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Abstract

Video sentiment analysis as a decision-making process is in-
herently complex, involving the fusion of decisions from mul-
tiple modalities and the so-caused cognitive biases. Inspired
by recent advances in quantum cognition, we show that the
sentiment judgment from one modality could be incompat-
ible with the judgment from another, i.e., the order matters
and they cannot be jointly measured to produce a final de-
cision. Thus the cognitive process exhibits “quantum-like”
biases that cannot be captured by classical probability the-
ories. Accordingly, we propose a fundamentally new, quan-
tum cognitively motivated fusion strategy for predicting sen-
timent judgments. In particular, we formulate utterances as
quantum superposition states of positive and negative sen-
timent judgments, and uni-modal classifiers as mutually in-
compatible observables, on a complex-valued Hilbert space
with positive-operator valued measures. Experiments on two
benchmarking datasets illustrate that our model significantly
outperforms various existing decision level and a range of
state-of-the-art content-level fusion approaches. The results
also show that the concept of incompatibility allows effective
handling of all combination patterns, including those extreme
cases that are wrongly predicted by all uni-modal classifiers.

Introduction
Video sentiment analysis is an emerging interdisciplinary
area, bringing together artificial intelligence (AI) and cog-
nitive science. It studies a speaker’s sentiment expressed by
distinct modalities, i.e., linguistic, visual, and acoustic. At its
core, effective modality fusion strategies are in place. Ex-
isting neural structures have achieveed the state-of-the-art
(SOTA) performance (Tsai et al. 2019; Wang et al. 2019b;
Dumpala et al. 2019; Zadeh et al. 2017) by integrating fea-
tures after being extracted, called feature-level fusion. Other
approaches simulate logic reasoning and human cognitive
biases (Morvant, Habrard, and Ayache 2014; Glodek et al.
2011b,a) by aggregating decisions of uni-modal classifiers
into a joint decision, called decision-level fusion. Addition-
ally, hybrid fusion approaches benefit from the advantages
of both strategies. In this paper, we target at the generally
less effective but more flexible decision-level fusion.

Copyright c© 2021, Association for the Advancement of Artificial
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Video sentiment analysis is inherently a complex hu-
man cognition process. Recent research in cognitive science
found that in some cases human decision making could be
highly irrational (Tversky and Kahneman 1983), and such
behaviour does not always obey the classical axioms of
probability (Kolmogorov 1950) and utility theory (Morgen-
stern 1949). On the other hand, the mathematical formalism
of Quantum Mechanics (QM) has been shown able to ad-
dress paradoxes of classical probability theory in modelling
human cognition (Busemeyer and Bruza 2012). Conceptu-
ally, quantum cognition challenges the notion that human’s
cognitive states underpinning the decisions have pre-defined
values and that a measurement merely records them. Instead,
the cognitive system is fundamentally uncertain and in an
indefinite state. The act of measurement would then create a
definite state and change the state of the system.

We hypothesise that uni-modal sentiment judgments do
not happen independently, like a pre-defined value being
read out of the internal cognitive state. They are rather con-
structed at the point of information interaction and thus in-
fluenced by the other modalities, which serve as a context for
sentiment judgment under the current modality. For exam-
ple, there might be cases that the order of different decision
perspectives, e.g., when someone focuses first on the linguis-
tic and then on the visual view, or vice versa, could lead to
controversial sentiment judgements. That is, the measure-
ment from the first perspective provides a context that af-
fects the subsequent one, influencing the probabilities used
to compute the utility function of multimodal sentiment de-
cision. In this case, we say that these two decision perspec-
tives are incompatible with each other. Such incompatibility
implies that judgements over different modalities cannot be
measured jointly, and quantum probability as a generaliza-
tion of the classical probability theory should hence be in
place (Uprety et al. 2020). We argue that video sentiment
analysis could benefit from the generalised framework of
quantum cognition by capturing the cases of incompatibil-
ity that cannot be accommodated by classical probabilities.

This paper introduces a novel decision-level fusion strat-
egy inspired by quantum cognition (Fell et al. 2019). The
goal is to predict the sentiment of utterances in videos, as-
sociated with linguistic, visual, and acoustic streams. We
formulate an utterance as a quantum superposition state of
positive and negative sentiments (i.e., it can be positive and
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negative at the same time until it is judged under a specific
context), and uni-modal classifiers as mutually incompatible
observables, on a complex-valued Hilbert space H spanned
by distinct uni-modal sentiment bases. We take advantage of
incompatibility to influence the uni-modal decisions, when
they are under high uncertainty, to finally infer multimodal
sentiment judgment. It is important to note that the model
produces a generalized form of classical probabilities, al-
lowing for both compatible and incompatible sentiment de-
cisions.

More specifically, we resolve the incompatibility issue
through Positive-Operator Valued Measures (POVMs) to ap-
proximate the sentiment of uni-modal classifiers simultane-
ously. In practice, we estimate the complex Hilbert Space
and uni-modal observables from training data, and then es-
tablish the final multimodal sentiment state of a test utter-
ance from the learned uni-modal observables. To our best
knowledge, this is the first quantum cognitively inspired the-
oretical approach, with practical implementations, that in-
vestigates and models the incompatibility of sentiment judg-
ments for video sentiment analysis.

Extensive evaluation on two widely used benchmark-
ing datasets, CMU-MOSI(Zadeh et al. 2016) and CMU-
MOSEI(Bagher Zadeh et al. 2018), show that our strategy
significantly outperforms various decision-level fusion base-
lines and a range of SOTA content-level fusion approaches
for video sentiment analysis. The model is also shown able
to make correct sentiment judgments even for the cases
where all uni-modal classifiers give wrong predictions.

Related Work
Video Sentiment Analysis
Existing neural structures have achieved SOTA results for
utterance-level video sentiment analysis (Gkoumas et al.
2021). Memory networks incorporate multimodal hidden
units of preceding timestamps with the inputs (Wang et al.
2019b; Liang et al. 2018; Zadeh et al. 2018). Tensor-based
operations have also been exploited to compose (Zadeh et al.
2017) or factorize (Liu et al. 2018; Barezi and Fung 2019)
different modalities. Moreover, some approaches introduced
fuzzy logic (Chaturvedi et al. 2019) and encoder-decoder
structures in sequence-to-sequence learning, translating a
target modality to a source modality (Pham et al. 2019;
Dumpala et al. 2019). Multimodal transformer (Tsai et al.
2019) achieved the SOTA in affective analysis tasks. While
most existing strategies fuse word-level aligned modalities,
there are also attempts to address the challenging task of fus-
ing unaligned time-series streams (Wang et al. 2019b).

Quantum-inspired Representation Learning
The application of Quantum Theory (QT) in represen-
tation learning began after van Rijsbergen’s pioneering
work (Van Rijsbergen 2004) by integrating geometry, prob-
abilities, and logic into a unified theoretical framework. In
particular, QT has been exploited beyond its standard do-
main for various representation learning tasks (Uprety, Gk-
oumas, and Song 2020). Among them, quantum formal-
ism has been utilised for modelling word dependencies

through density matrices (Sordoni, Nie, and Bengio 2013)
and formulating the semantic composition of words (Sor-
doni, He, and Nie 2013) in Information Retrieval tasks.
Recently, researchers deployed quantum probabilistic mod-
els to address Natural Language Processing tasks. Prelim-
inary work introduced neural networks to simulate quan-
tum compositionality for question-answering tasks (Zhang
et al. 2018a). Later, the simulation of quantum measure-
ment postulate and its procedural steps into end-to-end neu-
ral networks led to improved performance and better in-
terpretability (Wang et al. 2019a; Li, Wang, and Melucci
2019). Furthermore, quantum probabilistic neural models
have been exploited to mode interactions across speakers in
conversations (Zhang et al. 2019). Quantum-inspired strate-
gies were also investigated for multimodal representation
learning tasks. Wang et al. (Wang, Song, and Kaliciak 2010)
proposed a tensor-based representation to retrieve image-
text documents. Moreover, there have been studies investi-
gating quantum interference (Zhang et al. 2018b) and non-
classical correlations (Gkoumas, Uprety, and Song 2018)
to address the decision-level modality fusion. Recently, a
quantum-inspired neural framework achieved the SOTA per-
formance for utterance-level video sentiment analysis (Li
et al. 2020). Unlike these existing works, in this paper, we
propose a quantum cognition inspired theoretical model cap-
turing cognitive biases via the concept of incompatibility,
accommodated only by quantum probabilities.

Background of Quantum Cognition
In this section, we introduce the key concepts of quantum
cognition (Busemeyer and Bruza 2012; Fell et al. 2019),
which we exploit to construct the proposed model.

Hilbert Space
Quantum cognition exploits an infinite complex-valued vec-
tor space, called Hilbert space H, in which the state of a
quantum system is represented as a unit-length vector. Dif-
ferent from classical probability, quantum probability events
are defined as orthonormal basis states. A projective geomet-
ric structure establishes relationships between states vectors
and basis states (Halmos 1987; Hughes 1989). The same
Hilbert space can be represented by different sets of or-
thonormal basis states, and the same state can be defined
over different sets of orthonormal basis states.

In consistency with QM, we adopt the widely-used Dirac
Notations for the mathematical formalism of quantum cog-
nition. A complex-valued unit vector ~u and its conjugate
transpose ~u∗T are denoted as a ket |u〉 and a bra 〈u|, re-
spectively. The inner product of two vectors |u〉 and |v〉 is
defined by 〈u|v〉, while |u〉 〈u| and |v〉 〈v| define operators.

Quantum Superposition
Quantum superposition is one of the fundamental concepts
in QM, which describes the uncertainty of a single particle.
In the micro world, a particle like a photon can be in mul-
tiple mutually exclusive basis states simultaneously with a
probability distribution. A general pure state |ψ〉 is a vector
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on the unit sphere, represented by
|ψ〉 = w1 |e1〉+ ...+ wn |en〉 . (1)

Where {|ej〉}nj=1 are basis states forming an orthogonal
basis of the Hilbert Space, and the probability amplitudes
{wj}nj=1 are complex scalars with

∑n
j=1 |wj |2 = 1, and | · |

the modulus of a complex number. |ψ〉 is a superposition
state when it is not identical to a certain basis state |ej〉. In
particular, in a two-dimensional Hilbert Space H2 spanned
by basis states |0〉 and |1〉, a pure state |ψ〉 is represented as

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (2)

while θ, φ ∈ [0, 2π] and i is the imaginary number satisfying
i2 = −1. Eq. 2 uniquely expresses any pure state onH2.

Measurement
Measurement is another fundamental concept in quantum
cognition for calculating quantum probabilities. In QM,
Projection-Valued Measure (PVM) removes a system state
from uncertainty to a precise event, by projecting a state
to its certain corresponding basis state1. In the absence of
measurement, there is uncertainty in the state in that it
takes all possible measurement values simultaneously. Af-
ter measurement, the state collapses onto a certain basis
state. However, PVMs on subsystems of a larger system
cannot be described by a PVM acting on the system it-
self. Positive-Operator Valued Measure (POVM) overcomes
this constraint, by associating a positive probability for each
measurement outcome, ignoring the post-measurement state
(Nielsen and Chuang 2011). That is, POVM is a generaliza-
tion of PVM, providing mixed information of a state for the
entire ensemble of subsystems.

Mathematically, a POVMM is a set of Hermitian positive
semi-definite operators {Ei} on a Hilbert space H that sum
to the identity operator, i.e.,

∑
iEi = 1. For a pure state

|ψ〉, we can calculate its density matrix ρ = |ψ〉 〈ψ|. The
probability with respect to Ei is computed as

P (i) = Tr(Eiρ) = 〈ψ|Ei |ψ〉 (3)
and

∑
P (i) = 1.

In the case of measuring a state on a two-dimensional
Hilbert Space H2 (see Eq. 2), the POVM is associated with
the following operators (Busch 1986):

E+ =
η

2
I + (1− η) |1〉 〈1| (4)

E− =
η

2
I + (1− η) |0〉 〈0| (5)

where I and η stand for the identity matrix and noise param-
eter respectively. The value η ∈ [0, 1] determines the proba-
bility that the measurement fails due to the system-apparatus
correlation or incompatibility (Liang, Spekkens, and Wise-
man 2011). When η = 0, the measurement apparatus exerts
no influence on the measurement, and we have an approxi-
mate measurement. When η = 1, the output of measurement
is completely random.

1For simplicity, we use a nomenclature definition. A strict defi-
nition can be found in (Nielsen and Chuang 2011).

Incompatibility
The concept of incompatibility is applicable to a Hilbert
space only. Each basis state, defining a probability event,
has a projector Π to evaluate the event. The conjunction of
two events is not necessarily commutative (Busemeyer and
Wang 2018). Suppose ΠA and ΠB are two sequential mea-
surements for A and B events respectively. In quantum cog-
nition, the joint probability distribution of two events equals
the product of the two projectors ΠA and ΠB , corresponding
to the basis state A ∩ B. If ΠAΠB = ΠBΠA, then the two
events are called compatible. However, if ΠAΠB 6= ΠBΠA,
then their product is not a projector, and the two events
do not commute, i.e., they are incompatible. Incompatibil-
ity implies that the two measurements cannot be accessed
jointly without disturbing each other. Assuming that mea-
surements are always compatible, classical probability can
not capture such disturbance. However, the mathematical
formalism of quantum probability allows for both compat-
ible and incompatible measurements (Hughes 1989). It is a
generalization of the classical probability theory.

Task Formulation
Due to space limitation, this work targets at the binary
video sentiment analysis task. Formally, each utterance Ui ∈
{U1, ..., UN} is associated with linguistic, visual and acous-
tic features Ui = {Xi,l, Xi,v, Xi,a} and a positive or nega-
tive sentiment label yi ∈ [−1, 1]. The objective is to estab-
lish a function, mapping an utterance Ui to its corresponding
sentiment label. Note that the proposed fusion strategy is ex-
tendable to multiclass classification by adopting a one-vs-all
classification strategy.

Quantum Cognition-inspired Fusion Model
We now introduce the proposed quantum cognition-inspired
fusion model for video sentiment analysis.

Sentiment Hilbert Space
The model is defined on a Sentimental Hilbert SpaceHsenti,
which is a 2-dimensional vector space spanned by basis
states {|+〉 , |−〉}. The basis states |+〉, |−〉 correspond to
the positive and negative sentiments, respectively. We rep-
resent an utterance Uk as a pure state |SUk

〉 (in short |S〉)
on Hsenti. The uni-modal sentiment classifiers (denoted as
L, V,A respectively) are formulated as mutually incompat-
ible observables (see Figure 1). The utterance can be rep-
resented under different sets of basis states, i.e., uni-modal
(L, V,A) and multimodal (F ) basis states in Figure 1. The
observables are not orthogonal with each other, since the
modalities are not independent, but highly correlated.

Utterance Representation
An utterance is represented as a pure state |S〉 of positive
and negative sentiments on a 2-dimensional Hilbert space
Hsenti (see Figure 1):

|S〉 = cos
θS
2
|+〉+ eiφS sin

θS
2
|−〉 (6)
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Figure 1: The Sentimental Hilbert Space. An utterance is
represented as a pure state |S〉 belonging to the surface of
a unit sphere (called the Bloch sphere). The two opposed
unit vectors represent positive and sentiment judgments. The
associated uni-modal sentiment observables L̂, V̂ , Â and
tri-modal observable F̂ are mutually incompatible. Projec-
tions of |S〉 on the corresponding bases indicate probability
events.

where θS , φS ∈ [0, 2π]. According to the Born’s rule (Born
1926), the probability of an utterance being positive and
negative is P (+) = | 〈S|+〉 |2 = cos2 θS2 and P (−) =

| 〈S|−〉 |2 = sin2 θS
2 , with cos2 θS2 + sin2 θS

2 = 1. As to be
shown in more detail in the next Section, the relative phase
φS plays a crucial role in capturing correlations between in-
compatible observables and giving rise to results that are
fundamentally different from the classical case.

Sentiment Decisions
We formulate uni-modal sentiment decisions as mutually in-
compatible observables on Hsenti, namely L̂, V̂ , and Â for
linguistic, visual and acoustic modalities respectively (see
Figure 1). For the binary sentiment analysis task, each ob-
servable is associated with two eigenstates and two eigen-
values, with common eigenvalues of 1 and −1 for positive
and negative sentiments. In that case, incompatibility falls
under different sets of eigenstates {|M,+〉 , |M,−〉} defin-
ing a uni-modal basis, where modality M ∈ {L, V,A}. Fol-
lowing Eq. 6, we express the eigenstates as

|M,+〉 = cos
θM
2
|+〉+ eiφM sin

θM
2
|−〉 (7)

|M,−〉 = sin
θM
2
|+〉 − eiφM cos

θM
2
|−〉 (8)

with θM , φM ∈ [0, 2π]. The eigenstates form an orthonor-
mal basis, with 〈M,+|M,+〉 = 〈M,−|M,−〉 = 1 and
〈M,+|M,−〉 = 〈M,−|M,+〉 = 0.

In QT, a general observable Ô can be decomposed to
its eigenstates {|λi〉} of the orthonormal basis as Ô =
λi |λi〉 〈λi|, where eigenvalues {λi} are possible values that
a state can take for the corresponding events after measure-
ment. Thus, the uni-modal observables have as follows:

M̂ = (+1) |M,+〉 〈M,+|+ (−1) |M,−〉 〈M,−|(9)

where M̂ ∈ {L̂, V̂ , Â}. Similarly, the observable for the fi-
nal sentiment decision F̂ is

F̂ = (+1) |+〉 〈+|+ (−1) |−〉 〈−| (10)

which spans the Hsenti and is incompatible with all uni-
modal observables.

Following the projective geometric structure, the mea-
surement probability on an eigenstate equals the projection
of the system state onto it, i.e., the squared inner product of
the vectors: | 〈S|M,+〉 |2 for uni-modal positive sentiment
and | 〈S|+〉 |2 for final (multimodal) positive sentiment. The
measurement probabilities under L̂ stand for the utterance’s
sentiment under linguistic modality, as so forth for the other
modalities. Finally, its multimodal sentiment is determined
by the observable F̂ . In Figure 1, the sentiment judgment is
positive in terms of uni-modal observables (projections are
visualized as shadows in Figure 1), yet is negative in terms
of the multimodal observable due to incompatibility.

Model Operationalization
This section presents a methodology that operationalizes the
proposed fusion model. Traditionally, in the physical sci-
ences, the study of mathematical problems involves mod-
elling methods leveraging a combination of approximation
techniques. In this work, we exploit statistical information
from the data to learn the sentimental Hilbert Space de-
scribed in the previous section, so as to leverage the incom-
patible observables to determine the sentiment polarity of
utterances. We propose a pipeline consisting of three steps:
(1) we first estimate the generic uni-modal observables M̂
from the training data; (2) then we construct the sentiment
state for each test utterance |ST 〉 from the learned uni-modal
observables and uni-modal sentiment prediction results; (3)
finally, we judge the sentiment with the multimodal observ-
able F̂ . In the remaining part of the section, we elaborate the
methodology for each step.

Observable Estimation
The uni-modal observables are constructed from the overall
statistics of the training data. These values are mapped to
their quantum expressions to estimate the parameters of the
uni-modal observables. In particular, the uni-modal observ-
ables and pure state should submit to the following prop-
erties: I) the pure state should conform to the statistics of
the dataset, II) the uni-modal sentiment measurement results
should be consistent with the ratio of positive and negative
samples in the training subsets, and III) quantum correla-
tions between observables should be aligned to classical cor-
relations of the per-sample prediction results, derived from
the training data.
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To facilitate the construction of uni-modal observables,
we introduce a pure state as follows:

|G〉 = cos
θG
2
|+〉+ eiφG sin

θG
2
|−〉 (11)

which describes the extent to which the dataset is unbal-
anced for positive and negative labels. By Born’s rule (Born
1926), the probability of positive judgment is:

P (+) = | 〈+|G〉 |2 ≈ #pos

N
(12)

where #pos is the number of true positive utterances in the
training set and N the size of the training set. Eq.12 implies

cos2
θG
2
≈ #pos

N
(13)

since the quantum probability equals the squared amplitude
of a state (see Section Background).

According to the second property, the probability of a pos-
itive sentiment judgment for each modality is given by

PM (+) = | 〈M,+|G〉 |2 ≈ #Mpos

N
(14)

where #Lpos, #Vpos and #Apos equals the number of true
positive utterances for each modality in the training set.
Combining Eq.7, Eq.11 and Eq.14, the probability of the
positive sentiment judgment for each modality is

cos2
θM
2

cos2
θG
2

+ sin2 θM
2

sin2 θG
2

+
1

2
sin θM sin θG cos(φM − φG) ≈ #mpos

N

(15)

Finally, we look into the correlations between pairs
of uni-modal observables, where the relative phases
play an key role. From a QM point of view, the
correlation of observables for two modalities M1,M2

is given by (| 〈M1,+|M2,+〉 |2 + | 〈M1,−|M2,−〉 |2 −
| 〈M1,+|M2,−〉 |2−| 〈M1,−|M2,+〉 |2). It should in prin-
ciple be aligned to the classical correlations derived from the
data. Hence we have

1

2

(
| 〈M1,+|M2,+〉 |2 + | 〈M1,−|M2,−〉 |2

− | 〈M1,+|M2,−〉 |2 − | 〈M1,−|M2,+〉 |2
)

≈ corr(M1,M2)

(16)

where M1 6= M2 ∈ {L, V,A} and corr(M1,M2) is a
classical correlation of the per-sample prediction results
based on modalities M1 and M2, which is computed from
the training data. When M1 and M2 give exactly same
predictions, the correlation corr(M1,M2) = 1. Accord-
ingly, | 〈M1,+|M2,+〉 | = | 〈M1,−|M2,−〉 |2 = 1 and
| 〈M1,+|M2,−〉 |2 = | 〈M1,−|M2,+〉 |2 = 0, so the value
1 is also produced from the quantum side. Similarly, a value
of -1 is obtained for both sides when the two modalities give
totally opposite predictions, indicating the maximum nega-
tive correlation. Hence, Eq.16 gives three equations for dis-
tinct pairs of modalities. For example, for linguistic-visual
correlation, Eq.16 results in

cos θL cos θV + sin θL sin θV cos(φL − φV )

≈ corr(L, V )
(17)

as so forth for the {L,A}, {A, V } modality pairs.
To wrap up, taking into account the number of posi-

tive sentiments in the training set and correlations across
different pairs of modalities, we get seven equations from
Eq. 13, Eq. 15 and Eq. 16, and eight unknown vari-
ables {θG, θL, θV , θA, φG, φL, φV , φA}. As all equations
rely only on the differences between the relative phases
rather than their absolute values, we can safely set φg = 0
and devise a unique solution of {θl, θv, θa, φg, φl, φv, φa}.
Through solving the system of equations, we calculate the
parameters for each uni-modal observable L̂, V̂ , and Â.

Utterance State Estimation
After estimating uni-modal observables as described above,
we need to estimate the state for each test utterance, which
is denoted as

|ST 〉 = cos
θT
2
|+〉+ eiφT sin

θT
2
|−〉 (18)

The uni-modal predictions can be exploited to estimate the
values of θT , φT . However, since the observables L̂, V̂ ,
and Â are mutually incompatible, the measurements results
cannot be accessed simultaneously. To that end, we utilize
POVMs to get the results of all incompatible measurements
simultaneously (Uola et al. 2016). In particular, we construct
sample-specific POVMs for each uni-modal measurement,
applying unsharp (weak) projections (Busch 1986) without
disturbing the observables. Formally, the operators are con-
structed as follows:

EM± =
ηT
2

I + (1− ηT ) |M,±〉 〈M,±| (19)

where ηT ∈ [0, 1] is specific to sample T , since each utter-
ance interacts with the apparatus in a different manner. We
apply uni-modal POVMs on the test utterance to measure its
sentiment in terms of each modality, that is,

〈ST |EM+ |ST 〉 ≈ PT,M (+) (20)

where PT,M (+) are uni-modal probabilities for the positive
sentiment judgment. Eq.20 gives a system with three equa-
tions, each equation for a distinct modality, and three un-
known variables {θT , φT , ηT }. Solving the system allows
us to construct the state |ST 〉.

Multimodal Sentiment Measurement
The sentiment of a test utterance |ST 〉 is measured by Eq. 10.
The results are PT (+) = cos2 θT2 and PT (−) = sin2 θT

2 .
The sentiment of ST is considered as positive if cos2 θT2 >
0.5 and negative otherwise.

Experiments
We evaluated the proposed model on two benchmark-
ing datasets, namely, CMU Multimodal Opinion-level Sen-
timent Intensity (CMU-MOSI) (Zadeh et al. 2016) and
CMU Multimodal Opinion Sentiment and Emotion Intensity
(CMU-MOSEI) (Bagher Zadeh et al. 2018). Each sample is
labelled with a 7-level ratio score. In this work, we adopted
binary accuracy (i.e., Acc2 : positive sentiment if the human
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annotation score ≥ 0, and negative sentiment if the score
< 0), and F1 score. For both datasets, we used the CMU-
Multi-modal Data SDK2 for feature extraction.

Baselines
We compared with robust approaches on both decision-level
and feature-level modality fusion approaches.

Decision-level: We first trained neural uni-modal classi-
fiers. In particular, we used Bi-GRU layers (Cho et al. 2014)
with forward and backward state concatenation, followed
by fully connected layers. The outputs gave linguistic, vi-
sual, and acoustic embedding {L, V,A} ∈ Rd, where d was
the number of neurons in dense layers. Then, self-attentions
were computed for each uni-modal dense representation by
calculating the scaled dot-product (Vaswani et al. 2017). Fi-
nally, each attentive uni-modal representation was fed into
two fully connected layers, followed by a softmax layer
to obtain sentiment judgments. The uni-modal results were
then fed into the multimodal meta-fusion approaches. We
compared with a range of baseline fusion approaches:

• Voting was used to aggregate the outputs of the uni-modal
classifiers. In particular, we applied a) Hard Voting, via
majority voting, b) Weighted Majority Voting, by assign-
ing weights to each uni-modal classifier and taking their
average, and c) Soft Voting, by averaging the predicted
probabilities, to infer multi-modal sentiment judgments.

• Single models exploited supervised machine learning al-
gorithms as meta fusion approaches of the uni-modal clas-
sifiers. For both tasks, we chose the most effective mod-
els, namely, a) Logistic Regression, b) Support Vector
Machine (SVM), and c) Gaussian Naive Bayes (Gaus-
sianNB), from a pool of supervised learning algorithms.

• Ensemble methods combined learning algorithms, se-
lecting the optimum combination from a pool of mod-
els. We explored stacking, backing, and boosting strate-
gies (Ponti Jr 2011); a) for stacking, single models were
stacked together and the hard voting method computed
predictions, b) for bagging, a number of estimators were
aggregated by majority voting, and c) for boosting, we
applied AdaBoost classifier (Freund and Schapire 1997)

• A Deep Fusion approach combined the confidence scores
of uni-modal classifiers along with the complementary
scores as inputs to a deep neural network, followed by
a sigmoid layer, which made the final prediction (Noja-
vanasghari et al. 2016).

Content-level: We also compared the model with a range
of SOTA content-level fusion approaches.

• For SOTA, we replicated a) MulT (Tsai et al. 2019), con-
sisting of pairwise crossmodal transformers, the outputs
of which are concatenated to build the multimodal embed-
ding utterance, b) RAVEN (Wang et al. 2019b), an RNN
based model with an attention gating mechanism to model
crossmodal interactions, and c) TFN (Zadeh et al. 2017), a

2https://github.com/A2Zadeh/CMU-MultimodalSDK

tensor-based neural network that a multi-dimensional ten-
sor captures uni-modal, bi-modal, and tri-modal interac-
tions across distinct modalities.

• QMF (Li et al. 2020) is a complex-valued neural ne-
towork, which represents utterances as superposed states,
and incorporates modalities through the tensor operator.

Experiment Settings
We conducted the experiments on the same uni-modal clas-
sifiers trained for the decision-level baseline approaches. We
estimated the uni-modal observables from training plus val-
idation sets, and then we used the learnt observables for
predicting the utterance sentiment on the test set. We used
Pearson correlation for modelling classical correlations. In
case the equation systems did not have solutions, the MAT-
LAB fsolve function was used to generate a numerical so-
lution. In particular, we randomly initialized the parameters
{θG, θL, θV , θA, φL, φV , φA} ∈ [0, 2π] for uni-modal ob-
servable estimation, and {θT , φT } ∈ [0, 2π], ηT ∈ [0, 1] for
utterance state estimation. The random initialization was re-
peated for 200 times to obtain the optimum solutions by cal-
culating the minimum sum of squared loss.

Comparative Analysis of Results
For both datasets, we present the results of the proposed
model in comparison with various baseline decision-level
fusion strategies in Table 1. For CMU-MOSEI, all ap-
proaches attained an improved performance as compared
to the performance of CMU-MOSI task. We suspect this
is because CMU-MOSEI is a much larger dataset. Overall,
Weighted Voting was the best-performing approach among
the voting-based aggregations, Logistic Regression among
the supervised learning algorithms, and Stacking among the
ensemble learning methods. For both tasks, Stacking and
Bagging were the most effective baseline decision-level fu-
sion strategies. For CMU-MOSI, the proposed model at-
tained an increased accuracy of 84.6% as compared to
78.4% of Stacking, which was a significant improvement of
6.2% (p − value < 0.05). For CMU-MOSEI, the model
reached an increased accuracy of 84.9% as compared to
82.2% of Stacking, i.e., a significant improvement of 2.7%
(p− value < 0.05).

CMU-MOSI CMU-MOSEI

Approach Acc2 F1 Acc2 F1
Hard Voting 67.5 65.4 71.5 83.3
Weighted Voting 74.6 71.6 81.3 87.8
Soft Voting 75.2 71.9 77.5 86.2
SVM 77.4 72.9 81.7 87.9
Logistic Regression 78.0 73.8 81.9 88.0
GaussianNB 76.7 71.6 80.9 86.8
Stacking 78.4 75.1 82.2 88.1
Bagging 78.1 73.6 82.0 88.0
Boosting 77.7 74.0 81.7 87.7
Deep Fusion 77.8 77.7 81.9 81.3
Proposed Model 84.6 84.5 84.9 91.1

Table 1: Effectiveness of decision-level fusion approaches.
Best results are highlighted in boldface.
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Table 2 presents the comparison results against various
SOTA content-level fusion approaches. For CMU-MOSI,
TFN (Zadeh et al. 2017) was the most effective among the
content-level fusion baselines. The proposed model attained
an improvement in accuracy by 3.4% (see Table 2). For
CMU-MOSEI, RAVEN (Wang et al. 2019b) achieved the
highest accuracy among the baselines. The proposed model
yielded an increased accuracy of 84.9% as compared to
80.2% of RAVEN, i.e., a 4.7% improvement.

We noticed that the decision-level fusion strategies
achieved better performance than the content-level neural
approaches on CMU-MOSEI. This implies that discrimi-
native learning approaches can benefit from large datasets,
whereas neural approaches lead to overfitting. We also ob-
served that the proposed model achieved a similar per-
formance on CMU-MOSI and CMU-MOSEI, even though
CMU-MOSI is a relatively balanced dataset. That is, our
model can cope with both skewed and balanced datasets.

CMU-MOSI CMU-MOSEI

Approach Acc2 F1 Acc2 F1
MulT (Tsai et al. 2019) 80.2 79.5 80.0 79.8
RAVEN (Wang et al. 2019b) 78.6 78.6 80.2 79.9
TFN (Zadeh et al. 2017) 81.2 80.8 77.8 77.8
QMF (Li et al. 2020) 80.7 79.7 79.7 79.6
Proposed Model 84.6 84.5 84.9 91.1

Table 2: Effectiveness of content-level fusion approaches.

Ablation Tests Table 3 shows the results of an ablation
study. The first three rows list the performance of uni-modal
classifiers when no crossmodal interactions were modelled.
The linguistic modality was the most predictive due to the
use of word embedding trained on large corpora. For CMU-
MOSEI, the linguistic classifier even outperformed all the
content-level and voting-based fusion approaches.

CMU-MOSI CMU-MOSEI

Approach Acc2 F1 Acc2 F1
Linguistic Only 77.1 72.3 81.5 87.8
Visual Only 54.7 48.4 71.1 83.0
Acoustic Only 56.1 60.0 71.2 83.1
Proposed Model 84.6 84.5 84.9 91.1

Table 3: Comparison with uni-modal approaches.

As a second set of ablation experiments, we tested the
proposed model when only bimodal dynamics were present.
We present the result in Table 4, which shows the linguistic
and acoustic dynamics were the most informative. However,
trimodal dynamics outperformed all possible bimodal com-
binations, yielding an improvement of accuracy by 5.0% for
CMU-MOSI, and 2.2% for CMU-MOSEI.

Effect of Incompatibility We conducted a further anal-
ysis to investigate the effectiveness of incompatibility. We
first identified all the cases that were correctly predicted by
one out of the eleven decision-level fusion approaches. In to-
tal, there were 33 such cases on CMU-MOSI and 1547 ones

CMU-MOSI CMU-MOSEI

Approach Acc2 F1 Acc2 F1
Model{L,V } 78.2 74.3 82.1 88.4
Model{L,A} 79.6 75.1 82.7 89.2
Model{V,Ac} 55.1 55.2 70.8 82.7
Proposed Model 84.6 84.5 84.9 91.1

Table 4: Comparison of the model with its variants.

Figure 2: Visual-acoustic content of an incompatible case.

on CMU-MOSEI test sets. The proposed model gave correct
predictions for 31 cases out of 33 on CMU-MOSI and all
the 1547 cases on CMU-MOSEI. Furthermore, we analyzed
the cases that all uni-modal classifiers gave wrong sentiment
judgments, but the proposed model successfully fused them
and gave correct predictions. There were 39 such utterances
out of 686 on the CMU-MOSI and 633 utterances out of
4643 on the CMU-MOSEI subsets.

Case Study We illustrate the visual-acoustic content of an
incompatible case of the utterance “I mean even if you don’t
have kinds” in Figure 2. The linguistic state by itself is in
an indefinite state, which results in a superposition of senti-
ment judgments. Similarly, the visual-acoustic content is un-
der uncertainty since the content is neutral. Indeed, all uni-
modal classifiers predicted a negative sentiment judgment,
inferring a probability less than 0.5, yet very close to the
decision boundary of 0.5. This superposition of uni-modal
beliefs, i.e., positive and negative sentiment at the same time
until they are judged under a specific context, results in the
occurrence of incompatibility. Under the high levels of un-
certainty, incompatibility influences uni-modal judgments
and successfully predicts a positive multimodal sentiment
judgment. This phenomenon is the core of the model and
the reason it achieves such high performance.

Conclusions
We have introduced an effective fusion strategy inspired by
quantum cognition. We formulated utterances as states and
uni-modal decisions as mutually incompatible observables
in a complex-valued sentimental Hilbert space. The incom-
patibility captures cognitive biases in the decision fusion
process that are otherwise not possible with classical prob-
ability. The proposed model has been shown able to handle
all combination patterns, including the cases where all uni-
modal classifiers gave wrong sentiment judgments. There-
fore, the proposed approach achieved an improved perfor-
mance over SOTA content-level and decision-level modal-
ity fusion approaches. In the future, we will investigate the
model on conversational video emotion recognition tasks.
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