UFDet for a fair compar-
ison with CheXNet, WSPL and our method, which are all
single-stage methods. Anomaly localization map is gener-
ated using CAM (Zhou et al. 2016) for CheXNet and WSPL,
and the produced probability map for UFDet. The localiza-
tion map is converted to bounding box for FROC evaluation
using the same steps described above. ResNet-50 is used as
the backbone network for all image classification methods.

Object detection methods We evaluate three state-of-the-
art object detection methods including two popular anchor-
based detectors, Faster-RCNN (Ren et al. 2015) and Reti-
naNet (Lin et al. 2017b), and the latest anchor-less detector,
FCOS (Tian et al. 2019). All compared methods use ResNet-
50 with FPN as the backbone network. Since the actual scale
of the fracture is unknown from the point-based annotation,
a bounding box with a heuristically chosen size of 200×200
is placed on each annotation point. We empirically verified
that the size of the bounding box is appropriate for the ma-
jority of fractures observed in PXRs.

Result analysis Table 1 summarizes the results of image
classification, object detection and the proposed methods.
The proposed methods using both MSE and KLD as the
divergence metric outperform both image classification and
object detection methods on both the classification (i.e., AU-
ROC) and localization (i.e., Recall@0.1 and FROC score)
metrics by large margins. Specifically, WL-KLD achieves
an AUROC of 0.983, outperforming the closest competitor,
WSPL (0.974), by a health gap of 0.009. On Recall@0.1 and
FROC score, WL-KLD leads the strongest baseline method,
RetinaNet, by significant margins, i.e., 2.8% (85.4% vs.
82.6%) and 1.5% (89.6% vs. 88.1%), respectively. WL-MSE

1Weakly-Supervised Pathology Localization
2Universal Fracture Detection

Figure 5: Comparison of free-response receiver operating
characteristic (FROC) curves.

achieves even stronger localization performance than WL-
KLD, reporting a Recall@0.1 of 87.4% and a FROC score
of 89.9%. The AUROC of WL-MSE is lower than WL-KLD
(97.9% vs. 98.3%), but it still outperforms all baseline meth-
ods by more than a 0.5%-1.8% margin.

An interesting observation is that although image classifi-
cation methods do not use localization supervisory signals,
they achieve superior classification performances comparing
to object detection methods trained using localization super-
vision signals. In particular, the highest AUROCs achieved
by image classification methods and object detection meth-
ods are 0.974 and 0.969, respectively, measuring a gap of
0.005. This suggests that algorithms designed specifically
for detecting objects may not be optimal for recognizing the
image-level existence of the object. On the other hand, im-
age classification methods in general result in poor local-
ization performance, with FROC scores between 54.9% and
75.4%, while all three object detection methods report sub-
stantially higher FROC scores between 85.9% and 88.1%.
The high AUROC and low FROC score indicate that without
localization supervision signals, the attention mechanism
of image classification methods can activate wrong regions
even when the image-level classification is correct. This is

Method AUROC Recall
@FP=0.1

FROC
Score

CheXNet 0.971 28.9% 54.9%
WSPL 0.974 56.0% 68.5%
UFDet 0.972 64.9% 75.4%

Faster-RCNN 0.961 82.5% 86.3%
RetinaNet 0.969 82.6% 88.1%
FCOS 0.961 80.3% 85.9%

WL-MSE 0.979 87.4% 89.9%
WL-KLD 0.983 85.4% 89.6%

Table 1: Fracture classification and localization results. Our
method achieves the top performance, outperforming all
baseline methods by significant margins.
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τ r` ru AUROC Recall@0.1 FROC
Score

2 50 200 0.979 87.4% 89.9%
2 100 200 0.978 83.4% 86.4%
2 150 200 0.979 80.5% 82.0%

0.4 50 200 0.978 86.7% 89.3%
2 50 200 0.979 87.4% 89.9%
5 50 200 0.979 87.4% 88.2%

10 50 200 0.982 69.6% 84.3%

0 50 50 0.976 81.8% 86.1%
2 50 50 0.975 83.9% 87.2%

Table 2: Ablation study on the Window Loss with MSE.

also evidenced by the examples shown in Fig. 3.
While there is a trade-off between classification and local-

ization performances using image classification and object
detection methods, our method can simultaneously achieve
improved performance in both aspects comparing to meth-
ods in both categories. Depending on whether MSE or KLD
is used as the divergence measure in the Window Loss, our
method behaves slightly differently in classification and lo-
calization, i.e., KLD results in a slightly higher AUROC
(98.3% vs. 97.9%), while MSE results in a slight higher
FROC score (89.9% vs. 89.6%).

Ablation Experiments
We conduct ablation experiments to analyze the effects of
the parameters of the Window Loss. We evaluate our method
with varying parameters r`, ru and τ using both MSE and
KLD as the divergence measure. The results are recorded in
Table 2 (using MSE) and Table 3 (using KLD).

We first evaluate two degenerate setting [r`, ru = 50, τ =
0] and [r`, ru = 50, τ = 2]. In the first setting, the super-
vision bounds degenerate to a binary mask with disks of ra-
dius 50, and the Window Losses using MSE and KLD diver-
gence measures degenerate to MSE and binary cross entropy
(BCE), respectively. In the seconding setting, the supervi-
sion signal degenerate to a soft mask, similar to the Gaus-
sian ground truth map widely used in key point localization
methods (Wei et al. 2016). As shown in Table 2, both settings
result in lower classification and localization performances
comparing to our default setting [r` = 50, ru = 200, τ = 2].
It demonstrates the effectiveness of the supervision bounds
and the Window Loss. It is also worth noting that the degen-
erate setting, especially using KLD, still performs compet-
itively comparing to image classification and object detec-
tion methods, measuring an AUROC score of 0.980 and a
FROC score of 85.4%. It indicates the merit of modeling the
anomaly detection task as a pixel-wise classification task.

To further analyze the effects of the parameters, we evalu-
ate our method using r` = [50, 100, 150], τ = [0.4, 2, 5, 10]
and ru = 200. We use fixed ru = 200 to simplify the analy-
sis since it is empirically confirmed that areas more than 200
pixels away from any annotation points never have anomaly.
As r` increases from 50 to 150, a bigger neighborhood of the

τ r` ru AUROC Recall@0.1 FROC Score

2 50 200 0.983 85.4% 89.6%
2 100 200 0.984 81.2% 85.4%
2 150 200 0.984 82.8% 82.8%

0.4 50 200 0.982 85.5% 89.7%
2 50 200 0.983 85.4% 89.6%
5 50 200 0.984 82.0% 86.6%

10 50 200 0.986 69.2% 80.6%

0 50 50 0.980 78.3% 85.4%
2 50 50 0.981 83.0% 87.3%

Table 3: Ablation study on the Window Loss with KLD.

annotation point will have a higher lower bound, increasing
the lower disallowed region. The results show that the classi-
fication performance remains very stable when r` increases,
i.e., the difference among the AUROC score is within 0.1.
However, the localization performance degrades noticeably
as the r increases, with the FROC score dropped by 7.9%
(resp., 6.8%) using MSE (resp., KLD). We posit that because
the larger positive region of a higher r` contains more nor-
mal areas, training the model to produce positive response
in these regions can lower its localization accuracy. On the
other hand, the results show that with a smaller τ = 0.4,
the classification performance remains almost the same as
the τ = 2 using both MSE and KLD, while the localization
performance dropped slightly (0.7% in the FROC score) us-
ing MSE. When a larger τ = 5 is used, the localization
performance starts to degrade noticeably, i.e., FROC score
from 89.9% to 88.2% (resp., from 89.6% to 86.6%) using
MSE (resp., KLD). As τ further increases to 10, the local-
ization performance degrades significantly, i.e., Recall@0.1
from 87.4% to 69.6% (resp., from 82.0% to 69.2%) using
MSE (resp., KLD). This is because the overly smoothed su-
pervision bounds have high tolerance of false activations in
normal areas, preventing the training loss to provide suffi-
cient guidance for localization.

Conclusion
In this paper, we demonstrate that anomalies or pathologies
in X-ray imaging can have complex appearance and anatom-
ical nature, which makes the bounding annotation unreli-
able. We present a disease detection method with a novel
Window Loss that utilizes more flexible and efficient point-
based annotations (capable of capturing anomaly findings
in a nonparametric manner by point sampling). We validate
the merit of our point-based annotation and Window Loss
on the pelvic X-ray fracture detection task. The proposed
method achieves substantially improved performance when
comparing to state-of-the-art image classification and object
detection methods. We also justify the usage of upper/lower
bounds with allowed regions via our ablation study. Future
studies should aim to employ the point-base annotation and
Window Loss for detecting a broader range of anomalies in
X-ray images from different body parts, as well as extending
the method to new imaging modalities (e.g., CT and MRI).
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